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Abstract

We propose a new theoretical framework for generaliz-
ing the traditional notion of covariance. First, we discuss
the role of pairwise cross-cumulants by introducing a clus-
ter expansion technique for the cumulant generating func-
tion. Next, we introduce a novel concept of symmetry de-
composition of probability density functions according to
the C4v group. By utilizing the irreducible representations,
generalized covariances are explicitly defined, and their
utility is demonstrated using an analytically solvable model.

1. Introduction

Correlation analysis for multivariate systems is one of
the major topics in data mining. In spite of the importance,
however, most of the practical correlation analysis methods
for real-valued data are essentially based on the traditional
Gaussian distribution. The (partial) covariance matrix is the
measure of correlation between variables in Gaussian distri-
butions. However, it is well-known that the covariance can
correctly describe phenomena only in the vicinity of a linear
correlation. One typical example is the fact that the covari-
ance is zero if (x, y) is distributed on a circle. Although
x is strongly correlated with y in this case, the covariance
clearly fails in capturing the correlation.

To capture the nonlinearities, kernel-based methods have
been actively studied for the last decade. However, kernel
methods are essentially “black boxes,” where what kind of
correlations one discovers depends greatly on a possibly ac-
cidental choice of a suitable kernel.

In this paper, we propose a new theoretical framework
for generalizing traditional covariance analysis. First, in
Section 2, under an approximation called sparse correla-
tion approximation, we show that pairwise cross-cumulants
can suffice to describe nonlinear correlations without un-
wanted disturbances of the heterogeneity. Next, in Sec-
tion 3, we introduce a novel concept of symmetry decom-

position of probability density functions (pdf) according to
the C4v group. To generalize the notion of covariance, we
propose an idea of regarding pairwise functional relation-
ships as two-dimensional (2D) geometric patterns in the 2D
configuration spaces, where the irreducible representations
of the C4v group are utilized to characterize the patterns. To
the best of the author’s knowledge, this is the first attempt
to reduce the task of pattern recognition to discovery of ir-
reducible representations. After giving explicit definitions
of the generalized covariances in Section 4, we demonstrate
the capability of the generalized covariances based on an
analytically solvable model in Section 5.

2. Pairwise Cross-Cumulants

Consider a system whose internal state is described with
an n-dimensional random vector x = (x1, ..., xn)T . We ex-
pect that the pdf p(x) contains all of the information about
the internal structure of the system. The statistical proper-
ties of p are completely determined by the cumulant gener-
ating function Ψ(s):

Ψ(s) ≡ ln
∫

dx p(x) exp(sTx) = ln
〈
exp(sTx)

〉
, (1)

where 〈·〉 denotes the expectation with respect to p(x). The
multivariate cumulants are defined as the coefficients of the
Taylor expansion with respect to s. For example, we have
〈xixj〉c = 〈xixj〉 and 〈x2

i x
2
j〉c = 〈x2

i x
2
j〉 − 〈x2

i 〉〈x2
j〉 −

2〈xixj〉2 for zero-mean data (which we assume hereafter).
Here we introduced a notation of cumulant average 〈·〉c
to represent multivariate cumulants [4]. For the readers’
convenience, we summarize the relationships between the
cross-cumulants and the moments in Table 1. For higher or-
der cumulants, the following properties are well-known [6]:

Theorem 1 A cross-cumulant is zero if there is at least one
pair of statistically independent variables inside 〈 〉c.

Theorem 2 All of the higher order cumulants of k ≥ 3
vanish for the Gaussian.



Thus, one needs to take account of the higher cumulants in
order to go beyond the Gaussian distribution. Conversely,
one may think that approximating Ψ(s) using a finite num-
ber of higher order terms might be reasonable, since tradi-
tionally the Gaussian has been used as a practical solution
for real-valued multivariate correlation analysis.

Let us rewrite Ψ(s) as Ψ(s) = K1 + K2 + ... + Ki +
..., where Ki denotes the summation of terms including i
different variables. For instance, K2 is given by

K2 =
∑

i̸=j

[
1
2!

sisj〈xixj〉c +
1
3!

si
2sj〈xi

2xj〉c + . . .

]
.

We call each term of Ki an i-body cluster after statistical
physics [4].

Now let us approximate Ψ(s) using a finite number of
clusters. We here make an assumption of sparse correla-
tion. Under this assumption, the larger the number of dif-
ferent variables inside 〈 〉c, the greater the likelihood that
the cumulant vanishes. Thus, the contribution of higher or-
der clusters would be negligible in the cluster expansion.
Therefore, the lowest nontrivial approximation should be
Ψ(s) ≅ K1 + K2, which we call the sparse correlation ap-
proximation (SCA).

Mathematically, this approximation would be valid when
the average number of correlated variables on each variable
is on the order of one. However, the leading term which de-
scribe the correlation must be K2, even when the condition
does not exactly hold. Since the one-body cluster K1 only
gives us the information about the marginal distribution of
the individual variables, our basic quantities for correla-
tion analysis are the pairwise cross-cumulants of the type
〈xi

µxj
ν〉c, where µ and ν are nonzero integers. To be ro-

bust against the diversity of nonlinear correlations, we fur-
ther approximate K2 to include only the terms of µ+ν ≤ 4,
i. e. we confine ourselves within the fourth order SCA.

According to Theorem 1, the pairwise cross-cumulants
are zero if the two variables are statistically independent.
Note that this fact has nothing to do with how independent
they are. In fact, a constant distribution and an uncorrelated
Gaussian distribution equally give the value zero. This is a
very good property in that the heterogeneity is mitigated in
terms of statistical independence.

3. Symmetry Decomposition of pdf

Let r = (x, y)T be a pair of variables arbitrarily cho-
sen from x. To facilitate the discussion, we adopt Dirac’s
bra-ket notation to represent the pairwise pdf p(r) [3]. We
define |p〉, a state vector in a Hilbert space H, by 〈r|p〉 =
p(r), where |r〉 ∈ H is the position eigenket [5]. The inner
product between |f〉, |h〉 ∈ H can be calculated as 〈f |h〉 =∫

drf(r)h(r). Since 〈r|r′〉 equals to Dirac’s delta func-
tion δ(r − r′), we have 〈r|p〉 =

∫
dr′〈r|r′〉〈r′|p〉 = p(r),

order cumulant moment
2 〈xy〉c 〈xy〉
3 〈xy2〉c 〈xy2〉
3 〈x2y〉c 〈x2y〉
4 〈x2y2〉c 〈x2y2〉 − 〈x2〉〈y2〉 − 2〈xy〉2
4 〈xy3〉c 〈xy3〉 − 3〈xy〉〈y2〉
4 〈x3y〉c 〈x3y〉 − 3〈x2〉〈xy〉

Table 1. Relationships between the pairwise
cumulants and the moments for 〈x〉 = 〈y〉 = 0.
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Figure 1. Symmetry axes of the C4v group.

as expected. A cross-moment 〈xµyν〉 is now represented as
〈p|xµyν〉, where |xµyν〉 is defined by 〈r|xµyν〉 = xµyν .

It is quite interesting to study the symmetry properties
of |xµyν〉. Consider a set of symmetry operations defined
within the xy-space. We request the operations to satisfy
the axioms of a group: For a group G associated with a
product operation ◦, (1) Closure. For ∀a ∈ G and ∀b ∈ G,
(a ◦ b) ∈ G. (2) Associativity. (a ◦ b) ◦ c = a ◦ (b ◦ c)
for all a, b, and c ∈ G. (3) Identity. There exists e ∈ G,
such that e ◦ g = g = g ◦ e for all g ∈ G. (4) Inverse. For
each g ∈ G, there exists the g′, the inverse of g, such that
g′ ◦ g = g ◦ g′ = e.

Unexpectedly, there are only 32 groups that can satisfy
the axioms with rotations and mirror reflections [2]. Among
the 32 point groups, the most general one within the 2D xy-
space is a group named C4v. Figure 1 shows the symmetry
axes of this group, which contains eight symmetry opera-
tions:

C4v = {e, C4, C2, C4
3, σx, σy, σξ, ση},

where e is the identity element. Operations C4, C2, and
C4

3 are π/2-, π-, and 3π/2-rotations around the z-axis, re-
spectively. Mirror reflections with respect to the xz-, yz-,
ξz- and ηz-planes are represented as σx, σy, σξ, ση, respec-
tively. Note that the sufficiency of such symmetry opera-
tions is not necessarily guaranteed when they are arbitrarily
chosen. It is the axioms of a group that guarantees the suf-
ficiency of symmetry operations.

For |f〉 ∈ H and g ∈ C4v, we define g|f〉 by 〈r|g|f〉 =
〈g−1r|f〉 = f(g−1r). A space spanned by a set of linearly
independent bases {|φ1〉, .., |φl〉} ⊂ H is said to be an in-



variant subspace with respect to a group G if

g|φj〉 =
l∑

i=1

|φi〉Dij(g) (2)

is satisfied for ∀g ∈ G. Specifically, a state in this subspace
remains in the same subspace even after transformation by
any operation of G. The matrix Dij(g) is called a represen-
tation matrix for g.

Using the fact that 〈r|C4|xµyν〉 = yµ(−x)ν and
〈r|σx|xµyν〉 = xµ(−y)ν , etc., one can easily see that the
state vector |xy〉 spans a one-dimensional (1D) invariant
subspace. In fact, the representation matrices are 1 for
e, C2, σξ, ση, and −1 for C4, C4

3, σx, σy . Since any direct-
product space spanned by bases such as |φi〉⊗|φj〉 can be an
invariant subspace, the dimension of an invariant subspace
does not have an upper bound. On the other hand, some
lower bounds exist: a fundamental result of the theory of
finite groups is that any invariant subspace can be expressed
as a direct sum of a finite number of types of irreducible
representation spaces [2]. This fact leads to the orthogonal
relation between the irreducible representations

〈ϕ(γ)|ϕ(γ′)〉 ∝ δγ,γ′ , (3)

where γ and γ′ are symbols to identify irreducible represen-
tations, and δγ,γ′ is Kronecker’s delta function. Therefore,
a pairwise marginal distribution function p(r) can be de-
composed with respect to the symmetries 1 as

p(r) =
∑

γ

π(γ)(r), (4)

where we used the r-representation for clarity. These facts
prove the following theorem:

Theorem 3 A state vector |ϕ(γ)〉 in an irreducible repre-
sentation subspace γ satisfies 〈ϕ(γ)|p〉 = 〈ϕ(γ)|π(γ)〉, i.e.,
it works as a symmetry filter for |p〉.

Generally, irreducible representations are classified by
their characters, ı.e., the trace of representation matrices.
For the C4v group, there are known to be five irreducible
representations named A1, A2, B1, B2, and E. The E rep-
resentation is 2D while the others are 1D. For γ = E, the
function ϕ(γ) in Eq. (4) can be understood as a linear com-
bination of the two orthogonal bases of E. Comparing the
aforementioned result with the character table in Table 2,
we have an important theorem:

Theorem 4 {|xy〉} spans the B2 representation.

This theorem clearly shows the way to generalize the notion
of covariance. Out of the five irreducible representations,
only a single symmetry has been used so far. Now, one can
utilize the other symmetries to describe correlations.

1It is instructive to consider another group called Ci = {e, I}, where
I denotes space inversion. In this case, this decomposition corresponds to
that between even and odd functions.

C4v e C4, C4
3 C2 σx, σy σξ, ση

A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 −1 1 1 −1
B2 1 −1 1 −1 1
E 2 0 −2 0 0

Table 2. The character table of the C4v group.

4 Generalized Covariances

As an example beyond |xy〉, consider a state vector
|x2y2〉 ∈ H. It is easy to verify 〈r|g|x2y2〉 = x2y2 for
∀g ∈ C4v, so that all of the representation matrices are
the 1 × 1 identity matrix. Table 2 shows that this state
spans the A1 representation. Similarly, one can verify that
|xy3〉 + |x3y〉 is A2, and {|xy2〉 + |x2y〉, |xy2〉 − |x2y〉}
span the E representation.

Let us relate these states to the pairwise cross-cumulants.
For C4v, the following theorem holds (proof omitted):

Theorem 5 〈p|xµyν〉 has the same symmetry as 〈xµyν〉c.

Using this, we define the generalized covariances in the C4v

sense as 2

C(B2) = 〈xy〉c (5)
C(E1) =

[〈
xy2

〉
c
+

〈
x2y

〉
c

]
/2 (6)

C(E2) =
[〈

xy2
〉
c
−

〈
x2y

〉
c

]
/2 (7)

C(A1) =
〈
x2y2

〉
c

(8)

C(A2) =
[〈

xy3
〉
c
−

〈
x3y

〉
c

]
/2 (9)

where the two degrees of freedom in the E representation
are distinguished using the subscripts 1 and 2. Clearly,
these are symmetric cross-cumulants up to the fourth or-
der according to the C4v group. To make those quantities
dimensionless, it is useful to divide by

[
〈x2〉〈y2〉

](µ+ν)/4
.

Evidently, this normalization factor transforms according to
A1, so that the symmetries of the generalized covariances
are not affected. We call the normalized covariances the
generalized correlation coefficients.

5. Experiment

To see the capability of detecting nonlinear correlations,
consider a theoretical model of a correlated time series as

x(t) =
√

2 cos(ω1t + α)

y(t) =
√

2 sin(ω2t + β)
2One cannot construct a B1 representation using the quantities

〈xµyν〉c when µ, ν > 0 and µ + ν ≤ 4.



with a constant pdf over the time domain. Clearly, the av-
erages 〈x〉 and 〈y〉 are zeros, and the variances 〈x2〉c and
〈y2〉c are ones. Utilizing the fact that 〈sin(at + b)〉 = 0
unless the constant a is zero, we can derive analytical ex-
pressions for the generalized covariance:

C(B2) = δω1,ω2 sinΩβ,α
1

C(E1) = −δω1,2ω2√
2

cosΩα,β
2 +

δ2ω1,ω2√
2

sinΩβ,α
2

C(E2) = −δω1,2ω2√
2

cosΩα,β
2 − δ2ω1,ω2√

2
sinΩβ,α

2

C(A1) = −δω1,ω2

2

[
1 + 2 sin2(Ωα,β

1 )
]

C(A2) =
δω1,3ω2

4
sinΩα,β

3 − δ3ω1,ω2

4
sinΩβ,α

3 ,

where we used the symbol Ωa,b
c = a − bc.

Figure 2 shows trajectories and generalized covariances
for several combinations of the parameters, as shown beside
each of the trajectories. The trajectories are well known as
Lissajous’ trajectories. It is remarkable that the generalized
covariances effectively detects the nonlinearities in the tra-
jectories from (b) through (e), where the traditional covari-
ance C(B2) takes the value of zero.

6. Conclusion

We have proposed a new theoretical framework for gen-
eralized covariance analysis, considering the limitations of
the existing methods. To summarize, first, we showed that
the pairwise cross-cumulants can be viewed as the nontriv-
ial simplest correction terms to the Gaussian distribution.

Next, we have proposed a new method for extending the
traditional covariance based on the C4v group. The key idea
is to think of pairwise functional relationships as 2D geo-
metric patterns. To the best of the author’s knowledge, this
is the first work to use the irreducible representations of a
specific group as a tool for pattern recognition. We found
that the traditional covariance exploits only one of the five
irreducible representations, and we defined generalized co-
variances according to the other irreducible representations.

Finally, we have demonstrated the utility of the general-
ized covariances using an analytically solvable model. An
application to an anomaly detection task [1] using a real-
world time-series data set will be published elsewhere.
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