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Abstract Detecting the changes in business situations is an important technical
challenge. This chapter focuses onchange detectiontechnologies, including outlier
detection and change-point detection. In particular, we focus on how to handle the
heterogeneous and dynamic features of the data in service businesses. We intro-
duce a method of the singular spectrum transformation for change-point detection
in heterogeneous data. We also introduce a technique for proximity-based outlier
detection to handle dynamic　 data. Using real-world sensor data, we demonstrate
the utility of the proposed methods.

1 Introduction

Recent advances in sensing and storage technologies are making it possible to col-
lect and store real-valued time-series data in various domains. Examples of the data
include POS (point-of-sales), biomarker, geospatio-temporal, etc. Unlike human-
generated data such as call center text logs, analyzing real-valued time-series data
is generally challenging, since the values of the sensors are not directly meaningful
in general, and the amount of data is often intractably huge.

For industrial domains such as transportation, manufacturing, energy & utilities,
etc., where optimized operations of physical systems are at the heart of successful
business, the effective use of sensor data is critical. For example, early detection of a
systematic occurrence of defective products is essential to avoid potential losses. We
have recently witnessed rapid changes towards service businesses in various indus-
tries. Recent examples include system monitoring services for production systems
and construction equipment. Another example where the analysis of sensor data is
critical is location-based services, which are growing rapidly. To exploit geospatial
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data, real-time position information needs to be analyzed by combining it with cer-
tain data from individual products and consumers. All these examples clearly show
the need for practical methods for analyzing sensor data in service businesses.

In spite of the growing awareness of sensor data analytics for service businesses,
little about this topic appears in the literature. This is possibly due to the fact that
knowledge discovery from noisy sensor data is quite difficult with traditional ap-
proaches, and the problem settings can be quite different from traditional situations.
Figuratively, traditional methods are capable of handling only a small percentage of
the data, leaving the rest unused. This also means that practical new technologies
could lead to a major business advantage in the unexplored spaces, just as informa-
tion retrieval techniques based on new disciplines of machine learning opened new
doors to business on the Internet.

In this chapter, we focus onanomaly detectiontechnologies, including the tasks
of outlier detection and change-point detection. In particular, we focus on how to
handle the heterogeneous and dynamic data that is often collected by service busi-
nesses. Toward this goal, we propose two new technologies. First, we introduce a
change-point detection method calledsingular spectrum transformation(SST). Al-
though traditional approaches to change-point detection consist of two separated
steps, typically density estimation and scoring, SST unifies them to give a one-
step algorithm with the aid of the mathematical theory called the Krylov subspace
method. Thanks to the simplified structure of the algorithm, SST is quite robust to
heterogeneities in the data.

Second, we propose a novel technique for proximity-based outlier detection. In
this approach, we use a regularization technique to automatically discover modular
structures of the system. In other words, for each variable, the algorithm automat-
ically finds a set of variables that are in proximity to the variable. The size of the
proximity sets is automatically determined in accordance with the strength of reg-
ularization. This feature is quite useful in heterogeneous systems, since how many
neighbors each variable has depends on the nature of each variable. Based on the
proximity analysis, we compute the degree of outlier-ness in a probabilistic fashion.

Here is the structure of the chapter. In Section 2, we first review previous ap-
proaches to anomaly detection, and then summarize the motivation behind our ap-
proach. In Section 3, we describe the practical change-point detection method called
SST based on our previous work [13, 17]. In Section 4, we propose a novel outlier
detection method based on sparse structure learning. In Section 5, we briefly present
some experimental results that demonstrate the utility of our methods. Finally, in
Section 6, we summarize our results.

2 Previous work and our motivation

As mentioned in the introduction, sensor data has different features from traditional
data such as that used in statistics and data mining. Except for cases in which we
have detailed knowledge of the internal structures of the systems, there are only
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a few options available. In practice, detecting signs of changes is perhaps the most
important task. The first half of this section reviews existing anomaly detection tech-
niques and their limitations. For a more complete survey, see [5].

There are many scenarios for anomaly detection, depending on the perspectives
and the definitions of anomalies. In the data mining community, these scenarios
appear in the literature:

• Outlier detection
• Change-point detection
• Discord discovery

We will give a brief description of each task in the following subsections. In
what follows, we assume that we are given a sequence in anM-dimensional vec-
tor D ≡ {xxx(1),xxx(2), ...,xxx(N)} up to a discrete time pointN. By definition, xxx(n) =
(x1

(n),x2
(n), · · · ,xM

(n))>, and at each time point, which is assumed to be equi-
interval, we observeM values from individual sensors. The superscript> represents
the transpose operation.

2.1 Outlier detection

Outlier detection looks at how much novelty a single sample reveals. Examples
include temperature monitoring of a chemical plant, where an alert must be raised
when an exceptionally high temperature is observed. In general, outlier detection
consists of two steps:density estimationandscoring.

In the context of sensor data, density estimation is the same as creating a pre-
dictive model, and the goal of this step is to find a probability densityp(xxx|D) that
predicts the value of a newly observed sample, given the previous dataD . There
are roughly two types of approaches for this step. One is based on density estima-
tion techniques for i.i.d. (identically and independently distributed) samples, and the
other is based on time-series prediction techniques. First we look at the i.i.d. models
and time-series prediction methods are covered in the next subsection.

In statistics, a standard approach is to assume a Gaussian distribution:

N (xxx|µµµ ,Λ−1) =
|Λ| 12

(2π)M
2

exp

{
−1

2
(xxx−µµµ)>Λ(xxx−µµµ)

}
. (1)

For the model parameters, the meanµµµ and the precision matrixΛ, are typically
determined using maximum likelihood. By using estimated parameters,µ̂µµ andΛ̂, in
the model, we havep(xxx|D) = N (xxx|µ̂µµ, Λ̂−1). Although the Gaussian is the simplest
model for multivariate data, accurately estimatingΛ, which is defined as the inverse
of the covariance matrixS, is challenging in practice, as explained below.

Based on this model, Hotelling’sT2-test is widely used as the standard technique
of outlier detection [1]. The idea is to use the (squared) Mahalanobis distance
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T2(xxx|µµµ ,Λ) = (xxx−µµµ)>Λ(xxx−µµµ)

as the measure of outlier-ness. Note thatT2 itself is a random variable givenxxx, since
estimated values ofµµµ andΛ will not be perfect for finite training samples. In this
definition, the precision matrix represents the effect of heterogeneities of different
dimensions. Specifically, if one variable has a large variance (i.e. small precision),
then the distribution should be stretched along the axis, giving an ellipsoidal distri-
bution.

Although the Hotelling test is theoretically mature, in practice it is known to
produce many false alerts. This is because the set of assumptions behind the theory
are not fully satisfied. Problems that have been addressed to date in the literature
include:

1. Non-stationarity. The distribution may change over time.
2. Multi-modality. The distribution consists of several clusters of densities.
3. Numerical instability. If the dimensionality is high (M % 30) or collinear, then

the rank-deficiency makes it hard to invert the covariance matrix.

For the first and second problems, Yamanishi et al. [32] proposed using a se-
quential parameter estimation algorithm for Gaussian mixtures. Although in theory
this approach seems useful to handle the problems of non-stationarity and multi-
modality, their algorithm is known to be numerically unstable in practice. This be-
cause estimation of a covariance matrix is much harder than expected especially for
high dimensional systems. Breunig proposed a simpler and numerically stable ap-
proach with a metric for outlier-ness called LOF (local outlier factor) [4]. Although
LOF was first introduced in an intuitive fashion, this metric amounts to an approxi-
mation for the density estimation step, where ak-nearest neighbor (k-NN) heuristic
is used in place of full density estimation. Thanks to the locality ofk-NN, LOF can
in principle handle multi-modality. However, again, the intuitive notion of LOF does
not necessarily work with many dimensions, where, due to the curse of dimension-
ality, all of the samples are necessarily very close to each other. Also, choosing an
optimalk requires a heuristic approach. In addition, thek-NN approach is memory
intensive since all of the previous samples must be available.

For the third problem, numerical instability, which is essentially due to the
gap between the nominal and intrinsic dimensionalities, there are at least two ap-
proaches. The first approach isdimensionality reduction, which focuses on a sub-
space where the redundant dimensions are ignored. One of the earliest work in this
direction in the context of anomaly detection is [14], where the use of PCA (prin-
cipal component analysis) was proposed to detect anomalies in computer networks.
The second approach involves the use ofregularization. In Section 4, we explain
how useful it is in outlier detection.
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2.2 Change-point detection

Change-point detection is the problem of detecting structural changes in the data
generation mechanism behind observed data. For example, one might want to raise
an alert when the system starts producing unusual vibrations even if the variables
are within standard ranges.

Unlike outliers, change-points can take various forms, such as cusps, steps,
changes in frequency, etc. A general-purpose approach is to learn a generative model
for the data based on previous recordings, and compute the degree of goodness of
fit for the model with the present data. If the goodness of the model is sufficient for
the present data, we determine that a change is occurring in the system [3].

In this procedure, there are two steps in change-point detection:density estima-
tion andscoring. In the first step, we try to find a generative model based on recently

observed data. Letw be the size of window along the time axis, and letD
(t)
w be a

notation for{xxx(t−w+1), xxx(t−w+2), ..., xxx(t)}. Our first step is to find the probability

function that best fits the recent dataD
(t)
w for the modelp(xxx|D). For the next scor-

ing step, the likelihood ratio is a basic metric for scoring the degree of change:

z(t)≡ ∑
xxx∈D(t)

w

ln
p(xxx|D (t)

w )

q(xxx)
, (2)

whereq(·) represents a baseline distribution. In practical scenarios,q(·) is often
thought of as the distribution under the normal situation. In this case, the likelihood
ratio is a metric of the faultiness of the system．

For a single variable that is Gaussian-distributed around a constant value, a
method called CUSUM (cumulated summation) is well-known as a baseline method
for change-point detection [3]. If the Gaussian assumption is allowed, the likeli-
hood ratio has a number of desirable properties with Chi-squared distribution and
Neyman-Pearson optimality [1]. However, as expected, in most cases in sensor data
analytics, its utility is quite limited due to the dynamic and non-stationary nature of
the systems.

To tackle the problems in traditional approaches, there are three prominent and
recent approaches to change-detection in the data mining community. The first ap-
proach, which is perhaps the most similar to the traditional statistical analysis, is
based on direct estimation of the density ratio [20]. In this approach, rather than
separately estimating the densities of the numerator and denominator, the likelihood
ratio is directly modeled and estimated using a kernel method. For details, see [28].

In the second approach, a time-series prediction model is estimated rather than
using i.i.d. models to handle the dynamic nature of the data. One of the earliest de-
scriptions includes [31], where a sequential update algorithm is proposed for fitting
an AR (auto-regressive) model. We can focus on the simplest case ofM = 1 for
simplicity. The AR model of orderm is defined as

p(x(t)|aaa,b) = x(t−1)a1+x(t−2)a2+ · · ·+x(t−m)am+b,
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whereaaa ∈ Rm andb ∈ R1 are parameters to be estimated from the data in a se-
quential fashion. As is well-known, the AR model assumes a specific periodicity
throughm, the order of the AR model. This means that the AR model is not capable
of handling non-stationary dynamics. One approach to this problem is to introduce
a latent state into the model. The earliest work in this direction includes the method
of SST [13, 17], and its theoretical analysis was given in [21], which shows a clear
relationship between SST and system identification of state-space models. In a later
section, we will revisit this point.

Finally, in the third but maturing approach, the task of change-point detection is
treated as a model selection problem [30, 29]. This is a new and interesting research
area, where the practical requirements interact with deep theoretical analysis.

2.3 Discord discovery

So far we have looked at approaches explicitly based on probabilistic methods. In
addition, algorithmic approaches are also popular in the data mining community.
One of the typical tasks in the present context isdiscord discovery. In this task,
the time series data is first transformed into a set of subsequences, and then each
subsequence is checked to see if it is far from the average behavior. This type of
approach is practically useful in some applications. For example, if an unusual pulse
pattern is found in the time-series data of an ECG (electro-cardiogram), it may be
an indication of a heart attack [22]．

Let us consider the simplest case ofM = 1 for simplicity. Letw be the size of
the sliding windows. Usingw, we transform the data into a set of subsequences
{sss(w),sss(w+1), ...,sss(N)}, where

sss(t) ≡ (x(t−w+1), x(t−w+2), ..., x(t))> (3)

is a subsequence represented as a vector in aw-dimensional space. Adiscord is
defined as an outlier in the set of subsequences. As metrics of the outlier-ness, the
mean and median of thek-NN distances are often used. In this approach, one needs
to compute thek-NNs for each sample, which is computationally expensive and
memory intensive. To address these limitations, several heuristics have been pro-
posed [33].

In the data mining community, the task of discord discovery (and closely related
task of motif discovery) is often handled with a technique called SAX [22]. SAX is
a data compression method that converts real-valued time series into discrete sym-
bols. After the conversion, a number of useful techniques in discrete mathematics
such as dynamic programming can be used. However, the optimality of the sym-
bolic representations has not been deeply addressed in the literature to date. This
is an interesting research topic, which calls for a combination with probabilistic
approaches [11].
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One subtle problem in the sliding window approach is that the overlap between
neighboring windows may cause pathological phenomena such as sinusoidal effects
in the subsequence time-series clustering [24, 12]. How to avoid such effects is
another interesting research topic [8].

2.4 Goal of this chapter

As mentioned, outlier detection and change-point detection are traditional problem
settings in statistics for anomaly detection. However, methods developed in statistics
are known to be of limited effectiveness in practice in many cases. A typical exam-
ple is asymptotic theories. In modern sensor data that can be dynamic and noisy, the
number of samples is almost infinite along the time axis. Therefore it is sometimes
the case that the confidence interval derived from an asymptotic distribution can be
too narrow to produce a reasonable false positive rate. These types of difficulties
are well-known in such tasks as FDC (fault detection and classification) in semicon-
ductor manufacturing processes. Therefore recent research focus has been on newly
developed approaches in the data mining and machine learning communities.

This chapter covers these new approaches to anomaly detection from two per-
spectives. First we look at SST for change-point detection. As mentioned in the in-
troduction, SST has the unique feature that the density estimation and scoring steps
are unified. As a result, we can avoid numerically unstable parameter estimation.
Although SST relies on SVD (singular value decomposition) that is usually com-
putationally expensive, we will show our algorithm based on the Krylov subspace
method allows overcoming this issue.

Next we propose a novel method for outlier detection, which is based on sparse
structure learning of the graphical Gaussian model (GGM). Our method has a num-
ber of advantages over existing methods. First, our algorithm is numerically stable
thanks to a regularization technique. Second, the sparse structure learning provides
insights into the system. Identifying a sparse structure between variables amounts
to looking at an essential relationship between those variables. More importantly,
thanks to the sparseness, we can automatically find modular or cluster structures
within the system. Finally, based on the modular structure, our algorithm is capa-
ble of doinganomaly localization[16, 15, 18]. This means that, forM-dimensional
time series, our output isM anomaly scores for a single sample, rather than a single
scalar. This is a very important feature in practice, since we can easily come up with
a response for a detected anomaly once we know which variables are responsible
for the fault.
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3 Change-point detection

Before getting into the details of the algorithm, let us first look at an motivating ex-
ample of change-point detection in heterogeneous systems [13]. The essence of our
idea is illustrated in Fig. 1, where two artificially generated data sets and their SSTs
are shown. While it is difficult to infer any relationship between the two original
variables, SST clearly reveals a hidden relationship involving the synchronization
of their change points. Note that the results in Fig. 1 (b) and (d) were obtained using
a common algorithm and a shared parameter set, so we see that, by performing SST,
the problem of data mining in heterogeneous systems can be reduced to those of ho-
mogeneous problems without using any detailed knowledge about the behavior of
data. The notion ofchange-point correlation[13] is indeed a key idea for knowledge
discovery from dynamic systems that are strongly-correlated and heterogeneous.

change-point score

change-point score
apparently
different

Similar

time

time

(d)

(c)

(b)

(a)

0 100 200 300 400 500
0

0.02
0.04
0.06

0 100 200 300 400 500
0

0.02
0.04
0.06

Fig. 1 Example of SST in a heterogeneous system. The original time-series in (a) and (c) are trans-
formed into change-point scores in (b) and (d), revealing a hidden similarity. Clear synchronization
of the two change points suggests a causal relationship between the two variables.

3.1 Overview of the SST algorithm

For clarity in the presentation, let us consider a one-dimensional time-series{x(t) ∈
R | t = 1,2, ...}. We are given a subsequence of lengthw as Eq. (3) (We assume that
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t time

Fig. 2 Overview of SST.

the data points are collected at constant intervals). At each timet, letH1 andH2 be
matrices containingn subsequences defined as

H1(t)≡[sss(t−n), ...,sss(t−2),sss(t−1)]

H2(t)≡[sss(t−n+ γ), ...,sss(t−1+ γ)],

whereγ is a positive integer. Fig. 2 shows an example where three subsequences are
taken both in the vicinity of the present time and in the past.

The column space ofH1(t), the space spanned by the column vectors, should con-
tain the information about the patterns appearing in the past domain of the time se-
ries. The SST uses the principal components as typical representative patterns of the
column space: Find ther (<w,n) top left singular vectors ofH1(t), uuu(1),uuu(2), ...,uuu(r).
We assume these are orthonormal. Hereafter, we omit the argumentt unless confu-
sion is likely. Let the subspace spanned by these vectors be

Hr ≡ span{uuu(1),uuu(2), ...,uuu(r)}. (4)

Similarly, we can get the representative patterns around the present timet by
performing the SVD ofH2. We use the top principal componentµµµ of H2 as the
representative pattern.

We define the change-point (CP) scorez at timet as

z≡ 1−
r

∑
i=1

K(i,µµµ)2, (5)

which can be interpreted as the distance between the subspaces. Since it is empiri-
cally true that the score is not very sensitive to the choices ofn andγ [13], we set
n=w andγ =w/2. Forw, a value less than 100 typically works well. An appropriate
preprocess (e.g. down-sampling) can be used to adjustw to this range. Empirically,
a value of three or four works well forr even whenw is on the order of 100.
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3.2 Introducing Krylov subspace

By definition, the singular vectorsuuu(i) are in the column space ofH1. Instead of
using the full column space, we attempt to use ak-dimensional subspaceVk, and
thus reduce the original eigen problem to ak× k matrix problem (assumingr <
k < w). Notice that what we want is not singular vectors themselves but the inner
product w.r.t. a given vectorµµµ .

Imagine that we havek orthonormal bases representing such a subspace:{qqq1, ...,qqqk},
and we approximate each of the singular vectoruuu(i) as

uuu(i) '
k

∑
α=1

b(i)α qqqα , (6)

whereb(i)α is a coefficient that is assumed to be unknown at this point. Since our goal
is to compute the overlap withµµµ and there is arbitrariness in the choice of the bases
in the subspace, we assume

qqq1 = µµµ ,

which is always possible. Because of the orthogonality of theqqqαs and the fact that
qqq1 = µµµ , computingµµµ>uuu(i) can be reduced to taking the first element of thebbb(i)s.
Explicitly, the kernel function is approximated by

K(i,µµµ)'
k

∑
α=1

b(i)α µµµ>qqqα = b(i)1 , (7)

which means thatthe inner product can be computed directly from the k-dimensional
vectors bbb(i)s without explicitly using the uuu(i)s.

Now our remaining problem is how to findVk and the coefficient vectorsbbb(i). To
find Vk, let us consider this problem:
Given an s-dimensional subspaceVs⊂ Rw, construct a subspaceVs+1 by adding a
vector toVs so that the increase of the overlap betweenVs+1 and{uuu(1), ...,uuu(s)} is
maximized.

Let us start withV1 spanned byµµµ . Recall that finding the left singular vector for
H1 is equivalent to the eigen problem ofC ≡ H1H1

>, and the eigen equation for
C is equivalent to the maximization problem of the Rayleigh quotient [9], which is
defined by

R(uuu) =
uuu>Cuuu
uuu>uuu

.

To satisfy the requirement, when we constructV2 = span{µµµ ,∆∆∆} by adding∆∆∆ ∈Rw,
the added vector should contain the steepest ascent direction ofR given by

d
duuu

R(uuu)

∣∣∣∣
uuu=µµµ

=
−2

µµµ>µµµ
[R(µµµ)µµµ−Cµµµ ] .

Thus, if we chooseCµµµ as∆∆∆ , span{µµµ ,Cµµµ} contains this steepest direction.



Change Detection From Heterogeneous Data Sources 11

Continuing this procedure, we see that ak-dimensional space

Vk(µµµ ,C)≡ span{µµµ,Cµµµ, ...,Ck−1µµµ}

is the bestk-dimensional subspace in terms of maximization ofR, givenµµµ . In other
words, there are many choices of ak-dimensional subspace over the entire column
space ofH1, but among all of the choices, the subspace that has the largest weight of
uuu(1), ...,uuu(r) isVk(µµµ ,C), under the constraint thatµµµ is the starting base. In mathemat-
ics, Vk(µµµ ,C) is called theKrylov subspaceinduced byµµµ andC [9]. Alternatively,
one may say thatµµµ is theseedof the Krylov subspace.

3.3 Fast computation ofz

Let us consider our next question: how to find the coefficient vectorsbbb(i). Before
directly consideringbbb(i), let us consider how to find the orthonormal set{qqq1, ...,qqqk}.
This is an easy task, since, givenVk(µµµ,C) ≡ span{µµµ,Cµµµ, ...,Ck−1µµµ}, we can use
Gram-Schmidt orthogonalization starting fromµµµ to produce the orthonormal set.
Note that the Gram-Schmidt orthogonalization is essentially equivalent to the QR
factorization of

Vk(µµµ ,C)≡
[
µµµ,Cµµµ , ...,Ck−1µµµ

]
,

which is called the Krylov matrix. Fortunately, in the QR factorization of the Krylov
matrix, a special and helpful property holds (for proof, see [9]):

Theorem 1 The orthogonal matrixQk ≡ [qqq1, ...,qqqk] ∈ Rw×k given by the QR fac-
torization ofVk(µµµ ,C) tridiagonalizesC.

This theorem says thatQ>k CQk is a tridiagonal matrix. What is this matrix? To
see it, note that Eq. (6) can be written as

uuu(i) '
k

∑
α=1

b(i)α qqqα = Qkbbb
(i).

Then the eigen equation forC, which is equivalent to SVD ofH1, is rewritten as

Q>k CQkbbb= λbbb. (8)

This means that we can directly find the coefficient vectors{bbb(1), ...,bbb(r)} by diago-
nalizing a tridiagonal matrixTk ≡ Q>k CQk.

Let α1, ...,αk andβ1, ...,βk−1 be the diagonal and subdiagonal elements ofTk. If
we consider thes-th column of the equationCkQk = QkTk, it follows that

Cqqqs = αsqqqs+βs−1qqqs−1+βsqqqs+1,
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whereqqqs is thes-th column vector ofQk. Using the orthogonal relationqqq>i qqq j = δi, j ,
we immediately haveαs = qqqs

>Cqqqs. In this way, it is easy to construct an algorithm
to find αs andβs sequentially from this recurrent equation:

Subroutine 1 Lanczos( C,µµµ ,k) InputC ∈Rw×w, µµµ ∈Rw, and a positive integer
k (< w). Initialize as rrr0 = µµµ , β0 = 1, qqq0 = 0, and s= 0. Repeat

qqqs+1 = rrrs/βs

s← s+1
αs = qqqs

>Cqqqs
rrrs = Cqqqs−αsqqqs−βs−1qqqs−1
βs = ||rrrs||

until s= k. Return{α1, ..,αk} and{β1, ..,βk−1}.
By running this procedure up tok<w, we obtainTk (=Q>k CQk) directly. Notice

that we donot need to explicitly computeqqq1, ...,qqqk. This tridiagonalization proce-
dure is called the Lanczos algorithm.

Finally, the CP score is computed using Eqs. (5) and (7) as

z' 1−
r

∑
i=1

x(i)
2
. (9)

Notice that we do not at all need to explicitly compute either theuuu(i)s or the inner
product. We call this implicit kernel calculation based on Krylov subspace learning
the implicit Krylov approximation(IKA).

Our fast SST algorithm is summarized as:

Algorithm 1 (IKA-SST) At each t, do

1. Computeµµµ as the SVD ofH2.
2. α1, ..,αr ,β1, ..,βk−1← Lanczos( C,µµµ,k) .
3. Compute the r top eigenvectors of the tridiagonal matrixTk.
4. Compute the CP score using Eq. (9).

For the dimension of the Krylov subspaceVk(µµµ ,C), one reasonable choice is

k=

{
2r r ∈ even
2r−1 r ∈ odd

. (10)

The rationale of this rule is that the Krylov subspace is also the best subspace for the
smallest eigenstates as well as for the largest eigenstates [9], sok should be about
twice r. Note that the IKA is independent of the choice of the SST-native parameters
n andγ.

3.4 Relationship to subspace identification method

The SVD approach for the SST is similar to the subspace identification method
in control theory [25]. This is indeed the case, and the equivalence between them
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was theoretically explored by Kawahara [20]. This work showed that SST can be
thought of as an approximated version of the subspace identification algorithm to
determine the system parameters of a state-space model. This suggests that SST has
a unique feature that unifies the previous sequential AR model approach [31] into a
single, computationally efficient framework. Due to space limitations, however, we
will discuss this in a separate paper.

4 Proximity-based outlier detection

This section proposes a new outlier detection method based on sparse structure
learning. We first consider how to learn a sparse structure from the data. We as-
sume thatD has been standardized to have zero mean and unit variance. Then the
sample covariance matrixS is given by

Si, j ≡
1
N

N

∑
n=1

x(n)i x(n)j , (11)

which is the same as the correlation coefficient matrix for this data.
The use of sparse structure learning in anomaly detection was first proposed

in [15]. While the work [15] addresses an anomaly scoring problem in a setting
similar to two-sample test in statistics, we extend their framework to include outlier
detection by considering a conditional probability function.

4.1 Penalized maximum likelihood

In the GGM, structure learning is reduced to finding a precision matrixΛ for the
multivariate Gaussian (Eq. (1)). If we do not consider any regularization for now,
we can getΛ by maximizing the log-likelihood

ln
N

∏
t=1

N (xxx(t)|000,Λ−1) = const.+
N
2
{lndet(Λ)− tr(SΛ)} ,

where tr represents the matrix trace (sum over the diagonal elements), and we used

the well-known identityxxx(t)
>

xxx(t) = tr(xxx(t)xxx(t)
>
) and Eq. (11). If we use the well-

known formulas for matrix derivatives

∂
∂Λ

lndet(Λ) = Λ−1,
∂

∂Λ
tr(SΛ) = S, (12)

then we readily obtain the formal solutionΛ= S−1. However, as mentioned before,
this produces less practical information on the structure of the system, since the



14 Tsuyoshi Id́e

sample covariance matrix is often rank deficient and the resulting precision matrix
will not be sparse in general.

Therefore, instead of the standard maximum likelihood estimation, we solve an
L1-regularized version of the maximum likelihood:

Λ∗ = argmax
Λ

f (Λ;S,ρ), (13)

f (Λ;S,ρ)≡ lndetΛ− tr(SΛ)−ρ||Λ||1, (14)

where||Λ||1 is defined as∑M
i, j=1 |Λi, j |. Thanks to the penalty term, many of the en-

tries inΛ will be exactly zero. The penalty weightρ is an input parameter, which
works as a threshold below which correlation coefficients are thought of as zero, as
discussed later.

4.2 Graphical lasso algorithm

Since Eq. (13) is a convex optimization problem [2], one can use subgradient meth-
ods to solve it. Recently, Friedman, Hastie, and Tibshirani [7] proposed an efficient
subgradient algorithm named graphical lasso. We recapitulate it in this subsection.

The graphical lasso algorithm first reduces the problem Eq. (13) to a series of
related L1-regularized regression problems by utilizing a block coordinate descent
technique [2, 6]. Using the formula Eq. (12), we see that the gradient of Eq. (13) is
given by

∂ f
∂Λ

= Λ−1−S−ρ sign(Λ), (15)

where the sign function is defined so that the(i, j) element of the matrix sign(Λ) is
given by sign(Λi, j) for Λi, j 6= 0, and a value∈ [−1,1] for Λi, j = 0.

To use a block coordinate descent algorithm for solving∂ f/∂Λ= 0, we focus on
a particular single variablexi , and partitionΛ and its inverse as

Λ=

(
L lll
lll> λ

)
, Σ≡ Λ−1 =

(
W www
www> σ

)
, (16)

where we assume that rows and columns are always arranged so that thexi-
related entries are located in the last row and column. In these expressions,W,L ∈
R(M−1)×(M−1), λ ,σ ∈R, andwww, lll ∈RM−1. Corresponding to thisxi-based partition,
we also partition the sample covariance matrixS in the same way, and write it as

S=

(
S\i sss
sss> si,i

)
. (17)

Now let us find the solution of the equation∂ f/∂Λ = 0. SinceΛ must be posi-
tive definite, the diagonal elements must be strictly positive. Thus, for the diagonal
elements, the condition of the vanishing gradient leads to
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σ = si,i +ρ. (18)

For the off-diagonal entries represented bywww and lll , the optimal solution under
which all the other variables are hold constant is obtained by solving

min
βββ

{
1
2
||W

1
2 βββ −bbb||2+ρ ||βββ ||1

}
= 0, (19)

whereβββ ≡W−1www, bbb≡W−1/2sss, and||βββ ||1 ≡ ∑l |βl |. For the proof, see [15]. This
is an L1-regularized quadratic programming problem, and again can be solved effi-
ciently with a coordinate-wise subgradient method [7].

Now to obtain the final solutionΛ∗, we repeatedly solve Eq. (19) forx1,x2, ...,xM,x1, ...
until convergence. Note that the matrixW is full rank due to Eq. (18). This suggests
the algorithm is numerically stable. In fact, as shown later, it gives a stable and
reasonable solution even when some of the variables are highly correlated.

4.3 Connection to Lasso

The coordinate-wise optimization problem (Eq. (19)) derived by the graphical lasso
algorithm has a clear similarity to the lasso-based structure learning algorithm. The
algorithm of Ref. [26] solves separate lasso regression problems for eachxi :

min
βββ

{
1
2
||Ziβββ −yyyi ||2+µ ||βββ ||1

}
, (20)

where we definedyyyi ≡ (x(1)i , ...,x(N)
i )> and a data matrixZi ≡ [zzz(1)i , ...,zzz(N)

i ]> with

zzz(n)i ≡ (x(n)1 , ..,x(n)i−1,x
(n)
i+1, ...,x

(n)
M )> ∈ RM−1.

Using the definition ofS (Eq. (11)), it is easy to see that this problem is equivalent
to Eq. (19), when

W = S\i and ρ ∝ µ (21)

are satisfied. SinceW is a principal submatrix ofΛ−1, we see that there is a corre-
spondence betweenW andS\i whenρ is small. It will never be satisfied forρ > 0,
however. In this sense, the graphical lasso algorithm solves an optimization problem
similar to but different from the one in [26]. This fact motivates us to empirically
study the difference between the two algorithms as shown in the next section.
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4.4 Choosingρ

So far we have treated the penalty parameterρ as a given constant. In many
regularization-based machine learning methods, how to choose the penalty parame-
ter is a subtle issue. In the present context, however,ρ should be treated as an input
parameter since our goal is not to find the “true” structure but to reasonably select
the neighborhood.

To gain insight on how to relateρ with the neighborhood size, we note this result:

Proposition 1 If we consider a2×2 problem defined only by two variables xi and
x j (i 6= j), the off-diagonal element of the optimalΛ as the solution to Eq.(13) is
given by

Λi, j =

{
− sign(r)(|r|−ρ)

(1+ρ)2−(|r|−ρ)2 for |r|> ρ
0 for |r| ≤ ρ,

where r is the correlation coefficient between the two variables.

For the proof, see [15].
Although this is not the solution to the full system, it gives us a useful guide

about how to chooseρ. For example, if a user wishes to think of any dependencies
corresponding to absolute correlation coefficients less than 0.5 as noise, then the
input ρ should be less than the intended threshold, and possibly a value around
ρ = 0.3 would work. If ρ is close to 1, the resulting neighborhood graphs will be
very small, while a value close to 0 leads to an almost complete graph where all of
the variables are thought of as being connected.

We should also note that sparse structure learning allows us to conduct neigh-
borhood selection in an adaptive manner. If a variable is isolated with almost no de-
pendencies on other variables, then the number of selected neighbors will be zero.
Also, we naturally expect that variables in a tightly-connected cluster would select
the cluster members as their neighbors. We will see, however, that the situations
when there are highly correlated variables are much trickier than they seem.

4.5 Outlier score

Now that a complete probabilistic model has been defined, let us proceed to the next
step. Here we define the anomaly score for thei-th variable as

zi(xxx|Λ)≡− ln p(xi |x1, ..,xi−1,xi+1, ...,xM,Λ). (22)

Note that we haveM scores, corresponding to individual variables, for a single ob-
servationxxx. The definition tells us the discrepancy between the value of thei-th
variable and its expected value given surrounding variables. Thanks to the sparse-
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ness, the surrounding variables should be in the same module or cluster of thei-th
variable.

Since the right hand side of Eq. (22) is Gaussian, we can analytically write down
the expression. For example, for the first variable, the conditional distribution is

p(x1|x2, · · · ,xM) = N

(
x1

∣∣∣∣∣− 1
Λ1,1

M

∑
i=2

Λ1,i xi ,
1

Λ1,1

)
,

and the score is given as

s1≡
1
2

ln
2π

Λ1,1
+

1
2Λ1,1

(
M

∑
i=1

Λ1,i xi

)2

. (23)

Putting together theM scores into a single vectorial expression, we get the final
result of the outlier scores as

sss≡ sss0+
1
2

diag(ΛxxxD−1xxx>Λ),

whereD≡ diag2(Λ) and

(sss0)i ≡
1
2

ln
2π
Λi,i

.

5 Experiment

This section presents experimental results for the two anomaly detection methods
introduced in the previous sections: IKA-SST for change-point detection, and the
proximity-based outlier detection.

5.1 Parameter dependence of SST

An example of SST was already shown in Fig. 1. The time series (a) was generated
using three linear functions with slopes of 1/300, 0, and−1/200. The other time-
series (c) was generated using a sine functionx(t) = sin(2πt/λ ), for λ =

√
80,√

120, and
√

70. In (c), we also added random fluctuations to the amplitude and the
periods of up to±7.5% and±0.5%, respectively, to simulate fluctuations in realistic
observations. For both data sets, the change points are located att = 150 and 300.
The results of SST in Figs. 1 (b) and (d) were calculated withw = 20 andr = 3.
No IKA approximation was used. In spite of the apparent differences in the original
data, we see that SST strikingly reveals the similarities without any ad hoc tuning
for individual time series. Existing methods such as differentiation [10] and wavelet-
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based approaches [19] fail to detect the change points if a common parameter set is
used for both sets.

The dependence onw is of particular interest in SST. We calculated SST as a
function of w for r = 3. The results are shown in Fig. 3. It is surprising that the
essential features remain unchanged over a very wide range ofw, 6. w. 40, while
the widths of the major features become broader asw increases. This robustness is
quite advantageous for heterogeneous systems.
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Fig. 3 The dependence of SST onw for (a) the linear function and for (b) the oscillatory function
shown in Fig. 1 (a) and (c), respectively.
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Table 1 Tested methods.

# symbol µµµ feedback{uuu(i)} kernel
1 OI power no OI explicit
2 EM EMPCA no EMPCA explicit
3 OI FB power yes OI explicit
4 EM FB EMPCA yes EMPCA explicit
5 IKA power yes - implicit
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(h) Temp

Fig. 4 The phone1 data.

5.2 Accuracy of IKA-SST

We implemented five different types of SST algorithms in Java as shown in Ta-
ble 1. The first four explicitly compute the singular vectors using different routines:
power (the power method),OI (orthogonal iteration [9]), and theEMPCA(EM-
PCA algorithm [27]). These were compared to our IKA-based SST algorithm. All
of the calculations were done in a Java 1.4.2 virtual machine on an older workstation
(Pentium 4, 2.0 GHz, 1 GB of memory). In the iterative algorithms, the convergence
threshold was set to be 10−5 for the norm of the residual vectors.

The data used was thephone1data (Fig. 4) containing eight time series of various
types measured by embedded sensors in a mobile phone [23]. Each of the variables
consists of 1,708 data points, but information about the sampling rate is not given.
From the title attached to the data file, it seems that the data represents the actions
of picking up the phone and putting it down.

We measured the computational times of these five SST algorithms. As a pre-
process, the original signals were scaled to have unit variance and a mean of three.
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110
100100010000100000

10 25 50 75 100 250window size
total calc. tim
e [s] 1: OI, 2: EM, 3: OI_FB, 4: EM_FB, 5: IKA1 2 3 45

Fig. 5 Total computation time of SST.

We imposed a periodic boundary condition on the data in performing SST. This is
was keep the number of data points the same over different values ofw. We used
(r,k) = (3,5).

Figure 5 compares the computational times of the different algorithms on a loga-
rithmic scale, averaged over five trials. We see that the improvement with the IKA-
SST is drastic. It is about 50 times faster than the conventional SST methods for
eachw.

Notice that this was accomplished with no significant approximation error. To
show this, Fig. 6 compares the CP scores between EM and IKA forw = 50. As
shown, the overall fit between the EM and IKA results is very good, although there
are a few peaks which are not reproduced by IKA as indicated in Figs. 6 (b) and (g).
Again, it is surprising that the IKA almost perfectly reproduces the results of EM,
since IKA solves only 5× 5 problems while EM performs the complete SVD for
50×50 matrices.

5.3 Outlier detection: hot box detection

We used the proximity-based anomaly detection method with a real problem in the
rail road industry. The task is often called hot box detection, where the goal is to
detect anomalously behaving wheel axles based on temperature recordings. Under
normal operations, the temperature of an axle is expected to be highly correlated
with the temperature of the other axles. Thus the proximity-based outlier detection
is useful in this application.

In contrast with obvious faults that are easily detected by a temperature thresh-
old, detecting subtle signs of correlation anomalies is generally challenging. This
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Fig. 6 CP score of the phone1 data (w= 50, r = 3).

is mostly because the temperature measurements are quite sensitive to external
whether conditions. For example, the temperatures on rainy days are more than 10
degrees lower than those on sunny days. Also, the temperatures of the first and the
last cars exhibit considerably different behaviors from the other cars.

We tested our outlier detection method, and compared the performance with a
state-of-the-art method created by domain experts using extensive domain knowl-
edge. The results were quite encouraging. Our method was several times better in a
detection power, which is defined for a truly faulty axlei as

1
σi
[si(xxx)−〈si〉].

Here〈si〉 andσi are the mean and the standard deviation of thei-th outlier score
over all of the samples, whilesi(xxx) is the outlier score of the faulty sample.

6 Summary

We have discussed approaches to anomaly detection for sensor data. We first re-
viewed existing methods and their limitations. We then described two new ap-
proaches to anomaly detection that are capable of handling heterogeneous variables.
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First we gave a fast change-point detection method called IKA-SST. Thanks to
the robustness of SVD, this approach has a remarkable feature that no parameter
tuning is needed to handle heterogeneities of the variables. Second, we presented
a proximity-based outlier detection method, which has a very useful feature for
automatic discovery of the modular structure of a system. Finally, we showed some
experimental results for these methods.
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