Towards consumable analytics: Challenges and recent advances

T. Ide (Ide-san)
IBM T. J. Watson Research Center

The 2015 IEEE ICDM Workshop on Data Mining for Services
Contents

- Introduction: optimism over AI technologies
- Solution-oriented framework for sensor data analytics
- Tackling cognitive biases in project risk management
The hype curve

- Machine learning (data mining) is at the peak

- Is it really ready for real business?
Success of deep learning gives rise to much optimism over AI technologies

Speech recognition

Text analysis

Image recognition

[Abdel-Hamid et al., 2014]
Factors that make deep learning work

The task is well-defined and well-accepted.

Results are easily verified by humans

Huge amount of labeled training data is available

Very rare in practice

Trivial atomic representation is known

(next page)
Example. Comparison between text and sensor data. Ambiguity in anomic representation makes representation learning challenging

Sensor data
- No obvious atomic representation
- Pre-process is mostly problem-dependent; general-purpose tools do not help

Text data
- Obvious atomic representation (“president,” “announce,” etc.)
- Well-established preprocess (stemming, PoS tagging, etc.)
- Clearly-defined task pipeline (UIMA)

What if sensors have different time resolutions?
What if there are missing observations?
Should we use low-pass filter for noise removal?

“President Obama announced that he had rejected the request from a Canadian company to build the Keystone XL oil pipeline”
Two areas major gaps exist towards consumable analytics

- Sensor data analytics
 - Interpretability matters
 - Especially in critical applications such as anomaly detection of manufacturing plants
 - No clearly-defined atomic representation
 - Time resolution? Low-pass filtering? Fourier domain?

- Human behavior modeling
 - Interpretability matters
 - e.g. marketing, employee evaluation
 - No clearly-defined atomic representation
 - What quantity we should use as the feature?
Contents

- Introduction: optimism over AI technologies
- Solution-oriented framework for sensor data analytics
- Tackling cognitive biases in project risk management
Observation: Two gaps in IoT technology stack

GAP: General-purpose analytics tools lack business context. Huge effort is needed to develop practical solutions.

GAP: Traditional analytics tools are not very useful to analyze sensor data.
SROM (Smarter Resource and Operations Management): Solution-oriented analytics library

- Maintenance Planning
- Maintenance Scheduling
- Failure Risk Analysis of Assets
- Failure Pattern Analysis of Assets
- Anomaly Detection
- Fault Detection and Diagnosis
- Process Optimization
- Model Predictive Control

Data:
- Asset/Equipment Attributes
- Failure/Repair History
- Operations Data
- Process Data
- Product Attributes
- Environmental Data (e.g., weather)
- Sensors / Devices
- Meters
- Grid Energy Price (TOD)
- Resources
- Costs / Budget

Analytics Solution Library:
- State-of-the-art algorithms (Key Differentiator)
 - Mixed Integer Programming
 - Nonlinear Programming
 - Dynamic Programming
 - Random Forest
 - Support Vector Machine
 - Neural Network
 - Parametric Analysis
 - Semi-Parametric Analysis
 - Graphical Methods
 - Cohort Analysis
 - Support Vector Machine
 - Hidden Markov Model

Ontology-Guided Analytics Workflow and Reusable APIs

- Ontology of SROM Solution
 - Ontology Guided GUI

Data flow /analytics relationship:
- Hierarchy of analytics
 - Analytics view, algorithm view, relationship view

Analytics Services:
- Execution Services
- Data Store Services
- Visualization Services
- Data Transformation Services

Rest Services:
- Local FS, HDFS, Cassandra etc.
- D3 Graphic etc.
- Data upload, format conversion etc..

Select a scenario (project):
- Analytics workflow generation
- Run workflow step 1
- Run workflow step 2
- Run workflow step 3
- Run workflow step 4
SROM solution library at-a-glance

Web-based system allowing cloud-based offerings

World’s most comprehensive solution library

Easy-to-follow analysis steps that reproduces experts’ workflow

State-of-the-art algorithms beyond standard packages
SROM reduces time-to-business in analytics solution development by integrating real business use-cases

Conventional approach

- General-purpose analytics package
- Real business problem
- Human expert fill the gap
- Solution

SROM’s approach

- SROM solution library
- Algorithms
- Business
- Solution
Solution-oriented architecture is the next generation design principle of analytics libraries

- **Implementation**
 - Live on cloud
 - Well-defined workflow

- **Algorithm**
 - Equipped with state-of-the-art algorithms developed by IBM researchers
 - Covers entire areas in asset monitoring and management

Key technology ingredients of SROM

- Bare statistics / ML library
 - S, R, Weka, etc.

- ML library armed with composable GUI + enterprise system
 - SAS, SPSS, etc.

- Cloud-based Solution-oriented Function based-APIs
 - SROM

Fancy GUI does not solve the issue
Ecosystem to enhance the coverage

- Develop solution using SROM core
- Develop new algorithms if needed
- Provide the solution as a service on cloud

IBM

Client

- Provide business problems
- Provide data
- Use developed solution approach to provide feedback
Real example of recycling solutions

- Quick prototyping for mining machinery anomaly detection
- Power transformer maintenance scheduling
- Optimal demand response of building HVAC system
Real example of recycling solutions

- Quick prototyping for mining machinery anomaly detection
Quick prototyping for mining machinery anomaly detection

Customer’s pain: too many false alerts

Sensor data is highly noisy & dynamic; Traditional methods do not work.

Underground coal mining

Applied a similar usecase of SROM

High accuracy false positive filter in a few weeks
General features of sensor data

- Cutter current data of a cutting machine
 - Red: failure episode
 - Blue: 6min prior to failure

- Data is highly dynamic and noisy
 - Traditional statistical approaches do not work
Tackling too many false positives

- Formulated the problem as online multivariate change detection
 - Compute distance between previous and present situations
- Classifying false and true positives
 - True positive: Change = yes
 - if the test window is in the failure episode
 - False positive: Change = no
 - otherwise
- Multivariate treatment is required
Adopted advanced machine learning algorithm based on probabilistic graphical model

- Compute dependency graph in the training region
- Do the same for the test region
- Compare the graphs in an information-theoretical fashion
 - i-th variable’s change score

\[
a_i \equiv \int dx_{-i} \, p(x_{-i} | \mathcal{D}) \int dx_i \, p(x_i | x_{-i}, \mathcal{D}) \ln \frac{p(x_i | x_{-i}, \mathcal{D})}{p(x_i | x_{-i}, \mathcal{D})}
\]

[Ide, et al., SDM 09]
Result: Achieved 90+% accuracy in false/true positive classification

- Achieved 90+% prediction accuracy for both faulty and normal sample accuracies
 - Shown as a function of the detection threshold (→)

- No tuning parameters: The detection model was built fully automatically.
 - c.f. handcrafted rules
Real example of recycling solutions

- Power transformer maintenance scheduling
Power transformer maintenance scheduling

- Solution approach: marriage of physics, analytics, and optimization

Basic load time series data

Electrical simulation → Failure prediction → Maintenance scheduler

Electric network
Output example
- For the 1st transformer, you should perform
 - maintenance at 11th, 17th, 22nd, 25th months
 - replacement at 28th month

Things to consider
- Lifetime of transformers is extended by maintenance
- Trade-off between risk of failure and maintenance cost
- Complex business constraints

Reduced to solving nonlinear optimization problem
Contents

- Introduction: optimism over AI technologies
- Solution-oriented framework for sensor data analytics
- Tackling cognitive biases in project risk management

[Ide-Dhurandhar, ICDM 15]
Motivating real problem: Predict how much likely a project is going to fail

- Input data, x: questionnaire answers
 - Surveyor asks about the project status
 - Project manager answers to the questions

- Outcome value, y: failure or success (after contract signing)
Motivating real problem: Predict how much likely a project is going to fail

- Input data, x: questionnaire answers
 - Surveyor asks about the project status
 - Project manager answers to the questions
- Outcome value, y: failure or success (after contract signing)

IT system development project

x: questionnaire answers

<table>
<thead>
<tr>
<th>Q1</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2</td>
<td>1</td>
</tr>
<tr>
<td>Q3</td>
<td>2</td>
</tr>
</tbody>
</table>

...
(For ref.) What questionnaire looks like

- Major topics covered
 - Communication issues with the client
 - Well-definedness of the project scope
 - Issues related to subcontractors and internal teams
 - Project management issues
Another problem: employee evaluation

- Input data, x: questionnaire answers on employee’s performance
 - Questions are like “Has he/she made good enough contributions to teamwork?”
 - Managers put evaluation on individual questions
- Outcome value, y: termination or not

<table>
<thead>
<tr>
<th>Q1</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2</td>
<td>1</td>
</tr>
<tr>
<td>Q3</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

y: stay or leave?
Interpretability really matters

Managers have to be clear on the rationale of their decision:

- What is the difference between lay-off and no lay-off groups?

- How can you justify your weighting? Why are some questions important?

- Some question may be easily achievable. How can we quantify between yes and no?
IBM Research

Challenge (1): No evidently bad answers. Need to discover indications of failures from apparently good answers

- Iterative review process allows removing all evident risk factors
 - This is actually a prerequisite to get into the final review right before contract signing
- However, some of them might be “pretending” as good
- Wish to discover such indications

\[x : \text{questionnaire answers} \]

\[y : \text{project health indicator (+1/-1)} \]
Challenge (2): Interpretability really matters. We have to make the model fully interpretable

- Fully interpretable predictive model (in the questionnaire setting) must allow
 - quantitative comparison between subjects in terms of their importance,
 - quantitative comparison between question items in terms of their importance,
 - quantitative comparison between answer choices in terms of probability of choosing each option,
- while maintaining a comparable accuracy to other less interpretable methods.

Comparison to other instances

Comparison between different questions

Comparison between different question choices
Problem summary: Informative prediction on questionnaire

- Build a fully interpretable predictive model for project failure/success \((y)\) given a new set of questionnaire answers \((x)\)
- Compute the informativeness of the question items

<table>
<thead>
<tr>
<th>(x^{(1)})</th>
<th>(y^{(1)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1 No</td>
<td>+1</td>
</tr>
<tr>
<td>Q2 Yes</td>
<td></td>
</tr>
<tr>
<td>Q3 No</td>
<td></td>
</tr>
<tr>
<td>Q4 No</td>
<td></td>
</tr>
<tr>
<td>Q5 Yes</td>
<td></td>
</tr>
<tr>
<td>Q6 No</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Training data

Prediction model

\[x \in \{0, 1\}^M \]

\[y \in \{-1, +1\} \]

\(M\) binary questions
- 1: at-risk
- 0: no risk
Key idea: Assume x is stochastically generated by a latent variable that is more faithful to the truth.
Item Response Theory: Using a “shifted S-curve” as a natural model of representing cognitive bias

- Represents nonlinear relationship of $\theta \rightarrow x$

Prob. of answering as at-risk for the i-th question

$$P(\theta, a_i, b_i, c_i) \equiv \frac{1 - c_i}{c_i + \frac{1}{1 + e^{-a_i(\theta - b_i)}}}$$

- Overly optimistic for smaller risks
- Overly pessimistic for larger risks
- Sometimes use a guess

"discrimination" a_i

"difficulty" b_i

"guessing" c_i
We are extending Item Response Model (IRT) in psychometrics

- IRT is the standard method to analyze academic tests
 - SAT is a well-known example
- IRT is unsupervised. We are developing a supervised version of IRT by including the outcome variable, y

Use the same “shifted S-curve” to take account of cognitive bias

Extend the original IRT in the supervised learning setting
Structure of the model: (1) Learn probabilistic model for the S-curve. (2) Learn distance metric for k-NN prediction

Training phase

Historical record

\((\mathbf{x}^{(n)}, y^{(n)})\)

\(n = 1, \ldots, N\)

Generative model for \(x\) based on the shifted S-curve

\[p(x|\theta, a, b, c) = \prod_{i=1}^{M} P(\theta, a_i, b_i, c_i)^{\delta(x_i,1)} [1 - P(\theta, a_i, b_i, c_i)]^{\delta(x_i,0)} \]

Prior distribution for theta

\[f(\theta|y) = \begin{cases} \frac{\gamma}{\sqrt{2\pi}} \exp \left(-\frac{\gamma^2}{2} \theta^2 \right) & \text{for } y = -1, \\ \frac{\gamma}{\sqrt{2\pi}} \exp \left(-\frac{\gamma^2}{2} (\theta - \omega)^2 \right) & \text{for } y = +1, \end{cases} \]

Metric learning to give a distance metric, \(A\)

\(\hat{a}, \hat{b}, \hat{c}\)
Use numerical integration technique (Gauss-Hermite quadrature) to maximize marginalized likelihood

\[
L(a, b, c | \mathcal{D}) = \sum_{n=1}^{N} \ln \left[\pi(y^{(n)}) p(x^{(n)}|a, b, c, y^{(n)}) \right]
\]

\[
p(x^{(n)}|a, b, c, y^{(n)}) \equiv \int_{-\infty}^{\infty} d\theta^{(n)} p(x^{(n)}|\theta^{(n)}, a, b, c) f(\theta^{(n)}|y^{(n)})
\]

\[
(a^*, b^*, c^*) = \arg \max_{a, b, c} L(a, b, c | \mathcal{D})
\]

subject to \(0 \leq c_i \leq 1 \) (\(i = 1, \ldots, M \))

\[
\int_{-\infty}^{\infty} d\theta f(\theta|y) p(x|\theta, a, b, c) \\
\approx \sum_{i=1}^{N_h} w_i p \left(x \mid \sqrt{\frac{2}{\gamma}} \theta_i + \omega \delta(y, 1), a, b, c \right), \tag{8}
\]

where practically good enough approximation is obtained by taking \(N_h \approx 20 \). The coefficients \(\{w_i\} \) are defined by

\[
w_i \equiv \frac{2^{N_h-1} N_h!}{N_h^2 \Gamma_{N_h-1}(\theta_i)^2},
\]

and the position of break points \(\{\theta_i\} \) is determined by the roots of the Hermite polynomial \(H_{N_h}(\theta) \), which are tabulated [26]. The approximation (8) means that the integration is readily performed by performing summation over about 20 terms for arbitrary values of \(a, b, c \). Thus the use of gradient method for solving the optimization problem (7) should not be a problem.
Making prediction using estimated supervised IRT model

New question answer \mathbf{x} prediction phase estimated binary label \hat{y}

Use k-NN classification based on the distance metric

$$d(\mathbf{x}, \mathbf{x}^{(n)}) = (\mathbf{x} - \mathbf{x}^{(n)})^\top A(\mathbf{x} - \mathbf{x}^{(n)})$$

The metric A can be found from the supervised IRT model
Toy example: binary classification on bi-variate binary inputs

- Compared with regularized logistic regression
- Took the diagonal metric as informativeness of each variable
- Proposed method gives much richer and more informative results

<table>
<thead>
<tr>
<th>x</th>
<th>(y = +1)</th>
<th>(y = -1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0)</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>(0,1)</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>(1,0)</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>(1,1)</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>
Experiment: Using service provider’s real data in IT system development

- Questionnaire called CRA (contract risk assessment)
- $M = 22$ rather qualitative questions
- $N = $ several hundred
- Each question is yes (at-risk) or no (no-risk)
- Final project evaluation is failure ($y=+1$) or non-failure ($y=-1$)
Result (1): Estimated S-curves and model parameters providing practical information on the usefulness of each question

Fig. 8. Examples of ICCs for the CRA data.
Result (2): Achieved comparable or even better accuracy, while maintaining high interpretability

- Compares F-value
 - harmonic mean between troubled project accuracy and non-troubled project accuracy
- Clearly outperform the baseline
 - Baseline is based only on \mathbf{x}
 - Logistic regression
 - Simple k-NN
 - Our approach uses theta instead of \mathbf{x}

![Comparison of F-values (BN and NN are not visible for PBA).](chart.png)

Fig. 9. Comparison of F-values (BN and NN are not visible for PBA).
Conclusion

- Proposed the notion of “full-interpretability” in the context of questionnaire data analysis
- Extended the item response theory in psychometrics to a supervised setting
- Developed a method for metric learning on the supervised IRT

Reference:
- T. Ide, A. Dhurandhar,
 - "Informative Prediction based on Ordinal Questionnaire Data“
- T. Ide, et al.,
 - "Latent Trait Analysis for Risk Management of Complex Information Technology Projects”
Thank you!