
Eigenspace-based Anomaly Detection in Computer
Systems

Tsuyoshi IDÉ
∗

Tokyo Research Laboratory
IBM Research

goodidea@jp.ibm.com

Hisashi KASHIMA
Tokyo Research Laboratory

IBM Research

hkashima@jp.ibm.com

ABSTRACT
We report on an automated runtime anomaly detection method
at the application layer of multi-node computer systems. Al-
though several network management systems are available
in the market, none of them have sufficient capabilities to
detect faults in multi-tier Web-based systems with redun-
dancy. We model a Web-based system as a weighted graph,
where each node represents a “service” and each edge repre-
sents a dependency between services. Since the edge weights
vary greatly over time, the problem we address is that of
anomaly detection from a time sequence of graphs.

In our method, we first extract a feature vector from the
adjacency matrix that represents the activities of all of the
services. The heart of our method is to use the principal
eigenvector of the eigenclusters of the graph. Then we derive
a probability distribution for an anomaly measure defined
for a time-series of directional data derived from the graph
sequence. Given a critical probability, the threshold value is
adaptively updated using a novel online algorithm.

We demonstrate that a fault in a Web application can be
automatically detected and the faulty services are identi-
fied without using detailed knowledge of the behavior of the
system.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; H.2.8 [Database
Management]: Database applications - Data Mining; K.6.4
[Management of Computing and Information Sys-
tems]: System Management

General Terms
Algorithms, Management

Keywords
∗The authors address: 1623-14, Shimotsuruma, Yamato,
Kanagawa 242-8502, Japan.

To appear in Proceedings of the Tenth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining(August 22–25, 2004,
Seattle, Washington, USA).

time sequence of graphs, principal eigenvector, Perron-Frobenius
theorem, von Mises-Fisher distribution, singular value de-
composition

1. INTRODUCTION
1.1 Anomaly detection from graph sequences
Network systems having various connections and correla-
tions between vertices have attracted much attention in sev-
eral research fields such as ecology, economics, and solid-
state physics. In the data mining community, growing atten-
tion is being paid to graphs as a new data structure. Recent
studies include: an extension of the a-priori algorithm to
graphs [13], clustering graph vertices based on graph spec-
tra [5, 4], and anomaly detection from a graph set based
on the maximum description length principle [16]. Refer-
ence [22] extensively reviews the state of the art of graph-
based data mining. Most of those works today, however,
assume that the attributes of graphs are static.

On an abstract level, computer systems are also represented
as graphs. What is profound here is that, first, it is possible
to define various kinds of network structures. For example,
one can consider several structures at each layer of the OSI
(Open Systems Interconnection) reference model. Second,
interactions between vertices or edge weights are not clearly
defined at each layer.

In this paper, we address online anomaly detection for com-
puter systems. We model a Web-based system as a weighted
graph, where each node represents a “service” and each
edge represents a dependency between services. Since edge
weights may vary over time, the problem we address is that
of anomaly detection from a time sequence of graphs, namely
from a time-dependent adjacency matrix. The dependency
matrix will exhibit some change when a monitored system
experiences a fault. This change, however, will be difficult
to detect by monitoring an individual dependency, i.e., each
matrix element. This is especially true in Web-based sys-
tems, where the number of service calls fluctuates strongly
over time. Even if a detector observes a sudden change in
a single service, there is no evidence to conclude whether
or not it is due to a fault. It may just be a fluctuation in
traffic.

This is a new challenge for graph mining, where one needs
to discover an unknown structure hidden deep inside of de-
pendency graphs, and detect faults from their anomalous
changes. In this paper, we discuss the dynamics of graphs in

the context of data mining. We first extract a feature vector
from an adjacency matrix that represents the activities of
the services. The heart of our method is to use the principal
eigenvector of the eigenclusters of the graph. To a time-
series of directional data derived from the graph sequence,
we next apply a pattern extraction technique based on a
variational principle. Then we introduce a new online algo-
rithm to update a probability distribution for an anomaly
measure based on the von Mises-Fisher theory. Using this
technique, anomalies can be detected by comparing with
given critical probability that is independent of the details
of the system.

1.2 Faults in computer systems
The more the importance of information technology in soci-
ety increases, the more serious the impact of major faults of
computer systems becomes. In recent distributed complex
systems, some autonomic system management model [6] is
needed rather than the traditional model, where a human
administrator constantly monitors the system. It is clear
that, as the first step, one needs a tool to sense the whole
system in a comprehensive manner and to detect any sign of
faults in an automated manner. However, there is no prac-
tical method for this because of the intrinsic complexity of
phenomena in computer networks.

For instance, network node management systems (NNMSs)
today have poor fault detection capabilities although they
can gather and visualize information distributed in the sys-
tem, typically through the Simple Network Management
Protocol (SNMP). In fact, because SNMP trap events are
thrown too frequently in a default configuration and the in-
dividual trap events are not necessarily related to actual
faults, some administrators often neglect the trap events.
As a result, monitoring a console by a human administrator
is practically the only solution to detect the sign of faults.

These problems in existing NNMSs are summarized as fol-
lows:

• They are capable of gathering detailed information for
each node through the SNMP Management Informa-
tion Base, but they provide poor means to correlate
that information.

• Empirically defined threshold values are directly com-
pared with such observables, and anomalies are defined
by simple inequality rules. Deep expert knowledge is
needed to find such rules.

These problems are crucial, especially in high volume Web
systems. For instance, consider a three-tier system including
an HTTP (Hyper Text Transfer Protocol) server, a Web
application server (WAS), and a database (DB) server. An
appropriate description of the interaction between servers
at the application layer is essential because the servers are
connected at this layer as well as at the Transport layer.
However, it is known to be difficult to monitor such higher-
level correlations with the use of existing NNMSs.

To be more concrete, consider an anomalous situation in a
doubly-redundant system with two HTTP servers and two

WASs: The activity of one of the WASs suddenly decreases
due to some external load. While this trouble clearly breaks
the symmetry between the two WASs, there is no fault at
layers below the TCP (transport layer protocol) layer and
no change will be detected in response time at relatively
low traffic levels. A heartbeat monitoring service may show
that all of the processes work well. However, this situation
is potentially dangerous because an increase in traffic may
cause serious problems far before the traffic volume exceeds
the rated capacity of the system.

Faults of this kind are difficult to find by monitoring individ-
ual servers using the existing NNMSs. What we will propose
in this paper is a novel method to detect such faults. To the
best of the authors’ knowledge, this is the first report that
succeeds in automated detection of faults at the application
layer.

The rest of this paper is organized as follows: In the next
section, we briefly refer to related work. In Section 3, we
define the dependency matrix at the application layer and
formally state the problem. In Section 4, we describe a
new method of feature extraction and show that graph time
sequences are reduced to time-series of directional data. In
Section 5, we discuss probabilistic properties of the anomaly
measure. In Section 6, we report on experimental results in
a benchmark system. In the final section, we summarize the
major results in this paper.

2. RELATED WORK
Most recent studies on graph mining address issues that are
transplanted from traditional problems in data mining. Fre-
quent pattern search [14, 10] and graph classification [12]
are such examples. One of the properties that is inherent
in graphs is the presence of graph spectra. References [5, 4]
address the problem of graph partitioning. There are also
studies that discuss time development of graphs for citation
graphs [15] or for the World Wide Web [9], both of which
employ the concept of graph spectra. In the field of image
processing, incident matrices and their eigenvectors are used
to characterize the time development of images [17]. While
our approach has a part in common with the eigencluster
concept in Ref. [17], we address the dynamics of graphs
where edge weights are explicitly time-dependent, rather
than gradual changes of incident matrices. To the best of
the authors’ knowledge, there is little research that focuses
on highly dynamic systems such as computer networks in
the context of graph mining.

In a subsequent section, we will show that a sequence of de-
pendency graphs at the application layer can be transformed
into a sequence of directional data items (a time series of
normalized vectors). For vector series without normaliza-
tion, unsupervised anomaly detection techniques are exten-
sively discussed in Refs. [24, 23] based on the normal mixture
model (Note that traditional rule-based approaches are not
appropriate in this case since the signs of faults are hidden
deep inside the systems). However, the normal mixtures are
not appropriate to handle directional data. Reference [1]
employs a mixture of the von Mises-Fisher distribution, and
discusses the connection to the cosine measure. We also con-
sider the von Mises-Fisher distribution. Our contribution is
to derive a probability distribution of the anomaly measure

itself and to give its online update procedure.

Recent studies on signal processing have demonstrated the
utility of change-detection techniques to characterize anoma-
lies of network traffic [2, 21]. However, most of those studies
address highly aggregated data at the lower layers. We focus
on the problem at the application layer in Web-based sys-
tems, where traditional autoregressive models with white
noise are not appropriate because of the strong fluctuation
and the heavy tail nature of data. Reference [8] applied
the approach of Refs. [24, 23] to a fault detection task in a
local-area network. However, it only uses information from
a single observation point, and considers only lower layer
quantities. Reference [20] proposes an interesting method to
correlate multiple observation points. However, it is based
on the autoregressive model and its thresholding policy is
not probabilistically consistent. Overall, our contribution is
to discuss the problem of graph mining in terms of a vec-
tor space model, and to give a probabilistically consistent
anomaly detection method.

3. DEPENDENCY MATRIX

3.1 Definition
As discussed, we focus on faults occurring in the application
layer of Web-based systems. We define a service as a quartet
of

(Is, Id, P, Q),

where Is and Id represent source and destination IP (In-
ternet Protocol) addresses, respectively, and P denotes the
port number of the destination application. We also use
an attribute called the transaction type Q. Figure 1 illus-
trates a benchmark system. There are four server boxes in
this system, and two server processes with port numbers
p1 and p2 are installed on each of the boxes at i2 and i3.
On each of the server processes, multiple applications can
be running, and they are distinguished by the value of Q.
For example, a service may be defined by (i1, i3, p1, q1) for
i1=192.168.0.19, i2=192.168.0.53, p=80, and q1=“Trade”.
This corresponds to a request to the HTTP server for a
transaction type “Trade”. Figure 2 shows a subgraph of the
dependency graph expected in the system depicted in Fig. 1.
We drew links if Is = Id holds between two services, and ser-
vices involving only q1 and q2 are shown there. The service
type q1 may be “Trade”, and q2 may be a DB-related service.
Generally, the dependency graph of a Web-based system is
quite complicated even if the corresponding IP network is
simple.

Consider a system with N different services. For the de-
pendencies between services, it is natural to consider the
quantity di,j , the number of i’s requests for j within a pre-
determined time interval, as a measure of the dependency.
Considering the bursty nature of Web traffic, it is reason-
able to use its logarithmically transformed quantity, d̃i,j =
ln(1 + di,j). Since most transactions in Web-based systems
are processed synchronously, a callee returns the control to-
ken to its caller after processing a request. Thus, the sim-
plest assumption is that the dependency of a service i on
another service j is symmetric:

Di,j = (d̃i,j + d̃j,i)(1− δi,j) + αiδi,j , (1)

1i

2i

3i

4i

1p 2p
HTTP WAS

3p
DB

1p 2p
HTTP WAS

Figure 1: Configuration of benchmark system. IP
addresses and port numbers are denoted by ik (k =
1, .., 4) and pj (j = 1, 2, 3), respectively.

11s
),,,(

),,,(

),,,(

),,,(

),,,(

),,,(

),,,(

),,,(

1233

1222

234311

234210

12239

12327

11314

11213

qpiis

qpiis

qpiis

qpiis

qpiis

qpiis

qpiis

qpiis

y

x

=
=
=
=
=
=
=
=

xs 10s 9s

3s 4s

7s ys

Figure 2: A part of the dependency graph for the
system in Fig. 1. Only services which have Q = q1

or q2 are shown. Graph edges are drawn if Is = Id

holds between two vertices.

where δi,j is Kroneker’s delta function and the αis are con-
stants introduced to stabilize the numerical calculations. By
definition, D is a square non-negative matrix. Hereafter, we
use a sans serif font to indicate matrices and use bold italic
to indicate vectors. The norm of vectors is defined as the
L2-norm.

In principle, the quantity di,j can be measured through
server logs, typically using an API (application program in-
terface) called ARM (application response measurement) [19].
In commercial systems, however, it is more practical to es-
timate di,j from some indirect information, since capturing
server logs causes additional load. Recently, Gupta et al. [7]
proposed an algorithm where di,j is defined as the proba-
bility that the duration of a transaction (an instance of a
service i) contains the duration of another transaction (an
instance of a service j). In such algorithms, Di,j ’s are not
integer but real numbers including error. In this paper, how-
ever, we do not discuss the details of such a method to eval-
uate the dependency, and concentrate our attention on the
online anomaly detection algorithm, given the dependency
matrix.

3.2 Problem statement
We consider that the overall behavior of a computer system
can be basically characterized by the dependency matrix D.

Its dimension N and the definition of each element are as-
sumed to be fixed, but the value of each matrix element
strongly varies over time. Considering D as the adjacency
matrix of a graph with a fixed structure, the problem we
address is described as follows: Given a graph with time-
dependent edge weights on a fixed structure, detect anoma-
lies online and identify faulty vertices of the graph without
using detailed knowledge on the system behavior.

The main considerations here are that, first, N is so large
(on the order of 102) that monitoring each matrix element
independently is not practical. Second, the behavior of each
matrix element strongly fluctuates, and the fluctuation it-
self does not necessarily indicate any anomalies. Anomalous
situations are implied by phase transitions in the overall re-
lation between the edge weights. Third, the rule to define
the anomalies must be described without ad hoc knowledge
specific to the system.

4. FEATURE EXTRACTION FROM GRAPHS
4.1 Definition of activity vector
Let us assume that the data for the dependency matrix D
is sequentially obtained at each time t=1,2,... each a fixed
interval, and that the dependency graph has a single con-
nected component. We define the feature vector u of D as

u(t) ≡ argmax
ũ

n
ũT D(t)ũ

o
(2)

subject to ũT ũ = 1, where T denotes transpose. Since D is
a non-negative matrix, one can see that the maximum value
is attained if the weight of u(t) is larger for services where
Dij(t) is larger. If a service i actively calls other services,
u(t) has a large weight for the i-th element. Following this
interpretation, we call this feature vector an activity vector.

By introducing a Lagrange multiplier λ, Eq. (2) can be
rewritten as

d

dũ

h
ũT D(t)ũ− λũT ũ

i
= 0,

so that

D(t)ũ = λũ. (3)

While this equation holds for any of the eigenvectors of D(t),
the feature vector corresponding to Eq. (2) is defined as the
principal eigenvector (the eigenvector whose eigenvalue is
the largest). Since Eq. (3) is homogeneous in ũ, the follow-
ing property holds for the activity vector:

Property 1. The direction of u is invariant with respect
to the transformation D(t) → kD(t) for any nonzero real
number k.

Thereby we can exclude overall traffic changes from analysis.
It is the eigenvalue that is proportional to the global traffic
volume. This is important to abstract a hidden structure
from D.

To understand the meaning of u further, one can relate u
with a stationary state of a discrete-time linear dynamical
system whose equation of motion is given by

x(τ + 1) = D(t)x(τ),

where τ denotes a virtual time being independent of the
actual time t, and x is associated with u by u=x/||x||.
Since D(t) is symmetric and of full-rank at least for α > 0,
all eigenvalues are real. Using the eigenvalues, x(0) can be
expressed as a linear combination of the eigenvectors, so that

x(∞) = lim
n→∞

[D(t)]n x(0) = lim
n→∞

NX
i=1

[λi(t)]
nci(t)ui(t),

where the eigenvalues and the normalized eigenvectors are
denoted by λi(t) and ui(t) for i=1, 2, ..., N , respectively,
and ci(t)’s are coefficients of the linear combination. Evi-
dently, the term of the maximum eigenvalue becomes dom-
inant as n →∞. Thus, we have

u(t) = x(∞)/||x(∞)||.
Namely, the state vector approaches u after an infinite num-
ber of transitions. For computer systems, the stationary
state can be interpreted as the distribution of the probabil-
ity amplitude that a service is holding the control token of
the system at a virtual time point of τ .

4.2 Activity vectors in disconnected systems
In real computer systems, the dependency graph is often
disconnected. For such systems, a permutation matrix P
exists such that

PT DP =

2
64

D1 0
D2

0 . . .

3
75 ,

where D1, D2, ... are square submatrices. To be concrete,
consider the system shown in Fig. 3. Using

P =

2
666664

1 0 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0

3
777775

,

the whole dependency matrix is decomposed into two square
submatrices:

D1 =

2
664

0 a15 a13 0
a15 0 0 a56

a13 0 0 a36

0 a56 a36 0

3
775 , D2 =

»
0 a24

a24 0

–
. (4)

Evidently, each submatrix corresponds to a connected sub-
graph. Since the eigenvalue equation is invariant with re-
spect to orthogonal transformations, the whole eigenvalue
equation is written as

0 = det
˛̨
D1 − λE(4)

˛̨
· det

˛̨
D2 − λE(2)

˛̨
,

where E(n) represents the n-dimensional identity matrix.
Consequently, the solution of the whole system can be ob-
tained as the union of the solutions of each connected com-
ponent. This fact allows us to analyze each subgraph sepa-
rately.

For each connected component, the Perron-Frobenius theo-
rem [3], which holds for non-negative irreducible matrices,
guarantees a useful property of the activity vector:

Property 2. In each connected component, the principal
eigenvector is positive, where an eigenvector is said to be
positive if all the components of u or −u are positive and
the corresponding eigenvalue is positive.

This naturally supports the interpretation of the principal
eigenvector as the activity vector, since the magnitude of the
activities should be positive. For the principal (i.e. maxi-
mum) eigenvalue, the following property holds:

Property 3. In each connected component, the principal
eigenvalue is real 1 and has no degeneracy.

From this, we understand that the activity vector is free
from subtle problems due to level crossings of the eigenstates
within a single connected component in the normal state of
the system. If a level crossing easily occurs due to small
fluctuations, the transition from one eigenstate to another
eigenstate may be recognized as an outlier, resulting in a
false alert.

For example, we show all of the eigenvectors in Table. 1 for
the system shown in Fig. 3, setting a13, a15, a36, a56, and a24

to 4, 10, 3, 3, and 1, respectively. As shown, the principal
eigenvectors, u1 and u3, are positive, and the collections of
nonzero elements correspond to the connected components,
{1, 3, 5, 6} and {2, 4}. Following Sarker and Boyer [17], we
call the collections eigenclusters. An eigencluster is said to
be principal if it has the largest principal eigenvalue.

The eigencluster concept provides us with a natural way to
cluster services. When the set of all services is unknown, it
is practically possible to find the activity vectors by choosing
positive vectors from a set of eigenvectors [17]. Specifically,
for the eigenvectors of the whole system, we understand the
following fact:

Property 4. In disconnected systems where the princi-
pal eigenvalue is not degenerate, the activity vector of the
whole system is that of the principal eigencluster.

We define the activity vector of the whole system by that of
the principal cluster.

4.3 Stability of activity vectors
Although the Perron-Frobenius theorem guarantees that the
principal eigenvalue is not degenerate within each single
component, it says nothing about inter-component degen-
eracy. To explore the conditions of no degeneracy stated in
Property 4, consider the following situation: A weak per-
turbation F is applied to a system, and it couples an N1-
dimensional eigencluster D1 with the other N2-dimensional
eigencluster D2. Namely, at t and t + 1, the dependency
matrices are given as

D(t) =

»
D1 0
0 D2

–
, D(t + 1) =

»
D1 F
FT D2

–
. (5)

1In this case, all of eigenvalues are real since Eq. (1) makes
D real and symmetric.

1 2

3

46

5

a
a

a

13
36

a15 a56

D D1 2

24

Figure 3: Example of a disconnected graph.

Here F is an N1×N2 nonnegative matrix. Let ŝ1 and ŝ2 be
activity vectors of D1 and D1, and let λ1 and λ2 be cor-
responding eigenvalues, respectively. In the unperturbed
system, N -dimensional vectors s1=(ŝ1,0)T and s2=(0, ŝ2)

T

are eigenvectors with eigenvalues of λ1 and λ2, respectively,
where the 0s are the zero vectors with appropriate dimen-
sions. To find the activity vector of the perturbed system,
let us limit ourselves to the space spanned by s1 and s2. Let
û be an eigenvector in this space. Since û is mapped back
onto the original space as Kû, where

K = [s1, s2]

is the projection matrix, the eigenequation in the contracted
space is expressed as

KT D(t + 1)Kû = λû.

Note that KKT = E(2) holds. Explicitly, the perturbed ma-
trix is transformed into

KT D(t + 1)K =

»
λ1 f
f λ2

–
, (6)

where f = ŝT
1 Fŝ2 is a scalar. If the two eigenvalues are very

close to each other, any linear combination between s1 and
s2 can be an eigenvector. Thus, the activity vector of the
whole system may make a transition from, e.g., s1 to s2 due
to a small perturbation. The activity vector is unstable in
this case.

On the other hand, consider the case where λ1 À λ2 and
λ1 À f holds. Solving the eigenvalue equation correspond-
ing to Eq. (6), we have

λ+

λ−

ff
=


λ1 + f2/λ1

λ2 − f2/λ1
, (7)

where we neglect higher order terms with respect to f/λ1

and λ2/λ1. The eigenvector corresponding to λ+ is given by

Kû ∝ λ1s1 + fs2. (8)

Naturally, this is a positve vector. Equation (7) shows that
the perturbation increased the difference of the two levels.
The eigenvector of Eq. (8) indicates that s1 is dominant in
the whole activity vector as long as f is small. By defini-
tion, f is small when the number of edges between the two
subsystems is small and/or their edge weights are small.
Fortunately, in Web-based systems, important services such
as the HTTP server’s requests for a WAS are concentrated
within the principal eigencluster, and therefore, the condi-
tion of λ1 À λ2, f is clearly satisfied. Hereafter, we will
pay our attention only to the principal eigencluster which is
stable against perturbations.

Table 1: Eigenvectors and eigenvalues for the graph
shown in Fig. 3. For parameters, see the text.

u1 u2 u3 u4 u5 u6

1 0.663 0.245 0. 0. 0.245 0.663
2 0. 0. 0.707 −0.707 0. 0.
3 0.295 −0.642 0. 0. 0.642 −0.295
4 0. 0. 0.707 0.707 0. 0.
5 0.642 0.295 0. 0. −0.295 −0.642
6 0.245 −0.663 0. 0. −0.663 0.245
λ 11.469 1.570 1.000 −1.000 −1.570 −11.469

4.4 Scalability of our approach
Our feature extraction technique provides a natural way to
summarize the information contained in D. The eigencluster
decomposition allows us to analyze each single eigencluster
separately, and the activity vector extraction technique al-
lows us to further reduce the degrees of freedom. Thus, we
expect that the degrees of freedom of each of subproblems
are still moderate even when the whole degrees of freedom
are very large. In addition, the feature vector has a clear
interpretation that is comprehensible to system administra-
tors. Understanding what is happening is as essential as
detection itself in practical situations. These are advan-
tages over naive approaches such as defining a feature vector
simply by connecting all of the column vectors, where the
scalability cannot be achieved and interpretation of results
is often unclear.

For the numerical calculations, an extremely fast and simple
algorithm called the power method [18] is known to find the
principal eigenvector. While the activity vector must be
calculated online whenever D is updated in the given time
interval ∆t, typically on the order of a few tens of seconds,
our experience shows that the time to convergence is far less
than ∆t even for N on the order of 103.

5. ANOMALY DETECTION

5.1 Extraction of typical activity pattern
Now we consider how to detect anomalous changes from the
sequence of activity vectors {u(t)} for t = 1, 2, Since u(t)

is normalized, this is a time sequence of directional data.
The basic procedure is to extract a typical pattern from the
past activity vectors, and to calculate the dissimilarity of
the present activity vector from this typical one.

We define a matrix U(t) by

U(t) = [u(t),u(t− 1), · · · ,u(t−W + 1)] ,

where W is a window size. Clearly, U(t) is an N×W matrix.
It is natural to suppose that the typical pattern is a linear
combination of the column vectors:

r(t) = c

WX
i=1

viu(t− i + 1), (9)

where c is the normalization constant to satisfy rTr = 1.
If the vis are independent of i, r(t) is parallel to the mean
vector. In order to further optimize the coefficients vT =
(v1, v2, ..., vW), we again consider the following extremum

principle:

v(t) ≡ argmax
ṽ

˛̨
˛̨
˛

˛̨
˛̨
˛

WX
i=1

ṽiu(t− i + 1)

˛̨
˛̨
˛

˛̨
˛̨
˛

2

(10)

subject to ṽT ṽ = 1. This equation implies that the optimal
vis are those that produce the strongest constructive inter-
ference between us. Notice that Eq. (9) can be expressed
as

r(t) = cU(t)v(t). (11)

Then the extremum equation reads

d

dṽ

h
ṽT U(t)T U(t)ṽ − µṽT ṽ

i
= 0,

where we set the Lagrange multiplier to be c2µ. Hence, we
have an eigenequation

h
U(t)T U(t)

i
ṽ = µṽ. (12)

While each eigenvector of U(t)T U(t) satisfies this equation,
we define the typical pattern as the principal eigenvector.
Using Eq. (12) and the normalization conditions, it is easy
to show that

c = 1/
√

µ. (13)

Equations (11), (12), and (13) suggest that r(t) is the prin-
cipal left singular vector of U(t), where a singular vector is
said to be principal if it corresponds to the largest singu-
lar value. Again, the power method [18] is a good way to
perform the singular value decomposition (SVD).

5.2 Anomaly metric and its probability
distribution

To evaluate the dissimilarity, we introduce the quantity z(t),
defined as

z(t) ≡ 1− r(t− 1)Tu(t). (14)

The value of z(t) is unity if the present activity vector is
orthogonal to the typical pattern at t − 1, and zero if the
present activity vector is identical to the typical pattern. In
the present context, if z(t) is greater than a given threshold,
we infer that an anomalous situation is occurring in the
system. We summarize our anomaly detection procedure
in Fig. 4.

For directional data, the major distribution is the von Mises-
Fisher (vMF) distribution [1],

p(u) ∝ exp

»
cos θ

Σ

–
, (15)

where ||u|| = 1. The angular variable θ ∈ [0, π] is defined
as the arccosine of the inner product between u and a mean
direction. Here, we take r(t− 1) as the mean direction at t:

cos θ = r(t− 1)Tu.

The value Σ > 0 is a constant parameter called the angular
variance. Intuitively, the vMF distribution describes fluctu-
ations of u around the mean direction. The vMF distribu-
tion is the most natural distribution for directional data in
that it can be derived using the maximum entropy principle

computer system dependency matrix

D
t

t-1

t-2

tt-1t-W t-2

...

activity vector

principal
eigenvector

typical
pattern

activity
vector

SVDanomaly metric

u(t)

r(t-1)

r(t-1)

u(t)

θ

...

Figure 4: Summary of our anomaly detection pro-
cedure.

under a general condition. While Ref. [1] discusses the util-
ity of a mixture model of the vMF distribution, the single
vMF model is sufficient in the present application.

To derive the marginalized distribution with respect to θ
from Eq. (15), we perform a transformation of the vari-
ables from u to angular variables {θ, θ2, ..., θN−1} of the
N -dimensional spherical coordinates. By using

dN−1Ω = dθdθ2 · · · dθN−1 sinN−2 θ sinN−3 θ2 · · · sin θN−2,

where dN−1Ω is the area element on the unit sphere in an N -
dimensional Euclidean space, the marginalized distribution
for θ is written as

p(θ) =

Z
p(u) sinN−2 θ sinN−3 θ2 · · · sin θN−2

N−1Y
i=2

dθi.

Since

z(t) ' θ2

2
, cos θ ' 1− θ2

2
, sin θ ' θ

hold for |θ| ¿ 1, we see that the distribution for z is given
by

q(z) ∝ exp
h
− z

2Σ

i
z

N−1
2 −1,

where we used θdθ = dz and reset Σ/2 to be Σ. We see
that the distribution of z ∈ [0, 1] can be approximated by
the χ2-distribution with N − 1 degrees of freedom. Since
the probability density function (pdf) of the χ2-distribution
rapidly decreases as χ2 → ∞ for a moderate value of the
degrees of freedom, the normalization constant can be eval-
uated by integrating over [0,∞). Hence,

q(z) =
1

(2Σ)(n−1)/2Γ((n− 1)/2)
exp

h
− z

2Σ

i
z

n−1
2 −1, (16)

where Γ represents the gamma function. In the above equa-
tion, we replaced N with a real number n. As discussed in
the next section, the actual degrees of freedom is consider-
ably smaller than N . One reason is that some of services
are inactive and have small activities in the activity vector,
being almost independent of t. In the derivation of the vMF
distribution, an implicit assumption is that all of the degrees
of freedom are equally active. We regard n as a measure of
the effective size of each eigencluster. We call n the effective
dimension.

5.3 Online calculation of threshold value
Using Eq. (16), the first and the second moments are calcu-
lated as

〈z〉 = (n− 1)Σ, 〈z2〉 = (n2 − 1)Σ2.

These relations provide a way to evaluate n and Σ experi-
mentally:

n− 1 =
2〈z〉2

〈z2〉 − 〈z〉2 , Σ =
〈z2〉 − 〈z〉2

2〈z〉 . (17)

The moments are easily calculated online. Using an identity

1

t

tX
i=1

z(t) =

„
1− 1

t

«
1

t− 1

t−1X
i=1

z(i) +
1

t
z(t).

and setting 1/t as β, we have

〈z〉(t) = (1− β)〈z〉(t−1) + βz(t). (18)

Similarly for the second moment, we have

〈z2〉(t) = (1− β)〈z2〉(t−1) + βz(t)2. (19)

Naturally, β satisfies 0 < β < 1 and is called the discount-
ing factor. Note that Eqs. (17)-(19) give an online version
of maximum likelihood estimation algorithm for the vMF
distribution in an approximated manner.

Since 1/β can be associated with the number of data points,
a rough estimate of β may be β ∼ ∆t/L, where L denotes
the time scale we are interested in. Similarly, W can be
estimated as W ∼ L/∆t. In our benchmark system, we
empirically take L on the order of 10 minutes.

Based on the above discussion, we have an online algorithm
to calculate a threshold value to judge whether it is anoma-
lous or not:

1. Give a critical boundary 0 < pc < 1.

2. Calculate 〈z〉 and 〈z2〉 at t using Eqs. (18) and (19).

3. Calculate n− 1 and Σ using Eq. (17).

4. Find zth numerically such that
R∞

zth
dzq(z) = pc.

5. Emit an alert if z(t) > zth.

The above algorithm includes three parameters, pc, β, and
W . Since β and W can be easily estimated with L and
∆t, the only parameter we must specify is substantially pc,
which is totally independent of the details of the system.

6. EXPERIMENT
6.1 Experimental settings
The configuration of our benchmark system is illustrated in
Fig. 1. As shown, the HTTP servers and WASs are dou-
bly redundant. On the WASs, two applications, “Trade”
and “Plants”, are running. Trade is a standard benchmark
application called Trade 3 [11], and Plants is a sample ap-
plication bundled with IBM WebSphere Application Server
V5.0 and simulates an online store dealing with plants and
gardening tools. For both, the number of clients was fixed

Table 2: Services appearing in the principal eigen-
cluster

Index Is Id P Q
0 0.0.0.0 0.0.0.0 0 (none)
1 192.168.0.19 192.168.0.53 80 Plants
2 192.168.0.19 192.168.0.54 80 Plants
3 192.168.0.19 192.168.0.53 80 Trade
4 192.168.0.19 192.168.0.54 80 Trade
5 192.168.0.54 192.168.0.53 5558 JMS
6 192.168.0.53 192.168.0.54 9081 Plants
7 192.168.0.53 192.168.0.54 9081 Trade
8 192.168.0.54 192.168.0.53 9081 Plants
9 192.168.0.54 192.168.0.53 9081 Trade
10 192.168.0.53 192.168.0.52 50000 DB2
11 192.168.0.54 192.168.0.52 50000 DB2

to be 16 and the think time was randomly chosen from 0 to
4 seconds.

We generated a matrix D every 20 seconds using a method
that evaluates di,j from captured IP packets. Loopback
packets were ignored in the experiments, so that the services
sx and sy in Fig. 2 are not observed for i1 = 192.168.0.53
and i2 = 192.168.0.54. The principal eigencluster is defined
in Table 2, and small perturbations affecting it were ignored.
In Table 2, the zeroth service was introduced to describe the
situation where an optimal pair between callee and caller
could not be identified. For example, services triggered by
those outside the intranet will be associated with the zeroth
service.

Apart from these, there are other service types, “DB2” and
“JMS”, in Table 2. DB2 denotes a request for the DB server,
and JMS is for communications related to the Java Messag-
ing Service.

6.2 Statistical properties in the normal state
We calculated u and z online over a period when the system
exhibited no failures. The dependency matrix was generated
over 52.7 minutes, so we had 158 matrices. The αi values
were taken as small random numbers on the order of 0.01.
To see the fluctuation in D, we show in Fig. 5 the time
dependence of d9,11 as an example. We see that there are
approximately 500 calls within 20 seconds under these ex-
perimental conditions and that the amplitude of fluctuation
of d9,11 is almost of the same order as the average. Hence, it
makes little sense to place a threshold value on an isolated
di,j .

To experimentally validate the pdf of z, we plotted the fre-
quency distribution of z in Fig. 6 (a), where the χ2 pdf is also
shown. The parameters of the χ2 pdf were calculated using
all of the 158 data points with no discounting. The result
was n = 4.62 and Σ = 6.79×10−5. In spite of the limitation
of the number of data points, the frequency distribution is
a good fit to the χ2 pdf. We also drew a quantile-quantile
plot in Fig. 6 (b). As shown, the experimental data is well
placed on the 45 degree line. These results clearly support
our formulation in Sec. 5.2.2

2We rounded the n−1 value to be 4 to fit the χ2 pdf because
of the limitation of the numerical library we used. This

d 9
,1

1

time [min]
0 10 20 30 40 50

0

500

1000

Figure 5: Time dependence of d9,11.

z

fr
eq

ue
nc

y

χ2 pdf

(a)

0 0.0005 0.001

z

χ2

(b)

0 0.0005 0.001
0

0.0005

0.001

Figure 6: Statistics of z in the normal state. (a)
Comparison of the experimental frequency and the
χ2 pdf. (b) The quantile-quantile plot.

γ=1

change
applied

time [min]

γ=2

γ=3z
z
0.5% boundary

0 10 20 30 40 50
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Figure 7: Detection of an artificially applied change
in D.

6.3 Response to traffic changes
To demonstrate the anomaly detection capability, we in-
duced an artificial change to the normal state data under
the rule

di,11 → γdi,11

for all i when t > 39.0 [min]. The system has two paths to
call the DB server. This rule indicates that one of them is
artificially enhanced. The results for z are shown in Fig. 7 for
γ = 1, 2, and 3, where the pc = 0.5% lines calculated using
the n and Σ values above are also shown for reference. The
corresponding zth value is 0.00093. To make them visible,
the curves for γ = 2 and 3 are shifted vertically. Since
the fluctuation of the di,js is extremely large, the values of
γ = 2 and 3 are still reasonable values (Note that we did

not directly modify D or d̃i,j , but only di,j). Despite this
fact, the figure shows that our method clearly detected the
change.

6.4 Detection of an application fault
Next, we performed a more realistic experiment: A bug
in one of the applications (“Plants”) only on 192.168.0.54
causes a malfunction of the service of 11 at a time point.
The server process itself continues running, so the network
communication is normal at the IP layer or below. Since
two Web servers are working on the system, a client may
feel no change in response time as long as the overall traffic
is sufficiently small. Although this defect occurs within a
single service, it can cause a massive change in D. In fact,
the dependencies of the services directly related with the
service 11 will be considerably changed. What we would
like to detect is a transition of this kind.

Figure 8 shows the generated time-series of the activity vec-
tor. We see that a sudden change in activities is observed
at tA and tB , which correspond to the malfunction of the
service 11 and its recovery. From the figure, the activities
of the services 2, 6, and 11 are clearly decreased during this
period. This result demonstrates that the service activity
vector actually expresses the activity of services, and sug-
gests a way to visualize the whole system.

is the main reason the deviation of the χ2 pdf from the
experimental frequency.

0 0.5

time

in
d
e
x

2

10

1

4

3

6

5

8

7

0

9

11

t tA B

Figure 8: Time dependence of the activity vector.
The failure duration starts at tA and ends at tB,
as shown by arrows. The definition of the service
indices are shown in Table 2

W=25 (b)
0.5% threshold
 not SVDz

0 10 20 30 40 50 60
0

0.001

0.002

0.003

W=5 (a)
0.5% threshold
 not SVD

time [min]

z

0 10 20 30 40 50 60
0

0.001

0.002

0.003

W=50 (c)

0.5% threshold
 not SVDz

tA tB

0 10 20 30 40 50 60
0

0.001

0.002

0.003

Figure 9: The dependence of z for W = (a) 5, (b) 25,
and (c) 50. The 0.5% threshold is denoted by gray
curves.

To detect this fault automatically, we calculated z and its
threshold value, following the algorithm explained in Sub-
section 5.3. In Fig. 9, we depicted the z values with vertical
bars and the threshold values with thick gray curves for
W =5, 25, and 50. The discounting factor and the crit-
ical boundary were taken as β = 0.005 and pc = 0.5%,
respectively. While the result is considerably affected by
the choice of W , we observe clear features at t =35.0 and
45.7 minutes, which correspond to tA < tB in Fig. 8, re-
spectively. These time points are highlighted with dashed
vertical lines in Fig. 9. Note that the feature at tB (recov-
ery from the malfunction) demonstrates the learnability for
gradual changes of the environment. The dependence on
W is an inevitable consequence of the choice of the appli-
cations. Since the benchmark applications simulate human
behavior, they must have a characteristic time scale. Com-
paring Fig. 8 with Fig. 9, we conclude that an appropriate
value of W is about 25 (8.3 minutes). We see that this value
of W allows us to pinpoint the time points tA and tB .

The curves plotted with thin lines (“not SVD”) in Fig. 9 rep-
resent the result using another pattern extraction method,
where the vis are set to be constant in Eq. (9). Specifically,
we simply took the mean vector instead of r. The trend of
z is similar to that of the SVD-based method, but is blurred
out by the noise. This result demonstrates the effectiveness
of the SVD-based pattern extraction technique.

To identify faulty services, we calculated the change rate of
activities as compared to r for W = 25 at a time point with
the peak of the feature around tA. The result is shown in
Fig. 10. We recognize that the high z value is ascribed to the
changes of services 6, 2, and 11. This result is understood
as follows. Because of the sudden decrease of service 11, the
activity of its caller 6 also decreases. Since loopback packets
are not observable, the change of the service 11 should affect
the activity of service 2, which is a direct caller of the Plants
service from 192.168.0.54 to 192.168.0.54 at P = 9081. Con-
sidering the consistency between IP addresses, it is easy to
perform an inference like this. The result in Figs. 8, 9, and
10 demonstrate the utility of our anomaly detection method.

For the limitations of our approach, first, the probability of
false alarms will be finite even if W is set to be the optimal
value. As understood from Fig. 9, there is small finite prob-
ability of having outliers beyond a threshold value. Second,
since the basic assumption of our approach is the stability
of the direction of the activity vector, our approach is not
appropriate for anomaly detection of rarely invoked services.
Finally, there is much room for improvement in the calcula-
tions of the threshold values since the numerical library we
used handles only integer degrees of freedom in the χ2 pdf.

7. SUMMARY
We have proposed a new approach to anomaly detection
in computer systems. First, we discussed why the princi-
pal eigenvector of the dependency matrix is a good feature
vector which has a clear interpretation related to the activ-
ities of services. Second, we described a method to extract
a typical pattern from a time-sequence of the feature vec-
tors, based on an extremum principle. We showed that the
optimal choice of the typical pattern is the principal left
singular vector of a matrix which contains activity vectors

t=35.7, W=25

index

ra
tio

 [
%

]

0 1 2 3 4 5 6 7 8 9 10 11
0

20
40
60

Figure 10: Change ratio of the activity vector for
W =25 at a time point marked with a small triangle
in Fig. 9 (b).

as column vectors. Third, we defined an anomaly measure
z, and derived its probability distribution as an approxima-
tion of the von Mises-Fisher distribution. Our theoretical
analysis showed that z obeys the χ2 distribution with n− 1
degrees of freedom, where n is the effective size of the prin-
cipal eigencluster. Based on this result, we derived an online
algorithm to calculate threshold values of z. Only a value of
the critical probability pc is needed to determine the thresh-
old. Finally, we demonstrated that our method is capable
of detecting a class of faults in a benchmark system.

8. ACKNOWLEDGMENTS
We are grateful to T. Fukuda, J. Sakuma, A. Inokuchi,
and H. Takeuchi for stimulating discussions. We also thank
H. Etoh for assisting with the experiment and K. Yoda for
help in implementing the anomaly detector. T.I. acknowl-
edges fruitful discussions with K. Inoue.

9. REFERENCES
[1] A. Banerjee, I. Dhillon, J. Ghosh, and S. Sra.

Generative model-based clustering of directional data.
In Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 19–28, 2003.

[2] P. Barford, J. Kline, D. Plonka, and A. Ron. A signal
analysis of network traffic anomalies. In Proceedings of
the Second ACM SIGCOMM Workshop on Internet
Measurment, pages 71–82, 2002.

[3] A. Berman and R. J. Plemmons. Nonnegative
Matrices in the Mathematical Sciences, volume 9 of
Classics in applied mathematics. SIAM, 1994.

[4] I. S. Dhillon. Co-clustering documents and words
using bipartite spectral graph partitioning. In
Proceedings of the Seventh ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 269–274, 2001.

[5] C. H. Q. Ding, X. He, and H. Zha. A spectral method
to separate disconnected and nearly-disconnected web
graph components. In Proceedings of the Seventh ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 275–280, 2001.

[6] A. G. Ganek and T. A. Corbi. The dawning of the
autonomic computing era. IBM Systems Journal,
42(1):5–18, 2003.

[7] M. Gupta, A. Neogi, M. K. Agarwal, and G. Kar.
Discovering dynamic dependencies in enterprise

environments for problem determination. In
Proceedings of 14th IFIP/IEEE Workshop on
Distributed Systems: Operations and Management,
pages 221–233, 2003.

[8] H. Hajji. Baselining network traffic and online faults
detection. In Proceedings of IEEE International
Conference on Communications, volume 1, pages
301–308, 2003.

[9] J. Hopcroft, O. Khan, B. Kulis, and B. Selman.
Natural communities in large linked networks. In
Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 541–546, 2003.

[10] J. Huan, W. Wang, and J. Prins. Efficient mining of
frequent subgraphs in the presence of isomorphism. In
Proceedings of the Third IEEE International
Conference on Data Mining, pages 549–552, 2003.

[11] IBM. Trade3; http://www-306.ibm.com/software/
webservers/appserv/benchmark3.html.

[12] A. Inokuchi and H. Kashima. Mining significant pairs
of patterns from graph structures with class labels. In
Proceedings of the Third IEEE International
Conference on Data Mining, pages 83–90, 2003.

[13] A. Inokuchi, T. Washio, and H. Motoda. Complete
mining of frequent patterns from graphs: Mining
graph data. Machine Learning, 50:321–354, 2003.

[14] M. Kuramochi and G. Karypis. Discovering frequent
geometric subgraphs. In Proceedings of the Second
IEEE International Conference on Data Mining, pages
258–265, 2002.

[15] A. Y. Ng, A. X. Zheng, and M. I. Jordan. Link
analysis, eigenvectors and stability. In Proceedings of
the Seventeenth International Joint Conference on
Artificial Intelligence, pages 903–910, 2001.

[16] C. Noble and D. Cook. Graph-based anomaly
detection. In Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 631–636, 2003.

[17] S. Sarkar and K. Boyer. Quantitative measures for
change based on feature organization: Eigenvalues and
eigenvectors. Computer Vision and Image
Understanding, 71:110–136, 1998.

[18] G. Strang. Linear Algebra and its Applications.
Academic Press, 1976.

[19] The Open Group. Application response measurement
— ARM;
http://www.opengroup.org/tech/management/arm/.

[20] M. Thottan and C. Ji. Anomaly detection in IP
networks. IEEE Transactions on Signal Processing,
51(8):2191– 2204, 2003.

[21] H. Wang, D. Zhang, and K. G.Shin. Detecting SYN
flooding attacks. In Proceedings IEEE INFOCOM
2002, pages 1530 –1539, 2002.

[22] T. Washio and H. Motoda. State of the art of
graph-based data mining. In SIGKDD Explorations
Special Issue on Multi-Relational Data Mining,
volume 5, pages 59–68, 2003.

[23] K. Yamanishi and J. Takeuchi. A unifying framework
for detecting outliers and change points from
non-stationary time series data. In Proceedings of the
Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages
676–681, 2002.

[24] K. Yamanishi, J. Takeuchi, G. Williams, and P. Milne.
On-line unsupervised outlier detection using finite
mixtures with discounting learning algorithms. In
Proceedings of the Sixth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 320–324, 2000.

