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Abstract. We propose a formulation of a new problem, which we callchange
analysis, and a novel method for solving the problem. In contrast to the existing
methods of change (or outlier) detection, the goal of change analysis goes beyond
detecting whether or not any changes exist. Its ultimate goal is to find the expla-
nation of the changes. While change analysis falls in the category of unsupervised
learning in nature, we propose a novel approach based onsupervisedlearning to
achieve the goal. The key idea is to use a supervised classifier for interpreting
the changes. A classifier should be able to discriminate between the two data sets
if they actually come from two different data sources. In other words, we use
a hypothetical label to train the supervised learner, and exploit the learner for
interpreting the change. Experimental results using real data show the proposed
approach is promising in change analysis as well as concept drift analysis.
Keywords: change analysis, two-sample test, concept drift.

1 Introduction

Outlier (or novelty) detection is one of the typical unsupervised learning tasks. It aims
at deciding on whether or not an observed sample is “strange” based on some distance
metric to the rest of the data. Change detection is similar to outlier detection, which
is typically formulated as a statistical test for the probability distribution of a data set
under some online settings.

In many practical data analysis problems, however, the problem of change detection
appears with a slightly different motivation. For example, a marketing researcher may
be interested in comparing the current list of customers’ profile with a past list to get in-
formation about changes. Here, detecting the changes itself is not of particular interest.
What the researcher really wants is the detailed information abouthowthey changed.

In this paper, we formulate this practically important problem, which we callchange
analysis. In contrast to change detection, we focus on developing a general framework
of how to describe a change between two data sets. Clearly, the change analysis prob-
lem is an unsupervised learning task in nature. We assume that we are given two data
sets, each of which contains a set of unlabeled vectors. Our goal is to find some diagno-
sis information based on the comparisons between the two data sets, without using side
information about the internal structure of the system. The main contribution of this pa-
per is to show that this essentially unsupervised problem can be solved withsupervised
learners.



To date, the problem of comparing two data sets has been addressed in various
areas. For example, the two-sample test [1–3], which is essentially to tell whether or
not two (unlabeled) data sets are distinct, has a long history in statistics [4]. Another
example is concept drift analysis [5–7], which basically addresses changes in supervised
learners when the (labeled) training data set changes over time. However, most of the
existing approaches have a serious drawback in practice in that they focus almost only
on whether or not any change exists. As mentioned before, in most of the practical
problems, what we really want to know is which variables could explain the change and
how.

The layout of this paper is as follows. In Section 2, we describe the definition of
the change analysis problem, and give an overview of our approach. Unexpectedly, this
unsupervised problem can be solved using supervised learners, as explained in Section 3
in detail. Based on these sections, in Section 4, we present experimental results using
real data to show the proposed approach is promising. Finally, we give a brief review of
related work in Section 5, and conclude the paper in Section 6.

2 Problem setting and Overview

In this section, we define a task of change analysis somewhat formally, and give an
overview of our approach.

2.1 The change analysis problem

Suppose that we are given two sets of unlabeled data, XA ≡ {x(1)
A , x

(2)
A , . . . , x

(NA)
A }

and XB ≡ {x(1)
B , x

(2)
B , . . . , x

(NB)
B }, whereNA andNB are the numbers of data items

in XA and XB, respectively. Each ofx(i)
A andx

(i)
B is an i.i.d. sample in ad-dimensional

feature space.
This paper addresses two problems about these data sets. The first one is the change

detection problem, which is basically the same as the two-sample problem:

Definition 1 (change detection problem)Given nonidentical data sets XA and XB,
tell whether or not the difference is significant, and compute the degree of discrepancy
between XA and XB.

Note that, unlike concept drift studies, we focus on unlabeled data in this problem. The
second problem we address is thechange analysis problem, which is stated as follows:

Definition 2 (change analysis problem)Given nonidentical data sets XA and XB, out-
put a set of decision rules that explain the difference in terms of individual features1.

Since no supervised information is given in getting the decision rules, this is an unsu-
pervised learning task.

1 The term of “difference analysis” could be more appropriate here, since we do not necessarily
confine ourselves within online settings. However, to highlight the contrast to change detec-
tion, which is a well-known technical term, we will call the concept change analysis.



To understand the difference between these two problems, let us think about lim-
itations of the two-sample test, which has been thought of as a standard approach to
the change detection problem. The two-sample test is a statistical test which attempts
to detect the difference between two data sets. Formally, it attempts to decide whether
PA = PB or PA 6= PB, wherePA andPB are probability distributions for XA and
XB, respectively. In statistics, two-sample tests are classified into two categories [4].
The first category is the parametric method, where a parametric functional form is ex-
plicitly assumed to model the distribution. In practice, however, such density modeling
is generally difficult, since the distribution of real-world data does not have a simple
functional form. In addition, even if a good parametric model such as Gaussian had
been obtained, explaining the origin of the difference in terms of individual variables is
generally a tough task, unless the variables are independent.

The second category is the nonparametric method, which allows us to conduct a
statistical test without density modeling. If our interest were to detect only the discrep-
ancy between two data sets, distance-like metrics such as the maximum mean discrep-
ancy [3], the Kolmogorov-Smirnov statistic [1], energy-based metrics [8], and nearest
neighbor statistics [2] are available for solving the change detection problem. However,
these methods are not capable of handling the change analysis problem. While some
of the two-sample tests offer asymptotic distributions for the data in such limit as large
number of samples, it is generally very hard to answer the change analysis problem in
practice. This is because, first, such a distribution is an asymptotic distribution, so it
generally cannot be a good model for real-world data, where, e.g., the number of sam-
ples is finite. Second, since the nonparametric approach avoids density modeling, little
information is obtained about the internal structure of the data.

2.2 Overview of our approach

Considering the limitations of the two-sample test, we propose a simple approach to
these two problems. Our key idea is just as follows: Attach a hypothetical label+1 to
each sample of XA, and−1 to each sample of XB. Then train a classifier in a supervised
fashion. We call this classifier thevirtual classifier(VC) hereafter.

Figure 1 shows a high-level overview of our approach, where© and¤ indicate
labels of+1 and−1, respectively. In our approach, if two data sets actually have the
differences, they should be correctly classified by the classifier. Thus a high classifica-
tion accuracyp indicates a difference between XA and XB. For example, ifPA = PB,
the classification accuracy will be about0.5 whenNA = NB. However, ifp is signifi-
cantly larger than 0.5, we infer that the labels make difference, soPA 6= PB.

In addition, to solve the change analysis problem, we take advantage of the inter-
pretability of classification algorithms. For example, the logistic regression algorithm
gives the weight of each feature representing the importance. For another example, if
the decision tree is employed, variables appearing in such nodes that are close to the root
should have a major impact. In this way, we can get decision rules about the changes
from the VC.

The advantages of this VC approach are as follows: First, it can solve the change
detection and analysis problem at the same time. The classifier readily gives the degree
of change as the classification accuracy, and also provides diagnosis information about



Change detection (discrepancy score) Change analysis(decision rules for explanation)

Fig. 1.High-level overview of the virtual classifier approach.

changes through its feature selection functions. Second, the VC approach does not need
density estimation, which can be hard especially for high dimensional data. Finally, the
VC approach allows us to evaluate the significance of changes simply by a binomial
test. This is an advantage over traditional nonparametric two-sample tests, which have
focused on asymptotic distributions that hold only in some limit.

3 Virtual Classifier Approach to Change Analysis

This section presents details of our supervised learning approach to change analysis.
For notations, we use bars to denote data sets including the hypothetical labels, such
asX̄A ≡ {(x(i)

A ,+1) | i = 1, ..., NA} andX̄B ≡ {(x(i)
B ,−1) | i = 1, ..., NB}. The

prediction accuracy of VCs is represented byp.

3.1 Condition of no change

Suppose that we are given the combined data setX̄ ≡ X̄A ∪ X̄B, and a binary clas-
sification algorithm L. We train L usinḡX, and evaluate the classification accuracyp,
making use ofk-fold cross validation (CV). In particular, randomly dividēX into k
equi-sized portions, leave out one portion for test, and use the remaining(k − 1) por-
tions for training. The overall prediction accuracyp is computed as the average of those
of thek classifiers.

If PA = PB, classification of each of the samples inX̄ by L can be viewed as a
Bernoulli trial. Thus the log-likelihood ofNA + NB trials over all the members of̄X
will be

ln
[
qNA(1 − q)NB

]
under the assumption of i.i.d. samples, whereq is the probability of the class A. By
differentiating this w.r.t.q, and setting the derivative zero, we have the maximum likeli-
hood solution of this binomial process asq = NA/(NA + NB). Since the classification
accuracyp should bemax{q, 1 − q}, we see thatp is given by

pbin ≡ max{NA, NB}
NA + NB

, (1)

where the subscript represents binomial.
If PA 6= PB, so the information of the class labels is important, the classification

accuracy will be considerably higher thanpbin. Specifically, the larger the differences



they have, the higher the prediction accuracy will become. One of the major features of
our VC approach is that it enables us to evaluate the significance ofp via a binomial
test. Consider a null hypothesis that the prediction accuracy is given bypbin, and assume
NA > NB for simplicity. For a value of the confidence levelα > 0, we reject the null
hypothesis if

N∑
nA=Np

N !
nA!(N − nA)!

pnA
bin(1 − pbin)N−nA ≤ α, (2)

whereN = NA + NB. This means that the class labels are so informative thatp is
sufficiently higher thanpbin. If we parameterize the critical probability as(1+γα)pbin,
the condition of no change is represented as

p < (1 + γα)pbin. (3)

For a numerical example, ifN = 1000 andpbin = 0.5, the 5% and 1% confidence
levels correspond toγ0.05 = 0.054 andγ0.01 = 0.076, respectively. For relatively large
N , Gaussian approximation can be used for computingγα [4].

3.2 Change analysis algorithm

Once the binomial test identifies that the difference between XA and XB is significant,
we re-train L (or another type of classification algorithm) using all the samples inX̄. If
some features play a dominant role in the classifier, then they are the ones that charac-
terize the difference. As an example, imagine that we have employed the C4.5 decision
trees [9] as L. The algorithm iteratively identifies the most important feature in terms of
information gain, so such features that appear closest to the root will be most important.
Thus focusing on such nodes amounts to feature selection, and the selected features are
the ones that explain the difference. In this way, feature selection and weighting func-
tions of L are utilized in change analysis.

We summarize our change analysis algorithm in Fig. 2. The first half (1-3) essen-
tially concerns change detection by evaluating the significance of the changes through
the binomial test, while the second half (4-5) addresses change analysis. As shown,
there are two input parameters,α andk.

3.3 Application to labeled data

While the algorithm in Fig. 2 is for unlabeled data, we can extend the algorithm for
labeled data. This extension is practically important since it enables us to do change
analysis between classifiers. Suppose that we are given a classification algorithm M,
and two labeled data sets DA and DB, defined as{(x(i)

A , y
(i)
A )|i = 1, ..., NA} and

{(x(i)
B , y

(i)
B )|i = 1, ..., NB}, respectively, wherey(i)

A and y
(i)
B represent class labels.

We train M based on DA and DB to obtain classifiers MA and MB, respectively. What
we wish to solve is a change analysis problem between MA and MB: Output a set of
decision rules that explain the difference between MA and MB in terms of individual
features.



Algorithm: Change Analysis
INPUT:
· Two data sets XA and XB

· Binary classification algorithm L
· Number of foldsk
· Significance levelα > 0

1. Give the positive label to each sample of XA, and the negative label to each sample of XB.
2. Train L based onk-fold cross-validation to obtain the estimated predictive accuracyp.
3. If p < pbin(1 + γα), then quit. Otherwise, report that XA and XB have different distributions.
4. Re-train L on all of the data.
5. Investigate the trained classifier to understand the differences between XA and XB.

Fig. 2.The virtual classifier algorithm for change analysis

To solve this, we create unlabeled data sets based on the following strategy. For each
sample,x(i)

A or x
(i)
B , we make classification with both MA and MB. If the predictions

are inconsistent, then we put the sample into a set XA, otherwise into XB. Scanning
all the samples, we have two unlabeled data sets XA and XB. By construction, XA
characterizes the inconsistencies between MA and MB, while XB characterizes their
commonalities. Thus, by making use of the change analysis algorithm in Fig. 2 for
these XA and XB, detailed information about the inconsistencies will be obtained. In
our context, the quantity

ρ ≡ Ninc/(NA + NB) (4)

works as the degree of the inconsistencies between MA and MB (or DA and DB), where
Ninc represents the number of samples whose predictions are inconsistent.

When the number of possible values for the target variable is small, it is useful to ex-
tend the change analysis algorithm to include multi-class classification. As an example,
suppose that the given label is binary, i.e.y

(i)
A , y

(i)
B ∈ {±1}. We separate the incon-

sistent set XA into two subsets XA1 and XA2. Here, XA1 consists of the inconsistent
samples whose original prediction is+1 but cross-classification gives−1. Similarly,
XA2 consists of the inconsistent samples that make a transition from−1 to +1. Then
we apply a three-class classification algorithm L to classify XA1, XA2, and XB. Finally,
we examine the resulting classifier for each type of disagreement.

4 Experiment

We evaluated the utility of the VC approach for change analysis using synthetic as well
as real-world data. In the following experiments, we usedα = 0.05 andk = 10 unless
otherwise noted. For a classification algorithm L, we mainly used the C4.5 decision
trees (DT) algorithm implemented asJ48 in Weka [9], which has a parameter named
minNumObj meaning the minimum number of instances per leaf. To see the degree
of linear separability between the two data sets, we additionally used logistic regression
(LR) also implemented asLogistic in Weka. Two parameters inLogistic (a ridge
parameter and the maximum iterations) were left unchanged to the default values (10−8

and infinity, respectively).



4.1 Synthetic data

We conducted two experiments based on synthetic data withNA = NB = 500. For
this number of samples, the critical accuracy is given by 0.527 (γ0.05 = 0.054). In both
of the experiments, the ten features were independently generated based on zero-mean
Gaussians.

For thefirst experiment, the data sets XA and XB were designed so thatPA andPB

had a significant difference. In XA, the standard deviations (denoted byσ) were set to
be 1.0 except forAttr1 (the first feature), whereσ was set to be 4.0. On the other hand,
in XB, all theσs were 1.0 except forAttr2 (the second feature), whereσ was set to
be 4.0. Figure 3 (a) shows the marginal distribution of this data set in theAttr1-Attr2
space. Our goal is to pick upAttr1 andAttr2 as features that are responsible for the
difference.

We conducted change analysis for this data set withminNumObj = 10 for DT.
The estimated prediction accuracyp computed by 10-fold CV was 0.797 (DT), which
far exceeds the critical accuracy. This means that the two data sets were correctly judged
as being different. Figure 3 (b) represents the DT as the VC, where the labels of the
ellipses and the edges show the split variables and the decision rules, respectively. The
shaded boxes enclose the class labels as well as (1) the number of instances fallen into
the node and (2) the number of misclassified instances in the form of(1)/(2). The
latter is to be omitted when zero. The decision boundaries found by the DT are shown
by the lines in Fig. 3 (a). Clearly, the model learned the intended nonlinear change
betweenAttr1 andAttr2. Note that, when LR was used as L, 10-fold CV gave only
p = 0.505, which is below the critical accuracy. This result clearly shows the crucial
role of nonlinear decision boundaries.

For thesecondexperiment,PA andPB were designed to be the same. In both XA

and XB, all theσs were set to be 1.0 except forAttr2, whereσ = 4.0. Figure 4 shows
the marginal distribution corresponding to Fig. 3 (a). In contrast to the first experiment,
the DT model naturally showed a lowp of 0.500, indicating that the differences were
not statistically significant. This result shows that our approach using DT generates a
valid classifier with statistical significance only when the data set contains a difference
between classes.

4.2 Spambase data

Spambase is a public domain data set in UCI Machine Learning Repository [10]. While
the original data contains spam and non-spam email collections, we used only the 1,813
instances belonging to the spam email set. The features consist of fifty-five continuous
values of word and symbol statistics. We divided the spam set into halves, XA and
XB, keeping the original order of the instances unchanged. In this setting, the critical
accuracy is 0.520 (γ0.05 = 0.039). We performed change analysis for XA and XB to
see if there was any hidden shift in the data. We usedminNumObj = 2 for DT.

Interestingly, the 10-fold CV produced a rather high prediction accuracy ofp =
0.548 (DT), which is higher than the critical accuracy. According to the VC, the ma-
jor features were the frequencies of the words ‘edu’, ‘85’, and ‘hp’, although space
limitation does not permit showing the output DT. Considering the additional fact that
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LR produced justp = 0.515, we conclude that the spam class in Spambase has some
nonlinear changes on the word frequencies, which are difficult to find using a linear
model like LR. This result is of particular practical importance, since it suggests that
learning algorithms that depend on the order of the training samples might tend to have
considerable biases.

4.3 Enron email data

The Enron email data set is an archive of real email at the now defunct Enron Corpora-
tion, and no class labels are available [11]. We used the year 2001 subset that contains
272,823 email messages in a bag-of-words representation [12]. We separated the data
into the first (1H) and the second (2H) halves of this year, and generated feature vectors
by including the 100 and 150 most frequent words in each period. Meaningless zero
vectors including none of the selected feature words were omitted. Each half was fur-
ther divided into halves to allow comparison on quarterly basis. We conducted change
analysis within either 1H or 2H withnumMinObj = 1, 000. For example, in the anal-
ysis of 2H, XA and XB roughly correspond to the data in the third (3Q) and fourth (4Q)
quarters, respectively.

Table 1 shows the estimated prediction accuracies. We see that both LR and DT
mark accuracies much higher than the critical accuracies. To explore the details of the
differences, we picked the 2H data, and did change analysis to obtain the DT in Fig. 5,
where top 5 nodes from the root have been selected, comparing between 100- and 150-
word models. The notation of the trees are the same as Section 4.1, although the rank of
each feature has been added here (‘access’ is 44th frequent, etc.). The threshold values
represent the occurrence numbers of feature words in each email. Since we followed the
simple frequency-based feature generation strategy, the 150-word tree tends to include
such words that bear particular meanings.

We see that ‘position’ is at the root node in the 150-word model in spite of its less
frequency (144th rank). Enron went bankrupt at the end of 2001. If we imagine what
had been talked about by the employees who were doomed to lose their job position,



Table 1. Prediction accuracies on En-
ron

Data set Algorithm
Period Words LR DT

2001-1H 100 64.3%67.4%
2001-1H 150 65.4%68.4%
2001-2H 100 60.9%62.8%
2001-2H 150 62.3%64.1%

< 2001-2H, 100 words > < 2001-2H, 150 words >

access(44)

today(41)

<= 12

B (305)

> 12

Week(16)

<= 3

B (170/20)

> 3

time(7)

<= 5

B (150/9)

> 5

email(18)

<= 10

A (73/7)

> 10

(Others)

<= 3

A (1223/227)

> 3

position(144)

email(18)

<= 8

A (132/11)

> 8

Jeff(49)

<= 3

A (1225/226)

> 3

Week(16)

<= 0

B (6059/1463)

> 0

Davis(79)

<= 5

B (117/8)

> 5

(Others)

<= 3

B (112/12)

> 3

Fig. 5.VCs on the Enron 2001-2H data set

this result is quite suggestive. In addition, we see that ‘Jeff’ and ‘Davis’ are dominant
features to characterize the 4Q data. Interestingly, the name of CEO of Enron in 2001
was Jeffrey Skilling, who unexpectedly resigned from this position on August 2001 af-
ter selling all his stock options. Many employees must have said something to him at the
moment of the collapse. For Davis, there was a key person named Gray Davis, who was
California’s Governor in the course of the California electricity crisis in the same year.
It may result from his response to the investigation of Enron in 4Q. Note that the VC
has discovered these key persons without any newspaper information, demonstrating
the utility in studying the dynamics of complex systems such as Enron.

4.4 Academic activities data

As an example of application to labeled and categorical data, we performed change
analysis for “academic activities” data collected in a research laboratory. This data set
consists of 4,683 records over five years in the form of(x(s), y(s)), wheres is the
time index andy(s) represents a binary label of either ‘Y’ (meaning important) or ‘N’
(unimportant). Each of the vectorsx(s) includes three categorical features,title , group,
andcategory, whose values are shown in Table 2.

Since the labels are manually attached tox(s)s by evaluating each activity, it greatly
depends on subjective decision-making of the database administrator. For example,
some administrators might think of PAKDD papers as very important, while other might
not. Triggered by such events as job rotations of the administrator and revisions of eval-
uation guidelines, the trend of decision-making is expected to change over time. The
purpose on this analysis is to investigate when and what changes have occurred in the
decision criteria to select importance labels.

We created 14 data subsets by dividing the data on quarterly basis, denoted byD1,
D2, . . . , D14. First, to see whether or not distinct concept drifts exist over time, we
computed the inconsistency scoreρ (see Eq. (4)) between neighboring quarters. Specif-
ically, we think of DA and DB as Dt and Dt+1 for t = 1, 2, ..., 13. For M, we employed



Table 2.Three features and their values in the academic activity data
category title group

GOVERNANCE, EDITOR, ORGANIZATION,COMMITTEE, MEMBER, UNIVERSITY, DOMESTIC, STANDARD,

PROFESSIONAL ACTIVITY AWARD, OTHERS PUBLISHER, SOCIETY1, OTHERGROUPS

0
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Fig. 6. Inconsistency scoresρ between Dt and Dt+1. The largest score can be seen wheret = 5.

decision trees. Figure 6 shows the inconsistency scoreρ for all the pairs. We see that
two peaks appear aroundt = 5 andt = 10, showing clear concept drifts at those pe-
riods. Interestingly, these peaks correspond to when the administrator changed off in
reality, suggesting the fact that the handover process did not work well.

Next, to study what happened aroundt = 5, we picked D5 and D6 for change
analysis. Following the procedure in Section 3.3, we obtained the VC as shown in Fig. 7.
Here, we used a three-class DT based on three setsXA1, XA2 andXB, whereXA1

includes samples whose predicted labels make a transition of Y→ N. The setXA2

includes samples of N→ Y, while XB includes consistent samples of Y→ Y. If we
focus on the leaves of ‘NY’ in Fig. 7 representing the transition from N to Y, we find
interesting changes between D5 and D6: The new administrator att = 6 tended to put
more importance on such academic activities as program and executive committees as
well as journal editors.

One might think that there can be a simpler approach that two decision trees M5 and
M6 are directly compared, where M5 and M6 are decision trees trained only within D5

and D6, respectively. However, considering complex tree structures of decision trees,

title

NY (45)

= GOVERNANCE

NY (24/6)

= COMMITTEE

category

= MEMBER

YY (70/37)

= OTHERS

NY (112/40)

= EDITOR

group

= ORGANIZATION

YY (141/24)

= PROFESSIONAL ACTIVITY

YY (6)

= AWARD

NY (10)

= PUBLISHER

YY (10/3)

= STANDARD

YY (13/3)

= SOCIETY1

YY (32/15)

=DOMESTIC

YY (85/19)

= nogroup

Fig. 7.Virtual classifier forD5 andD6.



we see that direct comparison between different decision trees is generally difficult.
Our VC approach provides us a direct means of viewing the difference between the
classifiers, and is in contrast to such a naive approach.

5 Related Work

The relationship between supervised classifiers and the change detection problem had
been implicitly suggested in the 80’s [2], where a nearest-neighbor test was used to
solve the two-sample problem. However, it did not address the problem of change anal-
ysis. In addition, the nearest-neighbor classifier was not capable of explaining changes,
since it did not construct any explicit classification model. FOCUS is another frame-
work for quantifying the deviation between the two data sets [13]. In the case of su-
pervised learning, it constructs two decision trees (dt-models) on each data set, then
expands them further until both trees converge to the same structure. The differences
between the numbers of the instances which fall into the same region (leaf) indicate
the deviation between the original data sets. In high-dimensional settings, however, the
models should become ineffective since the size of the converged tree increases ex-
ponentially therefore the method requires substantial computational cost and massive
instances.

Graphical models such as Bayesian networks [14] are often used in the context
of root cause analysis. By adding a variable indicating one of the two data sets, in
principle Bayesian networks allow us to handle change analysis. However, a graphical
modeling approach inevitably requires a lot of training data and involves extensively
time-consuming steps for graph structure learning. Our VC approach allows us to di-
rectly explain the data set labels. This is in contrast to graphical model approaches,
which basically aim at modeling the joint distribution over all variables.

In stream mining settings, handling concept drift is one of the essential research
issues. While much work has been done in this area [5–7], little of that addresses the
problem of change analysis. One of the exceptions is KBS-stream [15] that quantifies
the amount of concept drift, and also provides a difference model. The difference model
of KBS-Stream tries to correctly discriminate the positive examples from the negative
examples in the misclassified examples under the current hypothesis. On the other hand,
our VC tries to correctly discriminate the misclassified examples by the current hypoth-
esis against the correctly classified examples. Both models are of use to analyze concept
drift, but the points of view are slightly different.

Other studies such as ensemble averaging [16] and fast decision trees [17] tackle
problems which are seemingly similar to but essentially different from change analysis.

6 Conclusion

We have proposed a new framework for the change analysis problem. The key of our
approach is to use a virtual classifier, based on the idea that it should be able to tell
the two data apart if they came from two different data sources. The resulting clas-
sifier is a model explaining the differences between the two data sets, and analyzing
this model allows us to obtain insights about the differences. In addition, we showed



that the significance of the changes can be statistically evaluated using the binomial
test. The experimental results demonstrated that our approach is capable of discovering
interesting knowledge about the difference.

For future work, although we have used only decision trees and logistic regres-
sion for the virtual classifier, other algorithms also should be examined. Extending our
method to allow on-line change analysis and regression models would also be interest-
ing research issues.
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