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Abstract. We treat the problem of subsequence time-series clustering
(STSC) from a group-theoretical perspective. First, we show that the
sliding window technique introduces a mathematical artifact to the prob-
lem, which we call the pseudo-translational symmetry. Second, we show
that the resulting cluster centers are necessarily governed by irreducible
representations of the translational group. As a result, the cluster centers
necessarily forms sinusoids, almost irrespective of the input time-series
data. To the best of the author’s knowledge, this is the first work which
demonstrates the interesting connection between STSC and group the-
ory.

1 Introduction

Learning representative patterns from time series data is one of the most in-
teresting tasks in data mining. Since the advent of a seminal work of Das et
al. [1], subsequence time-series clustering (STSC) had enjoyed popularity as the
simplest and the most reliable technique of stream mining. In STSC, time series
data is represented as a set of subsequence vectors generated using a sliding
window (see Fig. 1 (a)), and the generated subsequences are grouped using k-
means clustering (Fig. 1 (b)). The cluster centers (the mean vectors of the cluster
members) are thought of as representative patterns of the time series.

Currently, however, k-means STSC is considered to make little sense as a
pattern discovery technique, since, as first pointed out by Keogh et al. [9], k-
means STSC is “meaningless” in that the resultant cluster centers tend to form
sinusoidal pseudo-patterns almost independent of the input time series. This
sinusoid effect proved that even the simplest algorithms such as k-means STSC
could be too dangerous to be used unless the mathematical structures are fully
understood. We believe that the sinusoid effect raised a question to the general
trend in the stream mining community that seemingly plausible analysis tends
to be accepted without theoretical justifications.

In a previous paper [6], we theoretically studied the origin of the sinusoid
effect. The original k-means STSC task was reduced to a spectral STSC task, and
sinusoidal cluster centers were explicitly obtained by solving an eigen problem.
In this paper, we discuss mathematical properties of STSC in more detail. In
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Fig. 1. (a) Sliding window technique to generate subsequences. (b) The generated
subsequences are grouped as independent data items.

particular, we will point out that the cluster centers are inevitably governed
by irreducible representations of the translational group, because of a hidden
translational symmetry introduced by the sliding window technique. To the best
of the author’s knowledge, this is the first work that points out the interesting
connection between STSC and group theory.

The layout of this paper is as follows: In Section 2, we reformulate STSC
as the problem of linear algebra in a vector space, and introduce the notion of
linear operators. In Section 3, we review the connection between k-means and
spectral STSC. In Section 4, we introduce the concept of translational group, and
explain its implications in spectral STSC. In Section 5, we derive the solution to
spectral STSC from a group-theoretical perspective. In Section 6, we summarize
the paper.

2 Lattice model for time series analysis

In this section, we introduce a lattice model for time series analysis, and show
that this model provides us with a very handy way to express the subsequences
of time series data.

2.1 Vector space in Dirac’s notation

A common approach to express time-series data is to use a scalar function such
as x(t). However, this notation is not very effective in describing symmetry prop-
erties of the problem. We believe that this has made it difficult to pinpoint the
origin of the sinusoid effect. Instead, we introduce a lattice model in Dirac’s
notation [12, 10] to represent time series data. While Dirac’s notation is math-
ematically equivalent to the standard vector-matrix notation, it is much more
powerful for describing linear operators, which play an essential role in this pa-
per. In this subsection, we illustrate the notion of Dirac’s notation, following [12].

LetH0 be a vector space spanned by n linearly independent bases {|1〉, |2〉, ..., |n〉} .
By definition, any vector in H0 is represented as a linear combination of these
bases. For example, a vector |a〉 ∈ H0 may be expressed as

|a〉 =
n∑

l=1

al|l〉,



where als are constants (generally complex).
To introduce the metric into H0, we request that each of |l〉 has a unique

counterpart in a dual space of H0. We denote the counterpart by 〈l|, and define
that c|a〉 dual-corresponds to c∗〈l| where c is a complex constant and ∗ denotes
complex conjugate. Now, the inner product between vectors |a〉, |b〉 ∈ H0 is
defined as 〈a|b〉 ≡ 〈a| · |b〉, which is generally a complex number. Regarding the
other choice 〈b|a〉, we assume that

〈a|b〉 = [〈b|a〉]∗ (1)

holds as a premise. For example, the inner product between the above |a〉 and
|b〉 =

∑n
l=1 bl|l〉 will be 〈a|b〉 =

∑
l,l′ al′

∗bl〈l′|l〉, which is computable if 〈l′|l〉s are
given.

As usual, we also request 〈a|a〉 ≥ 0 for any vector in H0. The notion of inner
product allows us to define a normalized vector in the sense of unit norm. We
assume that the bases {|l〉} have been chosen to be orthonormal, i.e.,

〈l|l′〉 = δl,l′ ,

where δl,l′ is Kronecker’s delta.

2.2 Linear operators in H0

Let L be the set of linear operators which transforms a vector in H0 into another
vector. We distinguish the operators from ordinary numbers by using ˆ hereafter.
By definition, ∀ô ∈ L has an expression

ô =
n∑

l,l′=1

ol,l′ |l〉〈l′|, (2)

where ol,l′ ∈ C is called the (l, l′) element of ô. Since {ol,l′} uniquely specifies
ô under a given orthonormal basis set, the n × n matrix [ol,l′ ] can be thought
of as a matrix representation of ô. For ∀|a〉 ∈ H0, we denote the dual element
of ô|a〉 as 〈a|ô†, and call ô† the Hermitian conjugate of ô. By definition, ô† has
the expression as ô† =

∑n
l,l′=1 ol′,l

∗|l〉〈l′|. A linear operator ô such that ô† = ô
is called Hermitian. We see that this condition is equivalent to that the matrix
representation is Hermitian.

As an example, consider a Hermitian operator

ϑ̂(w) ≡
w∑

l′=1

|l′〉〈l′|, (3)

where w ≤ n. To understand the nature of this operator, imagine an equi-interval
one-dimensional lattice as shown in Fig. 2 (a), where each of the basis is attached
to each site (lattice point). Since ϑ̂(w)|l〉 vanishes for l > w, and ϑ̂(w)|l〉 = |l〉
otherwise, we see that ϑ̂(w) works as the “cut-off operator”. For example, if
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Fig. 2. (a) one-dimensional lattice with n = 6. (b) One-dimensional lattice under the
periodic boundary condition. (c) Subsequences when w = n = 6.

n = 6 and w = 3, ϑ̂(3) simply cuts off the portion which is not contained by the
3-dimensional lattice of {|1〉, |2〉, |3〉}, remaining the rest unchanged.

It is interesting to see how ϑ̂(n) works. Clearly, this operator remains any
vector in H0 the same. In other words, this is the identity operator. Explicitly,
we define the identity operator in H0 as

1̂ ≡
n∑

l′=1

|l′〉〈l′|. (4)

This operator is very useful when one wants to change the representation. For
example, ∀|a〉 ∈ H0 is equivalent to 1̂|a〉, so that |a〉 =

∑n
l=1 |l〉〈l|a〉 holds. Since

〈l|a〉s are just scalar, this equation gives the representation of |a〉 by {|1〉, ..., |n〉}.

2.3 Lattice model for time series data

Now, let us associate H0 with time-series data. Consider an equi-interval time
series data with length n of {xt ∈ R | t = 1, 2, ..., n}. Since the data is assumed
to be a collection of independent observations, it is equivalently expressed as a
vector in H0:

|Γ 〉 =
n∑

l=1

xl|l〉. (5)

In Fig. 2 (a), this definition amounts to that each xl is attached to the l-th
site. We call this expression the site-representation of the time-series data. The
coefficients xl can be obtained by xl = 〈l|Γ 〉. By using 1̂, one can explicitly
compute the squared norm of |Γ 〉 as

〈Γ |Γ 〉 = 〈Γ |1̂ · 1̂|Γ 〉 =
n∑

l=1

〈Γ |l〉〈l|
n∑

l′=1

|l′〉〈l′|Γ 〉 =
n∑

l=1

〈Γ |l〉〈l|Γ 〉 =
n∑

l=1

|xl|2,

which is just the squared sum for real valued time series data. We may simply
denote this as || |Γ 〉 ||2 .



Hereafter, we impose the periodic boundary condition (PBC) on time-series
data. As indicated in Fig. 2 (b), ∀l, |l + n〉 = |l〉 holds under the PBC. As long
as n À 1, the discrepancies due to this artificial condition will be negligible.

2.4 Translation operator on the lattice

As another instance of linear operators, let us focus on the translation operator
τ̂(l) ∈ L

τ̂(l) ≡
n∑

l′=1

|l′ + l〉〈l′|. (6)

The operator τ̂(l) shifts the basis in the site-representation with l steps. To see
this, for example, consider τ̂(l)|2〉. Thanks to the orthogonality, it follows

τ̂(l)|2〉 =
n∑

l′=1

|l′ + l〉〈l′|2〉 =
n∑

l′=1

|l′ + l〉δl′,2 = |2 + l〉.

By Premise (1), it is straightforward to see τ̂(l)† = τ̂(−l), i.e. τ̂(l)s are unitary
operator, where, in general, ô ∈ L is said unitary if ôô† = ô†ô = 1̂ holds.

The translation operator provides us with a handy way to express subse-
quences in STSC. If we use the expression of Eq. (5), the p-th subsequence with
length w (i.e. the window size is w) is given by

∑p+w
l=p+1 xl|l〉. While this subse-

quence should be viewed as a vector in H0 originally, it is clearly redundant in
that only w dimensions are used out of the n dimensions. It is more reasonable
to think of |sp〉 as a vector in a subspace H ≡ {|1〉, ..., |w〉}. Explicitly, we define
|sp〉 as

|sp〉 =
w∑

l=1

xl−p|l〉 = ϑ̂(w)τ̂(−p)|Γ 〉 (7)

under the PBC.
Here we define the notion of translational invariance of operators:

Definition 1 (Translational invariance) An operator ô ∈ L is said to be
translationally invariant when

ô = τ̂(l)†ôτ̂(l) (8)

holds for ∀l ∈ {0, 1, .., n− 1}.
The intuition behind this is that the matrix element of ô between ∀|a〉 and |b〉 ∈
H0 remains the same as that between τ̂(l)|a〉 and τ̂(l)|b〉. Since τ̂(−l) = τ̂(l)−1

by definition, the invariance condition is equivalent to

ôτ̂(l) = τ̂(l)ô. (9)

In other words, any operators invariant to translations must commute with τ̂(l)s.



3 Spectral clustering of subsequences

In this Section, we derive an eigen equation whose eigen vectors corresponds to
the k-means cluster centers. It essentially follows the formulation in [6], but is
the first treatment of spectral STSC with Dirac’s notation.

As before, we use the whole space H0 = {|1〉, ..., |n〉}, and its subspace H =
{|1〉, ..., |w〉} with w ≤ n. Notice that we do not assume any periodicity in H
unless w = n, despite the fact H0 is always periodic. The k-means STSC task is
to group a set of vectors {|sq〉 ∈ H |q = 1, 2, ..., n}, where the subsequences are
thought of as vectors in ∈ H

It is well-known that the k-means algorithm attempts to minimize the sum-
of-squared (SOS) error [4]. In our notation, the SOS error is written as

E =
k∑

j=1

∑

p∈Cj

∣∣∣
∣∣∣ |sp〉 − |m(j)〉

∣∣∣
∣∣∣
2

=
n∑

p=1

〈sp|sp〉 −
k∑

j=1

1
|Cj |

∑

p,r∈Cj

〈sp|sr〉, (10)

where Cj and |Cj | represent the members of the j-th cluster and the number of
members, respectively. The centroid of Cj is denoted by |m(j)〉. To get the right-
most expression, we used the definition of the centroid |m(j)〉 = 1

|Cj |
∑

p∈Cj
|sp〉.

Since the first term in the rightmost side does not depend on clustering,
let us focus on the second term, which will be denoted by E2. To remove
the restricted summation, we introduce an indicator vector |u(j)〉 ∈ H, where
〈sq|u(j)〉 = 1/

√|Cj | for sq ∈ Cj and 0 otherwise, to have

E2 = −
k∑

j=1

n∑
p,r=1

〈u(j)|sp〉〈sp|sr〉〈sr|u(j)〉 = −
k∑

j=1

〈u(j)|ρ̂2|u(j)〉,

where we introduced a linear operator ρ̂

ρ̂ =
n∑

p=1

|sp〉〈sp| (11)

to get the rightmost expression. Note that, in contrast to Eq. (4), ρ̂ is not the
identity operator since |sp〉s are not orthonormal.

The k-means clustering task has now been reduced to seeking the solution
{|u(j)〉} which minimizes E2. If we relax the original binary constraint on |u(j)〉,
and instead take

n∑
p=1

〈u(i)|sp〉〈sp|u(j)〉 = 〈u(i)|ρ̂|u(j)〉 = δi,j (12)

as the new restriction on the optimization problem, the k-means task now
amounts to

ρ̂|u(j)〉 = λj |u(j)〉, (13)



where λj is the eigenvalue corresponding to the eigen vector |u(j)〉. The site-
representation allows us to solve this via standard matrix computations, i.e.,

w∑

l′=1

〈l|ρ̂|l′〉〈l′|u(j)〉 = λj〈l|u(j)〉.

Before the relaxation, the indicator vectors satisfied

|m(j)〉 ≡ 1
|Cj |

∑

p∈Cj

|sp〉 =
1√|Cj |

n∑
p=1

|sp〉〈sp|u(j)〉 =
1√|Cj |

ρ̂|u(j)〉.

After the relaxation, |u(j)〉 is the eigen vector of ρ̂. Thus, it follows that the
k-means cluster centers correspond to the eigenstates of ρ̂, or

|m(j)〉 ∝ |u(j)〉. (14)

This remarkable relation was first derived in [6]. As compared to previous work
of spectral clustering [13, 11, 2, 3], our main contribution is that we introduced a
new formulation which directly seeks the cluster centers, instead of the standard
formulation based on membership indicators.

4 Group-theoretical properties of ρ̂

In this section, we explain the basics of group theory. Specifically, we derive
irreducible representations of the translational group, showing an interesting
connection between Fourier components and the translational group.

4.1 Translational group

We have shown a theoretical connection between k-means STSC and spectral
STSC. Since spectral STSC is expressed as the eigenvalue equation of ρ̂, it is
useful to study mathematical properties of ρ̂.

Using the expression of Eq. (7), and arranging site indices accordingly, ρ̂ can
be written as

ρ̂
.=

n∑

l=1

τ̂(l)†|Γ 〉〈Γ |τ̂(l), (15)

where we used a shorthand notation instead of using ϑ̂(w), i.e. we define the
symbol “ .=” meaning “the left and the right sides have the same matrix elements
when represented in H (not H0)”.

In this expression of ρ̂, it seems that a set of the translational operators

Tn ≡ {τ̂(0), τ̂(1), ..., τ̂(n− 1)}.

plays a key role. If we define τ̂(n) = 1̂, we see that Tn is closed in that any product
between two of the operators remains in Tn. For example, when n = 6 as shown



in Fig. 2 (b), the operation of τ̂(3) followed by τ̂(4) must coincide with that of
τ̂(1) (= τ̂(7)) by definition. More exactly, for ∀|a〉 ∈ H0, τ̂(4)τ̂(3)|a〉 = τ̂(1)|a〉
must hold. In addition, first, for any integers l, l′, l′′ ∈ {0, 1, ..., n− 1},

τ̂(l)τ̂(l′)τ̂(l′′) = τ̂(l + l′)τ̂(l′′) = τ̂(l)τ̂(l′ + l′′)

is clearly satisfied. Second, Tn has the unit element of τ̂(0) = 1̂. Third, any of the
elements in Tn has an inverse element. For example, τ̂(2) is the inverse element
of τ̂(n− 2), since τ̂(2)τ̂(n− 2) = τ̂(n− 2)τ̂(2) = 1̂.

These three properties are nothing but the axioms of group:

Definition 2 (Group) A group G is a set of linear operators such that (1) any
of three elements in G satisfy the associativity relation, (2) G includes the unit
element, and (3) any of the elements in G has an inverse element in G.

Thus, Tn forms a group, which called the (one-dimensional) translational group.
A remarkable property of Eq. (15) is translational invariance of the right

hand side (r.h.s.). Recall the definition of the invariance Eq. (8) and the PBC.
Then, it follows

τ̂(l)†(r.h.s.) τ̂(l) =
n∑

l′=1

τ̂(l + l′)†|Γ 〉〈Γ |τ̂(l + l′) =
n∑

l′′=1

τ̂(l′′)†|Γ 〉〈Γ |τ̂(l′′), (16)

showing the translational invariance of r.h.s. of Eq. (15).
Since the particular form of the r.h.s. in Eq. (15) is a direct consequence of

the sliding window technique, we must say that this translational symmetry is
just a mathematical artifact introduced by the sliding window technique. In this
sense, we call the translational symmetry of the r.h.s. of Eq. (15) the pseudo
translational symmetry.

4.2 Representation theory

In Subsection 2.2, we introduced the notion of matrix representation of linear
operators in a way specific to H0. Here, we generalize the concept to groups:

Definition 3 (Representation) A representation D of a group G is a set of
d× d matrices, such that each element of G is associated with an element of D,
and D(ôi)D(ôj) = D(ôk) holds for any ôi, ôj , ôk ∈ G satisfying ôiôj = ôk.

In this definition, d is called the dimension of the representation. For example,
each element of Tn can be expressed as an n × n matrix of 〈l|ρ̂|l′〉, based on
the basis of H0. The matrix representation of τ̂(1) has ones for l = l′ + 1, zeros
otherwise.

As indicated by this example, a representation can be constructed by looking
at how a group element operates on the basis of a vector space. Thus, it is natural
to introduce the notion of representation spaces as



Definition 4 (Representation space) A vector space is said invariant w.r.t. a
group G, if the space remains in the same space after the operation of ∀ô ∈ G. If
a subspace is invariant w.r.t. G, then the space is said a representation space of
G.

In the above example, H0 is a representation space of Tn. Clearly, a repre-
sentation space is not unique. For example, a different representation will be
obtained if we use 2n-dimensional space defined using a one-dimensional lat-
tice having 2n sites. As expected from this example, there is generally no upper
bound on the dimension of representation spaces.

One interesting question here is whether or not there exists a lower bound
on the dimension of representation spaces. The answer is yes. It is known that,
for a given group, there exist a certain number of “minimal” representation
spaces, which are called the irreducible representation space of the group. Putting
formally,

Definition 5 (Irreducible representation space) If a representation space
does not include any subspaces that are invariant w.r.t. G, it is called an irre-
ducible representation space.

For example, while we have used the n-dimensional space to represent Tn so
far, it can be shown that a vector |fn

0 〉 ≡ 1√
n

∑n
l=1 |l〉 spans a one-dimensional

irreducible representation space of Tn. In fact, it is easy to verify ∀l, τ̂(l)|fn
0 〉 =

|fn
0 〉. Clearly, this space is irreducible because it is one-dimensional. Since all

the representation matrices are ones (1 × 1 identity matrix), this irreducible
representation is also called the identity representation.

If representations of a group are turned to be irreducible, it is known that
a strong theorem, which is a fundamental theorem in group theory and is also
known as Schur’s first lemma, holds. While Schur’s first lemma is almost always
expressed as mysterious-looking relations between representation matrices (for a
proof, see, e.g. [7]), it essentially states the orthogonality of different irreducible
representation spaces:

Theorem 1 (Schur) For a given group G, let |q, m〉, |q′,m′〉 be bases in the
representation spaces of irreducible representations labeled by q, q′, respectively,
where m or m′ specifies a dimension of each representation space. For such a
linear operator ô that invariant w.r.t. any element of G, 〈q, m|ô|q′,m′〉 is zero if
q and q′ are different.

Another fundamental theorem in group theory is one called Schur’s second
lemma. Combining the first and the second lemmas, one can prove a stronger
relation (for proof, see [7]):

Theorem 2 (Selection rule) In the same setting as Theorem 1, for such a
unitary operator ô that invariant w.r.t. any element of G, the following relation
holds:

〈q, m|ô|q′,m′〉 ∝ δq,q′δm,m′ .

This theorem is also known as the selection rule in quantum physics.



4.3 Irreducible representations of translational group

Since the identity operator is invariant w.r.t. any linear operator, we see from
Theorem 2 that the bases of irreducible representation spaces are orthogonal to
each other:

〈q,m|q′, m′〉 ∝ δq,q′δm,m′ .

This orthogonal relation reminds us of subspace learning methods such as PCA,
where mutually orthogonal directions are explored in terms of maximum vari-
ance. It is tempting to associate the irreducible representation spaces with ex-
tracted patterns. One important implication here is that group theory serves as
a new tool for pattern learning, where each irreducible representation is thought
of as an extracted pattern.

Let us find irreducible representations of Tn. First, since τ̂(l) ∈ Tn is uni-
tary, its matrix representation must be a unitary matrix. Second, irreducible
representations of Tn must be all one-dimensional. To see this, suppose that an
irreducible representation space is dq-dimensional. By definition, for ∀τ̂(l) ∈ Tn,

τ̂(l)|q, m〉 =
dq∑

m′=1

|q, m′〉〈q, m′|τ̂(l)|q,m〉.

Since τ̂(l) itself is translationally invariant, it follows from Theorem 2 that

τ̂(l)|q, m〉 = |q, m〉〈q,m|τ̂(l)|q, m〉.
This means that the original dq-dimensional representation spaces has a sub-
space invariant w.r.t. Tn, which contradicts to the assumption. Therefore, we
conclude that each of the irreducible representations of Tn is one-dimensional.
In particular, third, considering the first property, we see that

τ̂(l)|q〉 = [eifn
q ]l|q〉 (17)

holds for an irreducible representation q (we dropped the unnecessary index m),
where

fn
q =

2πq

n
(q is an integer)

to satisfy the PBC. From these equations, we see that irreducible representation
spaces are eigen spaces of ˆτ(1). As indicated by the exponential factor in Eq. (17),
the eigen spaces are given by discrete Fourier transformation (DFT) in H0:

|fn
q 〉 =

1√
n

n∑

l=1

eifq(l−l0)|l〉, (18)

where l0 is a real constant, and the subscript q runs overDn
f = {−n−1

2 , ..., 0, 1, .., n−1
2 }

when n is odd, and {−n
2 + 1, ..., 0, 1, .., n

2 } when n is even. It is easy to verify
Eq. (17):

τ̂(l)|fn
q 〉 =

1√
n

n∑

l′=1

eifn
q (l′−l0)|l′ + l〉 = e−ilfn

q |fn
q 〉, (19)

where we used eifw
q n = 1.
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Fig. 3. The results for a white noise data with w = n = 6000. (a) The power spectrum.
(b) A segment of the k-means cluster centers (k = 2), and (c) a segment of the top two
eigen vectors of ρ̂.

5 Solution to subsequence time-series clustering

5.1 The w = n case

When w = n, i.e. the length of the subsequences is the same as the whole time
series (see Fig. 2 (c)), the operator ρ̂ has exact translational invariance. Thus,
from the selection rule, it follows

〈fn
q |ρ̂|fn

q′〉 ∝ δq,q′ . (20)

This means that the matrix representation of ρ̂ is diagonal in the space spanned
by {|fn

q 〉| q ∈ Dn
f }. Thus, solving the eigen equation Eq. (13) for |u(j)〉 is trivial,

and the eigen vectors are nothing but |fn
q 〉s.

Using Eqs. (15) and (19), we can calculate a matrix element 〈fn
q |ρ̂|fn

q 〉 as

〈fq|ρ̂|fq′〉 =
n∑

l=1

〈fq|τ̂(l)†|Γ 〉〈Γ |τ̂(l)|fq′〉 =
n∑

l=1

〈fq|Γ 〉〈Γ |f ′q〉 = n|〈fq|Γ 〉|2. (21)

Thus, the i-th top eigen vector occurs at a Fourier component having the i-
th largest power |〈fq|Γ 〉|2. Since the power spectum becomes an even function
for any real time series, the resulting cluster centers of spectral STSC are pure
sinusoids. Note that each of the eigen vectors must be a pure sinusoid even when
the power spectrum does not have any dominant fn

q .
To validate this result, we performed k-means and spectral STSC for a white

noise data having n = 6000 (the data used is Normal data in the Synthetic
Control Chart data [8]). We did 100 random restarts and chose the best one
in the k-means calculation. As shown in Fig. 3 (a), we have the largest power
at |fq| = 0.358 in (marked by the triangles). Thus, the wavelength must be
2π/|fq| = 17.6, which is completely consistent with Fig. 3 (c). In addition, we
see that the eigen vector is a good estimator of the k-means cluster center by
comparing Figs. 3 (b) and (c).

Note that the sinusoids are obtained as irreducible representations of Tn.
Thus, we conclude that the sinusoid effect is a direct consequence of the pseudo-
translational symmetry introduced by the sliding window technique.



5.2 The w < n case

Let us consider the general case of w < n. In this case, ρ̂ does not have exact
translational invariance, so we need to introduce DFT in H rather than H0:

|fw
q 〉 =

1√
w

w∑

l=1

eifq(l−l0)|l〉. (22)

It is straightforward to show 〈fw
q |fw

q′ 〉 = δq′,q, and thus, {|fw
q 〉| q ∈ Dw

f } forms
the complete set in H.

Consider a vector τ̂(1)|fw
q 〉. Using the fact e−ifw

q w = 1, it is easy to show

τ̂(1)|fw
q 〉 = e−ifw

q |fw
q 〉+

1√
w

e−ifw
q l0 |B〉,

where |B〉 ≡ |w + 1〉 − |1〉. By applying τ̂(1) sequentially, we have

τ̂(l)|fw
q 〉 = e−ifw

q l

[
|fq〉+

1√
w

l∑

l′=1

eifw
q (l′−l0)τ̂(l′−1)|B〉

]
.

While we can omit the second term inside the bracket when both w = n and the
PBC hold, that is not the case here. Using this formula, we can calculate the
matrix elements of ρ̂ in the Fourier representation. The result will be 1

〈fw
q |ρ̂|fw

q′ 〉 ≈ n|〈fw
q |Γ 〉|2δq,q′ +

n∑

l=1

eil∆q′qJw
l (q, q′). (23)

It is straightforward to get the exact expression of Jw
l (q, q′) although we do

not show it here. In the above equation, the first term is the same as Eq. (21).
The second term is a perturbation term giving off-diagonal elements. However,
under normal conditions, we can assume that the first term is the leading term,
since n À 1 and phase cancellations are unavoidable in the second term. In
particular, if the power spectrum of a time-series data set has a single-peaked
structure at a certain |fw

q |, the top eigen vector will be well approximated by
the fw

|q|, irrespective of the details of the spectrum. On the other hand, when the
power spectrum is almost flat, the eigenvectors will be mixtures of many fw

q s, so
that the cluster centers will be far from pure sinusoids. Therefore, even in this
general case, we may claim that the sinusoid effect is a direct consequence of the
pseudo-translational symmetry introduced by the sliding window technique.

To validate the theoretical result of Eq. (23), we performed experiments us-
ing Cylinder, Bell, and Funnel (CBF) data [8]. The CBF data includes three
types of patterns literally having Cylinder, Bell, and Funnel shapes. We ran-
domly generated 30 instances for each type with a fixed length of 128 (= w)
1 Since n À w under normal conditions, one may approximate as

Pn
l=1 eil∆q′,q ≈

nδq,q′ .
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Fig. 5. (a) The k-means cluster centers (k = 3, w = 128). (b) The top three eigen
vectors of the spectral STSC (w = 128).

using Matlab code provided by [8]. We concatenated the instances in order af-
ter standardizing each one (zero mean and unit variance). An example segment
of the concatenated data was shown in Fig. 1 (a). Again, we did 100 random
restarts and chose the best one in the k-means calculation.

Figures 4 (a)-(c) show the power spectra of each instance as a function of
fw

q . To handle the variation of the instances, we simply averaged the resultant
spectra for all instances. We see that the most of the weight is concentrated
on the |q| = 1 component (i.e. the wavelength of w) in all of the cases. The f0

component is naturally missing because of the standardization.
The results of k-means and spectral STSC are shown in Fig. 5, where the

sinusoid effect is clearly observed. The sinusoid of wavelength of w can be under-
stood from the dominant |q| = 1 weight in Fig. 4 (a)-(c). Since the single-peaked
structure in the power spectrum is naturally expected whenever there are no
particular periodicities within the scale of window size, the sinusoid of wave-
length w should be observed in a wide variety of the input data. This explains
why the sinusoid effect is ubiquitous.

Due to the orthogonality condition, we see that the third singular vector
necessarily has a wavelength of about w/2 in Fig. 5 (b). This is an example
of the difference between the two formulations in how the calculated cluster
centers interact with each other. Apart from this, our formulation is completely
consistent with the results.

6 Concluding remarks

We have performed a group-theoretical analysis of the sinusoid effect in STSC.
Based on a spectral formulation of STSC, we showed that the sinusoid effect is a
group-theoretical consequence of the pseudo-translational symmetry introduced
by the sliding window technique.



In Section 4, we claimed that finding irreducible representations can be
viewed as pattern learning if the problem under consideration has a certain
symmetry related to a group. In this sense, the sinusoid effect can be thought of
as a result of (unintentional) pattern learning from time-series subsequences. In
another paper [5], we introduced idea that certain correlation patterns are ex-
tracted as irreducible representation spaces of a point group. In this way, design-
ing machine learning algorithms so that irreducible representations of a group
can be effectively extracted would be interesting future direction of research.
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