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Abstract. We propose a novel probabilistic semi-supervised
anomaly detection framework for multi-dimensional systems with
high correlation among variables. Our method is able to identify both
abnormal instances and abnormal variables of an instance.

1 Introduction

Anomaly detection is one of the most practical artificial intelligent
problems. It aims at recognizing unusual patterns within normal be-
haviors. Unlike traditional anomaly detection whose task is to iden-
tify the anomalous samples, we invent an anomaly detection frame-
work that is capable of detecting the abnormal at both the variable
and instance levels.5

One of pioneering studies on variable-level anomaly detection is
presented in [2], in which a sparse Graphical Gaussian Model (GGM)
[5] was shown to be effective. However, we found that GGM may fail
to achieve a fair performance for high correlated data. Most anomaly
detection methods based on Principal Component Analysis (PCA)
implicitly assume that abnormal patterns rarely span the normal sub-
space, which is generally referred to as a subspace with main vari-
ances [3]. However, this kind of assumption does not always hold for
the high correlated data, since most of abnormal patterns are wrapped
by normal patterns that lie along the direction of the main variance.

In this paper, by clarifying the relationship between GGM and
Probabilistic PCA (PPCA), we propose a probabilistic model for
anomaly detection at both the variable and instance levels. We cal-
culate anomaly scores for both the variables and the instances.

2 Problem Setting

We are given N observed samples represented by a centered matrix
X = [x1,x2, . . . ,xN ] ∈ RD×N . Each sample xi (i = 1, 2, . . . , N )
is denoted by a D-dimensional vector [x1, x2, . . . , xD]T . A label
vector for the samples is defined as p = [p1, p2, . . . , pN ], where
pi is the label of xi. In the practical setting of anomaly detection,
pi ∈ {1, 2, 3} in which 1, 2 and 3 represent normal label, abnormal
label, and unknown labels, respectively. For the variables, we also
define a label matrix V the same size as X, in which the ij-th entry is
set to be 1, 2 or 3, if the corresponding variable is normal, abnormal,
or in an unknown state, respectively. Our task is to identify which
variables and which samples are in abnormal states.
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3 Relationship between GGM and PPCA
In GGM, D-dimensional random variables are modeled by a Gaus-
sian distribution, which is associated with a graph with D nodes
(variables) and a set of edges. Two variables without an edge indi-
cates the two variables are conditionally independent given the other
variables. The edge connections among nodes can be represented by
a precision matrix. The logarithm of likelihood for the Gaussian dis-
tribution is written as:

JGGM (ΛΛΛ) = ln detΛΛΛ− tr(SΛΛΛ) + const. (1)

where ΛΛΛ denotes the precision matrix, S represents the empirical es-
timate of covariance matrix, which is calculated as S = N−1XXT ,
tr denotes the trace operator, and det represents the determinant of
a matrix. In PPCA [4], a linear mapping for each observed data xn

that is corrupted by noise is defined as:

xn = Wzn + ηηηn (2)

where the mapping matrix is W ∈ RD×D if all dimensions are kept,
zn ∈ RD is a latent vector having a Gaussian distribution N (0, I)
where I is an identity matrix, ηηηn is a noise vector having a Gaussian
distribution N (0, β2I) where β2 is a variance. By imposing a Gaus-
sian prior for the latent data, the logarithm of likelihood of W after
marginalizing over zn is written as:

JPPCA(W) = − ln detC− tr(C−1S) + const. (3)

where C = WWT + β2I. Through the equality ln detC =
− ln detC−1, we see that the precision matrix ΛΛΛ in Eq. (1) corre-
sponds to C−1 in Eq. (3).

From the viewpoint of optimizing C, PPCA can be considered
as a parameterized version of GGM, since C is parameterized into
the form WWT + β2I. The relationship between GGM and PPCA
provides a novel perspective on the transformation matrix W to un-
derstand the precision matrix.

4 Probabilistic Two-Level Anomaly Detection
In order to integrate the supervised information on variables and in-
stances, we naturally extend PPCA to a matrix-variate linear model
and derive anomaly scores by using the relation between GGM and
PPCA.

4.1 Probabilistic Model
Starting from a linear model, we can write Eq. (2) into a matrix form:

X = Y + ΨΨΨ (4)



where Y = WZ, X is the data matrix, W ∈ RD×D is the map-
ping matrix, Z = [z1, z2, . . . , zN ] ∈ RD×N is the latent data ma-
trix for X where each zi (i = 1, 2, . . . , N ) is a D-dimensional
vector [z1, z2, . . . , zD]T , and ΨΨΨ is a noise matrix. We assume that
Z is drawn from a matrix-variate normal distribution [1], a ma-
trix extension of Gaussian for vectors, Z ∼ N (0, ID,KN ), where
ID ∈ RD×D represents the row covariance matrix which encodes
the relationships among the variables, and KN ∈ RN×N denotes the
column covariance matrix which describes the relationships among
the instances. The distribution of Z is with the mean of a zero matrix,
each row independent of each other, and each column correlated with
KN .

We start to build a generative model. In anomaly detection, we
attempt to learn a generative model for generating the normal data
with high probabilities and the abnormal data with low probabilities.
In addition, it is often the case that, even if an instance is labeled as
abnormal, some variables of the instance may be normal. Inspired by
this observation, we define a vector a = [α2

1, α
2
2, α

2
3]

T where α2
1,

α2
2, and α2

3 represent the variances of the Gaussian noise for normal
variables, abnormal variables, and variables with unknown labels,
respectively. In a general setting, it follows α2

1 ≤ α2
3 ≤ α2

2, since a
generative model tends to generate the data with high probabilities,
which have low degrees of noise. Therefore, using the label matrix
V for the variables, the conditional probability of the observed data
X can be defined as:

p(X|Y,V,a) =

D∏
i=1

N∏
j=1

N (Xij |(Y)ij , α
2
Vij

). (5)

In order to integrate the supervised information on the instances,
Gaussian Random Field (GRF) is utilized. Following the idea in [6],
we can write the distribution of Z as follows.

p(Z) =
1

F ′
exp

{
−τ

2
tr

(
ZLZT

)}
(6)

where F ′ denotes a constant, τ is a scale parameter, and L is seen
as a Laplacian matrix for a similarity matrix G that encodes the su-
pervised information on the instances. The entries of G are defined
as:

Gij =





1,
θ,
δ,
0,

xi and xj (i 6= j) ∈ normal class
xi and xj (i 6= j) ∈ unlabeled class
xi ∈ normal class,xj ∈ unlabeled class
otherwise

(7)
such that L = D − G where D is a diagonal matrix with Dii =∑

j Gij , θ and δ ∈ [0, 1]. From the definition of G, we can see
that the larger the value of Gij is, the closer xi and xj are to
each other. In Eq. (6), we interpret that Z follows a Gaussian dis-
tribution with precision matrix L. Compared with the definition for
Z ∼ N (0, ID,KN ), we have L = K−1

N . According to the Lemma
on pp. 64 of [1], we can define a prior for Y, which is a matrix variate
normal distribution on WZ, as follows:

Y = WZ ∼ ND,N (0,WWT ,KN ). (8)

With the prior in Eq. (8) and the likelihood in Eq. (5), the posterior
distribution of Y is defined below.

p(Y|X) ∝ p(X|Y)p(Y) (9)

The MAP estimate of Y can be obtained by minimizing the negative
logarithm of Eq. (9). For details of the optimization on both W and
Z, refer to Section 2 of the supplementary document 6.
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4.2 Anomaly Score
After obtaining W through the optimization, the precision matrix ΛΛΛ
for the distribution on X is calculated as (WWT +β2I)−1. Given an
instance x, the abnormal scores s = [s1, s2, . . . , sD] for all variables
are calculated as:

s ≡ s0 +
1

2
diag(ΛΛΛxxTΛΛΛP−1) (10)

where diag(·) represents a vector in which the elements correspond
to the diagonal elements of a matrix. The matrix P = diag2(ΛΛΛ)
where diag2(·) denotes a matrix with the diagonal elements of a ma-
trix and zero off-diagonal elements. The vector s0 is defined so that
(s0)i = 1

2
ln 2π

ΛΛΛi,i
.

With respect to the anomaly scores for the instances, we first nor-
malize s, which is denoted by b = [b1, b2, . . . , bD]. Given an in-
stance x, its abnormal score, which is derived from Rényi entropy of
order λ, is defined as:

t ≡ 1

λ− 1
ln

(
D∑

i=1

bλ
i

)
. (11)

For the detailed discussion on anomaly score, refer to Section 3 of
the supplementary document 6.

5 Experiment
As a case study, we made an experiment on the high correlated data
from a train sensor system. We denote our method Probabilistic Two-
Level Anomaly Detection as PTLAD, an extension of Glasso [2] as
EGlasso, an supervised extension of GLasso as SEGlasso (k), where
the first k (k = 1, . . . , D) directions of main variances of data are
removed. We utilize Signal to Noise Ratio (SNR) to evaluate the dif-
ferences between the anomaly scores for normal and abnormal data.
Table 1 presents SNRs for the instances and the average values over
variables, showing that PTLAD outperforms the other methods. For
the detailed discussion on the experiment, refer to Section 4 of the
supplementary document 6.

Table 1: SNRs for variables and instances

Type PTLAD SEGlasso (k=1) EGlasso JSPCA[3]
Ave. Variable 25.58 3.22 3.22 9.30

Instance 4.14 1.49 0.39 0.60

6 Conclusion
We clarified the relationship between GGM and PPCA, and proposed
a novel anomaly detection framework at both the variable and in-
stance levels for high correlated data.
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