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Abstract: When only a small number of labeled samples are available, supervised di-
mensionality reduction methods tend to perform poorly due to overfitting. In such cases,
unlabeled samples could be useful in improving the performance. In this paper, we propose
a semi-supervised dimensionality reduction method which preserves the global structure
of unlabeled samples in addition to separating labeled samples in different classes from
each other. The proposed method has an analytic form of the globally optimal solution
which can be computed based on eigendecompositions. Therefore, the proposed method is
computationally reliable and efficient. We show the effectiveness of the proposed method
through extensive simulations with benchmark data sets.
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1 Introduction

The goal of dimensionality reduction is to obtain a low-
dimensional representation of high-dimensional data
samples while preserving most of ‘intrinsic informa-
tion’ contained in the original data. Once dimensional-
ity reduction is carried out appropriately, the compact
representation of the data can be used for various suc-
ceeding tasks such as visualization and classification.

In supervised learning scenarios where data sam-
ples are accompanied with class labels, Fisher discrimi-
nant analysis (FDA) [3] is a popular dimensionality re-
duction method. FDA seeks an embedding transforma-
tion such that between-class scatter is maximized and
within-class scatter is minimized. FDA works very well
if samples in each class are Gaussian with the common
covariance structure. However, it tends to give unde-
sired results if samples in a class form several separate
clusters or there exist outliers [3]. To overcome this
drawback, local FDA (LFDA) has been proposed [5],
which localizes the between-class and within-class scat-
ter matrices. LFDA works well even when within-class
multimodality or outliers exist. Furthermore, LFDA
overcomes critical limitation of original FDA in dimen-
sionality reduction—the dimension of the FDA embed-
ding space should be less than the number of classes
[3], while LFDA does not suffer from this restriction in
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general.
However, the performance of LFDA (and all other

supervised dimensionality reduction methods) tend to
be degraded when only a small number of labeled sam-
ples are available. Thus, the supervised methods over-
fit embedding spaces to the labeled samples. In such
cases, it is effective to make use of unlabeled sam-
ples which are often available abundantly, i.e., semi-
supervised learning. The book [2] showed through ex-
tensive simulations that principal component analysis
(PCA), which is an unsupervised dimensionality reduc-
tion method for preserving the global data structure,
works moderately well in semi-supervised learning sce-
narios.

Although PCA is reported to work well, it may
not be the best choice in semi-supervised learning due
to its unsupervised nature. In this paper, we pro-
pose a new semi-supervised dimensionality reduction
method which smoothly bridges LFDA and PCA so
that we can control our reliance on the global struc-
ture of unlabeled samples and information brought by
(a small number of) labeled samples. We experimen-
tally show that the proposed method, which we refer
to as semi-supervised LFDA (SELF), compares favor-
ably with other methods for various data sets. Note
that SELF maintains the same computational advan-
tage of LFDA and PCA, i.e., a global solution can be
analytically computed based on eigendecompositions.
Therefore, SELF is still computationally efficient and
reliable.

2 Dimensionality Reduction

In this section, we formulate the linear dimensionality
reduction problem and review existing methods, which



will be the basis for developing a new method in the
following sections.

2.1 Formulation and Notation

Let xi ∈ Rd (i = 1, 2, . . . , n) be d-dimensional samples,
and let z ∈ Rr (1 ≤ r ≤ d) be a low-dimensional repre-
sentation of a high-dimensional sample x ∈ Rd, where
r is the dimensionality of the reduced space. Through
the paper, we focus on linear dimensionality reduction,
i.e., using a d× r transformation matrix T , an embed-
ded representation z of a sample x is obtained as

z = T>x, (1)

where > denotes the transpose of a matrix or a vector.

2.2 Principal Component Analysis

A fundamental unsupervised dimensionality reduction
method is principal component analysis (PCA).

Let S(t) be the total scatter matrix :

S(t) ≡
n∑

i=1

(xi − µ)(xi − µ)>, (2)

where µ ≡ 1
n

∑n
i=1 xi. The PCA transformation ma-

trix T PCA is defined as

T PCA ≡ argmax
T∈Rd×r

[
tr

(
T>S(t)T (T>T )−1

)]
. (3)

That is, PCA seeks a transformation matrix T such
that scatter in the embedding space is maximized.

2.3 Local Fisher Discriminant Analysis

Local Fisher discriminant analysis (LFDA) is a super-
vised dimensionality reduction method [5] which over-
comes vulnerability of original FDA against within-
class multimodality or outliers [3]. When discussing
supervised learning problems, we assume that class la-
bels yi ∈ {1, 2, . . . , c} associated with the samples xi

are available, where c is the number of classes. Let n′m
be the number of samples in class m ∈ {1, 2, . . . , c}.

Let A be the affinity matrix, i.e., the n′-
dimensional square matrix with Ai,j being the affinity
between xi and xj . We assume that Ai,j ∈ [0, 1]; Ai,j

is large if xi and xj are ‘close’ and Ai,j is small if xi and
xj are ‘far apart’. There are several different manners
of defining A, e.g., based on nearest neighbors or the
heat kernel. Through the paper, we use the local scal-
ing heuristic [7] as the definition of the affinity matrix
A, i.e., Ai,j = exp

(−‖xi − xj‖2/σiσj

)
. σi is the local

scaling around xi defined by σi = ‖xi − x
(k)
i ‖, where

x
(k)
i is the k-th nearest neighbor of xi. A heuristic

choice of k = 7 has shown to be useful through exten-
sive simulations [7, 5].

Let S(lb) and S(lw) be the local between-class scat-
ter matrix and the local within-class scatter matrix:

S(lb) ≡ 1
2

n′∑

i,j=1

W
(lb)
i,j (xi − xj)(xi − xj)>, (4)

S(lw) ≡ 1
2

n′∑

i,j=1

W
(lw)
i,j (xi − xj)(xi − xj)>, (5)

W
(lb)
i,j ≡

{
Ai,j(1/n′ − 1/n′yi

) if yi = yj ,

1/n′ if yi 6= yj ,
(6)

W
(lw)
i,j ≡

{
Ai,j/n′yi

if yi = yj ,

0 if yi 6= yj .
(7)

The LFDA transformation matrix T LFDA is defined
as

T LFDA ≡ argmax
T∈Rd×r

[
tr

(
T>S(lb)T (T>S(lw)T )−1

)]
.

(8)
In Eqs.(4) and (5), Ai,j(1/n′−1/n′yi

) is negative while
Ai,j/n′yi

and 1/n′ are non-negative. Thus, LFDA seeks
a transformation matrix T such that nearby data pairs
in the same class are made close and the data pairs in
different classes are made apart; far apart data pairs
in the same class are not imposed to be close. Sam-
ples in different classes are separated from each other
irrespective of their affinity.

3 Semi-Supervised LFDA

In this section, we propose a new dimensionality re-
duction method for semi-supervised learning scenarios.
From here on, we consider the case where, among all
samples {xi}n

i=1, only {xi}n′
i=1 (1 ≤ n′ ≤ n) are labeled

and the rest are unlabeled.

3.1 Basic Idea

When only a small number of labeled samples are
available, supervised dimensionality reduction meth-
ods tend to find embedding spaces which are overfitted
to the labeled samples. In such situations, using unla-
beled samples is often effective—indeed, the book [2]
showed through extensive simulations that PCA works
well on the whole; our experimental results in Sec-
tion 4 also show that PCA is sometimes better than
LFDA. This means that preserving the global struc-
ture of all samples in an unsupervised manner can be
better than strongly relying on class information pro-
vided by a small number of labeled samples.

Figure 1 depicts 2-dimensional 2-class exam-
ples; circle/triangle symbols denote samples in dif-
ferent classes and filled/unfilled symbols denote la-
beled/unlabeled samples; solid and dashed lines denote
1-dimensional embedding spaces found by LFDA and
PCA, respectively (onto which data samples will be
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Figure 1: Illustrative ex-
amples of LFDA and
PCA for toy data sets.

projected). For the data set in Figure 1(a), both LFDA
and PCA can find good embedding spaces, which sep-
arate unlabeled samples in different classes from each
other. However, for the data set in Figure 1(b), LFDA
finds an embedding space that is overfitted to the la-
beled samples. On the other hand, in the case of Fig-
ure 1(c), PCA does not work well due to its unsuper-
vised nature.

The above result implies that LFDA and PCA can
compensate for the weakness of each other, i.e., LFDA
can utilize label information, while PCA can avoid
overfitting. Our simulation results with benchmark
data sets in Section 4 also show that LFDA and PCA
work in a complementary manner. Motivated by these
facts, we propose bridging LFDA and PCA so that
we can smoothly control our reliance on the global
structure of unlabeled samples and class information
brought by labeled samples. We refer to the proposed
method as semi-supervised LFDA (SELF).

The embedding transformations of LFDA and PCA
can be analytically computed based on eigendecom-
positions. So we combine the eigenvalue problems of
LFDA and PCA and solve them together. This al-
lows us to maintain the computational efficiency and
reliability of LFDA and PCA.

3.2 Definition

More specifically, we propose solving the following gen-
eralized eigenvalue problem:

S(rlb)ϕ = λS(rlw)ϕ, (9)

where S(rlb) and S(rlw) are regularized local between-
class scatter matrix and regularized local within-class

scatter matrix defined by

S(rlb) ≡ (1− β)S(lb) + βS(t), (10)

S(rlw) ≡ (1− β)S(lw) + βId. (11)

β (∈ [0, 1]) is a trade-off parameter—SELF is reduced
to LFDA when β = 0, and SELF is reduced to PCA
when β = 1. In general, SELF inherits characteristics
of both LFDA and PCA.

The optimization problem of SELF is expressed as

T SELF ≡ argmax
T∈Rd×r

[
tr

(
T>S(rlb)T (T>S(rlw)T )−1

)]
.

(12)
A solution T SELF is analytically computed as
(ϕ1|ϕ2| · · · |ϕr), where {ϕk}d

k=1 are the generalized
eigenvectors of Eq.(9) associated with the generalized
eigenvalues {λk}d

k=1. We assume that {λk}d
k=1 are

sorted as λ1 ≥ λ2 ≥ · · · ≥ λd and {ϕk}d
k=1 are normal-

ized as ϕ>k S(rlw)ϕk = 1.
It can be confirmed that Eq.(12) is invariant under

linear transformations [3, 5], i.e., for any r-dimensional
invertible matrix U , T OPT U is also a global solu-
tion. This implies that the range of the embedding
space can be uniquely determined by Eq.(12), but
the metric in the embedding space is arbitrary. A
practically useful heuristic (e.g, [5]) is to set U =
diag(

√
λ1,

√
λ2, . . . ,

√
λr), where diag(·) denotes a di-

agonal matrix. Then the solution T SELF becomes

T SELF = (
√

λ1ϕ1|
√

λ2ϕ2| · · · |
√

λrϕr), (13)

We can prove that all the generalized eigenvalues are
non-negative, which guarantees that the solution (13)
is always valid.

3.3 Properties

First, we give an interpretation of S(rlb). The matrix
S(rlb) can be expressed as

S(rlb) ≡ 1
2

n∑

i,j=1

W
(rlb)
i,j (xi − xj)(xi − xj)>, (14)

W
(rlb)
i,j ≡





(1− β)Ai,j(1/n′ − 1/n′yi
) + β/n if yi = yj ,

(1− β)/n′ + β/n if yi 6= yj ,

β/n otherwise.
(15)

The first case in Eq.(15) is negative if

β <
Ai,jn(n′ − n′yi

)
Ai,jn(n′ − n′yi

) + n′n′yi

. (16)

This implies that SELF tries to make sample pairs in
the same class close if β is small, while it separates
them from each other if β is large. Thus the local data
structure in the same class tends to be preserved when
β is small, but it is no longer preserved when β is large.



The second case in Eq.(15) is always positive for any
β ∈ [0, 1], implying that SELF always tries to make
sample pairs in different classes apart for any β. This
would be natural in semi-supervised learning scenarios.
The third case in Eq.(15) is always non-negative, im-
plying that unlabeled samples are separated from each
other for preserving the global data structure.

Finally, we give an interpretation of S(rlw). When
β = 0, S(rlw) (= S(lw)) could be ill-conditioned—this
is crucial particularly when the dimension d of the orig-
inal data space is larger than the number n′ of labeled
samples. In such situations, βId included in S(rlw)

works as a regularizer and SELF can avoid overfitting
to the labeled samples. Therefore, SELF is regarded as
a regularized variant of LFDA and would be more sta-
ble and reliable than original LFDA particularly when
the number of labeled samples is small. Note that un-
like Eq.(14), S(rlw) does not have a pairwise expression
since Id can not be expressed in a pairwise form.

3.4 Numerical Examples

For illustrating how SELF behaves, let us use the
Olivetti face data set1. The data set consists of 400
gray-scale face images (40 people, 10 images per per-
son); each image consists of 4096 (= 64 × 64) pixels
and each pixel takes an integer value between 0 and
255 as the intensity level. In this simulation, we use
the image samples of only 10 subjects (i.e., totally 100
images) for making the visualization results clear. We
note that the result does not change essentially (but
visually denser) when all 400 images are used.

Among 10 people used for the experiments, 3 sub-
jects are with glasses and other 7 are without glasses
(see the left-most pictures of Figure 2). Our task is
to embed the face images into a two-dimensional space
so that the subjects with and without glasses are sep-
arated from each other. We treat 1 image per person
as labeled (i.e., totally 3 faces with glasses and 7 faces
without glasses) and the rest are treated as unlabeled.
Since each class contains several different subjects, this
data set is thought to possess within-class multimodal-
ity.

The embedded results are shown in Figure 2, where
circle/triangle symbols are faces with/without glasses
and filled/unfilled symbols are labeled/unlabeled sam-
ples. The figure shows that FDA and LFDA perfectly
separate the labeled samples in different classes from
each other. However, unlabeled samples tend to be
mixed due to an overfitting phenomenon. PCA tends
to mix the labeled samples in different classes due
to the unsupervised nature. Consequently, unlabeled
samples in different classes are also mixed. On the
other hand, SELF with β = 0.5 clearly separates the
labeled samples in different classes from each other,
and at the same time, it also nicely separates the unla-

1‘http://www.cs.toronto.edu/~roweis/data.html’

beled samples in different classes from each other. We
note that, in this visualization simulation, the result
of SELF is not sensitive to the choice of the trade-
off parameter β; the results are almost unchanged for
0.01 ≤ β ≤ 0.99.

3.5 Distance Metric Learning

The performance of distance-based learning methods
such as nearest neighbor classifiers depend heavily on
the definition of distances between samples. The idea
of distance metric learning is to optimize a metric M
used for computing distances between samples:

dist(xi,xj ; M) = (xi − xj)>M(xi − xj). (17)

The metric matrix M is symmetric and positive semi-
definite by definition. For this reason, metric learning
is typically formulated as a semi-definite programming
(SDP) problem, which is a convex optimization prob-
lem and the unique global solution can be obtained
[1, 6].

If the rank of the d-dimensional matrix M is con-
strained to r, distance metric learning methods au-
tomatically carry out dimensionality reduction in an
implicit manner. More specifically, symmetricity and
positive semi-definiteness of the metric matrix M im-
plies that M can be decomposed as M = TT>. Thus
T>xi is an explicit expression of a sample xi after
dimensionality reduction. However, simultaneously re-
ducing the dimensionality of samples and learning the
distance metric is usually hard since the rank con-
straint is non-convex [1]. Thus it may not be possible
to obtain the global optimal solution.

On the other hand, our approach to dimensional-
ity reduction allows us to obtain the global solution in
terms of the range of the embedding space. This means
that we can obtain the unique solution of the met-
ric matrix by combining SELF with a convex metric
learning method (e.g., [6]), i.e., a two-stage procedure
of first reducing the dimensionality (i.e., determining
the range of the embedding space) by SELF and then
learning the metric of the embedding space without
the rank constraint. We expect that this procedure is
practically useful.

4 Simulations

In this section, we experimentally evaluate the perfor-
mance of relevant dimensionality reduction methods
using standard classification benchmark data sets.

The book [2] conducted systematic experiments for
comparing semi-supervised learning methods. The re-
sults showed that each method performs very well
for a particular type of data sets. However, at the
same time, it tends to be poor for other kinds of data
sets. Thus, the performance of semi-supervised learn-
ing methods is highly dependent on the type of data
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Figure 2: Embedded face samples (glasses vs. non-glasses). Circle/triangle symbols are faces with/without glasses
and filled/unfilled symbols are labeled/unlabeled samples.

sets and there seems to be no single best method. On
the other hand, 1-nearest neighbor classifier is shown
to be stable for various data sets, although it may not
be the best possible method in semi-supervised classi-
fication. For avoiding the bias caused by the choice of
the learning methods, we decided to use the 1-nearest
neighbor classifier in our experiments.

The misclassification rate is sometimes monotone
increasing as the dimensionality is reduced. In such
cases, if the best dimensionality is chosen, e.g., by
cross-validation, the largest dimension is mostly chosen
(i.e., no dimensionality reduction). Then we may not
be able to compare the performance of dimensionality
reduction methods in a meaningful way. Prefixing the
reduced dimensionality r to some number is a possible
option for avoiding the above problem, but the eval-
uation results can significantly depend on the choice
of the dimensionality. Based on this argument, we de-
cided to use the average misclassification rate over re-
duced dimensions (or equivalently the area under the
classification error curve) as our error metric, which we
believe to be reasonable in the current experiments.

We employ the benchmark data sets taken from the
book [2], which consist of 9 semi-supervised data sets.
We refer to them as the SSL data sets. We did not test
the SSL8 and SSL9 data sets since they are too huge.
Note that the SSL6 data set contains 6 classes, while
the other data sets have 2 classes. Table 1 describes the
mean and standard deviation of the misclassification
rate over repetitions. Since we had a numerical prob-
lem when computing LFDA, we slightly regularized it
and consider SELF with β = 0.001 as LFDA. The ful-
fillment of the cluster assumption [2] is described as
‘CA’, which is the correct classification rate by the 1-
nearest-neighbor classifier when both training and test
labels are used for classifying all the training and test
samples. Note that CA is computed before dimension-
ality reduction is applied, so it represents the fulfill-
ment of the cluster assumption of the original data
samples. The larger the value of CA is, the more re-
liable the cluster assumption would be (although the
values are coarse).

When the number of labeled samples is 100 (see the
upper half of the table), LFDA and PCA tend to work
well in a complementary way—LFDA works well if CA
is small while PCA works well if CA is large. SELF
with β = 0.5 tends to make up the deficit of each
method; moreover it can outperform both LFDA and
PCA for some cases. We also test ‘SELF(CV)’, where β
in SELF is chosen from {0, 0.25, 0.5, 0.75, 1} by 10-fold
cross validation. The results shown in the table show
that SELF(CV) further improves the performance over
SELF with β = 0.5. Locality preserving projection
(LPP) [4], an unsupervised dimensionality reduction
method which tends to preserve cluster structures,
does not work so well on the whole. The combination
of LFDA and LPP (indicated by SELF’(CV) in the ta-
ble) also does not perform as good as SELF(CV). We
also tested the combination of LFDA, PCA, and LPP,
but this did not further improve the performance over
SELF so we omit the detail.

When the number of labeled samples is only 10 (see
the lower half of Table 1), the difference of the perfor-
mance among the methods shrinks but SELF(CV) is
still slightly better than the other methods.

5 Conclusions

Our approach to dimensionality reduction in this pa-
per is called the filter approach, i.e., the dimensional-
ity reduction procedure is independent of subsequent
classification algorithms. Our experimental results
showed that the proposed method, SELF, works well
when it is combined with the 1-nearest-neighbor clas-
sifier. An important future direction is to develop
a wrapper method of semi-supervised dimensionality
reduction, which explicitly takes properties of subse-
quent classification algorithms into account. We ex-
pect that a wrapper approach is promising in semi-
supervised learning since the performance of elaborate
semi-supervised learning methods is highly dependent
on the reliability of the assumption behind unlabeled
samples such as the cluster or manifold structure [2].



Table 1: Misclassification rate for the SSL data sets. The numbers in the bracket are the standard deviation over
repetitions. For each data set, the best method and comparable ones based on the t-test at the significance level
5% are described in bold face. SELF(CV) denotes SELF with β chosen by cross validation. SELF’ denotes the
combination of LFDA and LPP in a similar manner.

Data Dim Lab Unlab Rep CA LFDA
SELF

(β = 0.5)
PCA

SELF
(CV)

LPP
SELF’
(CV)

SSL1 241 100 1400 12 0.98 14.9(1.8) 6.0(1.3) 6.2(1.1) 6.0(1.4) 27.4(1.4) 28.4(2.6)
SSL2 241 100 1400 12 0.97 15.7(0.9) 9.6(1.1) 11.2(0.8) 10.3(2.4) 24.1(2.2) 21.9(1.9)
SSL3 241 100 1400 12 1.00 21.1(3.9) 14.3(1.8) 15.5(1.0) 14.1(1.4) 18.0(2.4) 18.5(2.4)
SSL4 117 100 300 12 0.58 33.4(3.5) 36.6(2.4) 48.7(2.4) 33.4(3.7) 46.7(1.7) 36.0(4.7)
SSL5 241 100 1400 12 0.64 27.5(2.3) 27.2(2.3) 31.0(1.9) 27.3(2.9) 37.0(1.3) 35.3(1.9)
SSL6 241 100 1400 12 0.98 38.1(1.5) 35.4(2.4) 27.3(2.7) 27.0(2.7) 35.2(1.7) 36.9(3.2)
SSL7 241 100 1400 12 0.68 29.4(2.4) 29.1(2.4) 29.3(1.6) 27.7(1.4) 32.0(0.9) 32.8(1.5)

# Bests 2 5 2 7 0 1

SSL1 241 10 1490 12 0.98 22.9(5.1) 26.3(6.1) 19.2(4.2) 22.3(5.4) 45.9(2.3) 48.5(2.4)
SSL2 241 10 1490 12 0.97 22.3(3.0) 21.3(2.9) 25.8(4.2) 21.5(2.5) 31.2(7.5) 21.4(0.8)
SSL3 241 10 1490 12 1.00 42.7(2.9) 42.9(3.0) 42.7(4.2) 43.6(3.2) 40.4(4.1) 41.0(5.2)
SSL4 117 10 390 12 0.58 47.3(2.9) 47.7(2.7) 49.9(2.2) 48.3(3.3) 49.5(2.5) 48.5(1.9)
SSL5 241 10 1490 12 0.64 45.4(4.4) 45.4(4.4) 36.3(5.5) 40.2(6.9) 41.2(3.3) 44.5(3.6)
SSL6 241 10 1490 12 0.98 67.7(4.6) 67.0(4.0) 67.7(4.1) 67.6(4.6) 71.4(4.0) 73.7(2.9)
SSL7 241 10 1490 12 0.68 43.6(5.2) 43.6(5.2) 38.9(5.7) 40.1(7.1) 40.3(4.2) 42.7(5.3)

# Bests 5 4 5 6 3 4

Although we focused on linear dimensionality re-
duction, we can easily obtain a non-linear variant of
SELF by employing the standard kernel trick. How-
ever, the kernelized SELF shares the common difficulty
in kernel methods, i.e., how to choose the kernel func-
tions. This needs to be investigated in the context of
semi-supervised dimensionality reduction. In the fu-
ture work, we will also explore semi-supervised dimen-
sionality reduction of structured data using the kernel
SELF.

Although we focused on linear dimensionality re-
duction, it is straightforward to show that a non-linear
variant of SELF can be obtained by employing the
standard kernel trick. However, the kernelized vari-
ant shares the problem that is common to all ker-
nel methods, i.e., how to choose the kernel functions.
This needs to be investigated in the context of semi-
supervised dimensionality reduction. The kernelized
variant can also be used for dimensionality reduction
of non-vectorial structured data such as strings, trees,
and graphs. In the future work, we will explore semi-
supervised dimensionality reduction of such structured
data.

A remaining important issue to be discussed—
which is common to all semi-supervised learning
techniques—is how to optimize tuning parameters. We
may simply employ cross-validation for this purpose,
but it has two potential problems. The first prob-
lem is that the number of labeled samples is typi-
cally small in semi-supervised learning scenarios and
thus cross-validation is not reliable [2]. Fortunately,
our experiments showed that SELF is not so sensitive
to the trade-off parameter β in small sample cases,

but there is still room for further improvement. The
second problem is that labeled samples and unlabeled
samples can have different (input) distributions. Such
a situation is referred to as covariate shift in statistics
and ordinary cross-validation is known to be signifi-
cantly biased; importance-weighted cross-validation is
unbiased under covariate shift. In the future work,
we will investigate how the covariate shift adaptation
techniques could be employed in the context of semi-
supervised dimensionality reduction.
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