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Abstract—This paper addresses the problem of object counting,
which is to estimate the number of objects of interest from
an input observation. We formalize the problem as a posterior
inference of the count by introducing a particular type of Gaus-
sian mixture for the input observation, whose mixture indexes
correspond to the count. Unlike existing approaches in image
analysis, which typically perform explicit object detection using
labeled training images, our approach does not need any labeled
training data. Our idea is to use the stick-breaking process as a
constraint to make it possible to interpret the mixture indexes
as the count. We apply our method to the problem of counting
vehicles in real-world web camera images and demonstrate that
the accuracy and robustness of the proposed approach without
any labeled training data are comparable to those of supervised
alternatives.

I. INTRODUCTION

Counting objects is one of the most primitive and funda-
mental functions of pattern recognition and has been studied
extensively [1]–[11]. If the input observations are images,
a straightforward approach would be to perform explicit
object detection [5], [7], [12]–[14]. Also, regression-based
approaches have been proposed, which translate the image
features into the number of objects with a regression model [8],
[15], [16]. These approaches require labeled training data,
which is often costly to prepare when the labeled training data
are not publicly available. We provide a lightweight approach
which requires minimum prior knowledge of the objects being
counted and no labeled training data.

This paper proposes a probabilistic formulation on the
counting problem by interpreting the problem as an unsuper-
vised density estimation problem. Our concept is simple. We
assume that the input observation is represented by a scalar
feature, x. For the feature x, we learn a Gaussian mixture
whose mixture index is equated with the count of the objects,
d, in the observation (see Figure 1). To find the count for a new
observation, we pick the cluster of the highest likelihood given
x. One technical challenge is how to associate the clusters
with the count without any label information as to the count d.
This is indeed not a trivial task because the cluster indexes are
interchangeable in nature in the original Gaussian mixture. The
key contribution of this paper is to show that the stick-breaking
process (SBP) [17] elegantly solves this challenge. Thanks
to a variational Bayes (VB) formulation [18], the learning
procedure is reduced to a simple iterative formula.
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Fig. 1. Illustration of the key idea of mixture-based object counting. The
density for a feature x is represented as a Gaussian mixture which has the
sequence of the mean of the feature restricted by the linear function of the
count d.

To demonstrate the utility of our approach, we apply the
proposed model to the task of counting vehicles in web
camera images. This task is required for the city-wide traffic
monitoring service, where we need to handle a lot of web-
cameras [16]. The geometric configurations of these cameras
differ from each other and thus customized labeled training
data for every camera is required. This scenario motivates us
to use the unsupervised formulation, rather than conventional
supervised approaches, because of costs of preparation of the
labeled training data. We will demonstrate that the accuracy
and robustness of our approach without any labeled training
data are comparable to those of supervised alternatives.

II. UNSUPERVISED OBJECT COUNTING FRAMEWORK
WITHOUT OBJECT RECOGNITION

A. Problem Setting

Suppose we are given N training samples X ≡
{x1, x2, . . . , xN}, which is the set of a scalar feature xn
extracted from raw data such as image. The function that
associates the raw data with the feature xn is assumed to be
known (see Section IV-A for a description). Our task is to
estimate the number of objects of interest in a new observation
x, based on the training data. Note that the training data has
no label for the count itself.

To represent the number of objects in the new observa-
tion, let us introduce a variable h in the 1-of-K notation.
For example, if h = [1, 0, 0, 0, ...]> and [0, 0, 1, 0, ...]>, the
number of objects are zero and two, respectively. In spite of
the general term of “1-of-K”, this is an infinite dimensional
vector such that h ∈ {0, 1}∞,

∑∞
d=0 hd = 1. Let us

denote the number of objects for the n-th training sample by
hn ∈ {0, 1}∞, which is not directly observed. Then the set of



the number of objects in the training data set X is represented
as H ≡ {h1,h2, . . . ,hN}.

B. Probabilistic Object Counting

For a new observation x, the task of counting is formally
represented as the following optimization problem

h∗ ≡ argmax
h

p(h|x,X), (1)

where p(h|x,X) is the predictive posterior for h. As a basic
building block of the model, we introduce an observation
model p(x|h,θ), where θ is a model parameter. We will
give an explicit form later. With the observation model and
prior distributions for h, H , and θ, the predictive posterior is
written as

p(h|x,X)

∝
∫
p(x|h,θ)p(h)p(X|H,θ)p(H)p(θ)dHdθ, (2)

where p(X|H,θ)p(H) ≡
[ N∏
n=1

p(xn|hn,θ)p(hn)

]
.

We will give the expressions of the individual distributions in
the next sections.

C. Gaussian Mixture Model for Object Counting

For the observation model p(x|h,θ), we propose a Gaussian
mixture model (GMM), whose d-th mixture component is
responsible for x having d number of objects through a
restriction on its mean parameter as shown in Figure 1:

p(x|hd = 1,θ, β) ≡ N
(
x
∣∣θ1d+ θ0, β

−1), (3)

where N (x|•, β−1) denotes the Gaussian distribution of the
mean • and the precision β (see the Appendix-B for an explicit
definition). The parameters θ ≡ [θ0, θ1] and β are model
parameters, where θ0 ∈ R, θ1 ∈ R, and β > 0.

Since the count for the observation can take on any arbitrary
natural number, the proposed GMM has an infinite number of
mixture components as

p(x|h,θ, β) ≡
∞∏
d=0

N
(
x
∣∣θ1d+ θ0, β

−1)hd (4)

=
exp

(
− β

2

∑∞
d=0 hd(x− θ1d− θ0)2

)
(2πβ−1)

1
2

. (5)

Note that we loosely assume that feature x is a good enough
feature in the sense that it is (approximately) proportional to
the count d. It is not hard in practice to design such a feature
in various applications [3], [16], [19], [20]. In Section IV, we
will give such an example in the context of vehicle counting.

D. Issues of Gaussian Mixture as a Counting Model

As seen from Eq. (5), the GMM formulation without any
labeled training data does not give a unique solution: The
likelihood of the count h in Eq. (5) is invariant with respect
to the simultaneous translation of x and θ0, as well as the
simultaneous scaling between count d and θ1. This means

that the counting results of the proposed GMM without any
additional constraint will become linearly proportional to the
true count.

To remove this indistinguishability, we use a minimum
assumption for the count; that is, the assigned count values for
the observations are consecutive natural numbers from zero,
which is realistic for most counting problems. It means that
we choose the smallest (simplest) one from possible count sets
in the training data set X . For example, when we have hun-
dreds of observations and the possibilities for the correspond-
ing count sets {0, 1, 2, . . . , 99}, {100, 101, 102, . . . , 199}, and
{0, 10, 20, . . . , 990} are equivalent, we choose the smallest one
{0, 1, 2, . . . , 99}. This rather ad hoc introduced constraint for
the count h is mathematically represented through the use
of the SBP prior commonly used in nonparametric Bayes
models [17].

III. VARIATIONAL INFERENCE FOR COUNTING MODEL

A. Stick-breaking Process Prior for the Count

We introduce the SBP [17] as the prior for the count h,
which can represent the desired property of the count set; that
is, the smallest one in the possible count sets has to be the true
one. Using an additional model parameter v (0 ≤ vd ≤ 1), it
is defined as

p(h|v) ≡
∞∏
d=0

(
vd

d−1∏
k=0

(1− vk)

)hd

. (6)

From Eq. (6), we can see that for each mixture component
d, the probability is given by successively breaking a unit-
length stick into an infinite number of pieces. The size of each
piece is the product of the rest of the stick and an independent
generating value vd. Thus, the probability of the counts is
decreasing in ascending order of the count on average, and
this can solve the above issues of the proposed GMM.

In traditional Bayesian nonparametric literature, this nature
is known not only as a useful tool to determine the number of
mixture components automatically, but also as a drawback;
that is, it can cause the solution to get stuck at a local
minimum in practical use [21], [22]. This is because the
biased ordering of the expected components’ probabilities
means that a permutation of the component indexes changes
the probability distribution, and each component is always
associated with the same index. Interestingly, this drawback
becomes a natural constraint for the count in the proposed
model.

B. Variational Bayes framework

The proposed GMM and SBP prior in Eqs. (4) and (6) have
three model parameters: θ, β, and v to be learned. From
Eq. (2), we learn the model parameters through marginal-
ization. Since we have no prior knowledge on the model
parameters, we just introduce the conjugate priors which are
chosen based on the forms of the proposed GMM and the
SBP prior: p(θ) is a Gaussian distribution, p(β) is a gamma
distribution, p(v) is a beta distribution, and these are to
be as non-informative as possible and to have a quite flat



distribution. The explicit definitions are given in Appendix-
A. Eq. (2) can now be rewritten as

p(h
∣∣x,X) ∝

∫
p(x,h,X,H,θ, β,v)dHdθdβdv, (7)

where p(x,h,X,H,θ, β,v) ≡ p(x|h,θ, β)

× p(h|v)

[ N∏
n=1

p(xn|hn,θ, β)p(hn|v)

]
p(θ)p(β)p(v).

Here, it is not possible to obtain an exact analytical solution
for Eq. (7). We derive an approximate solution using the
VB method [18]. The starting point of the VB approach
is to assume a trial distribution q that approximates the
posterior distribution over a set of the unobserved variables
p(h,H,θ, β,v|x,X) in a factorized form:

q(h,H,θ, β,v) ≡ q(h,H)q(θ)q(β,v). (8)

We then identify the optimal trial distribution that minimizes
the Kullback-Leibler divergence between the trial distribution
q and the true distribution p,

DKL(q‖p) ≡
∫
q(ln q − ln p)dHdθdβdv, (9)

as the best approximation of p, where we have simplified the
notation p(h,H,θ, β,v|x,X) as p and q(h,H,θ, β,v) as q.
Finally, in a popular VB approach [23], we solve the iterative
updating equations as

q(h,H) ∝ exp

[ ∫
q(θ)q(β,v) (10)

× ln p(x,h,X,H,θ, β,v)dθdβdv

]
,

q(θ) ∝ exp

[ ∫
q(h,H)q(β,v) (11)

× ln p(x,h,X,H,θ, β,v)dhdHdβdv

]
, and

q(β,v) ∝ exp

[ ∫
q(h,H)q(θ) (12)

× ln p(x,h,X,H,θ, β,v)dhdHdθ

]
.

Thanks to the use of the conjugate prior distributions, we can
compute the above expectations analytically as

q(h)q(H) = Categorical
(
h
∣∣∣µh) (13)

×
N∏
n=1

Categorical
(
hn

∣∣∣µhn

)
,

q(θ) = N
(
θ
∣∣∣µθ,Σθ), and (14)

q(β,v) = Gamma
(
β
∣∣∣aβ , bβ)Beta

(
vd

∣∣∣avd , bvd), (15)

where Categorical is the categorical distribution, Gamma
is the gamma distribution, and Beta is the beta distribution
(see the Appendix-B for an explicit definition). The specific

(a) Nationkimathi (b) Westistg (c) Ukulima

(d) Haileselasie (e) Harambeetaifa

Fig. 2. Traffic monitoring web camera images [24].

equations of the parameters µh, µhn
, µθ, Σθ, aβ , bβ avd ,

and bvd are omitted here due to space limitations.
We can iteratively update q by simply computing only the

parameters of these distributions in Eqs. (13) to (15). For the
initial values for the parameters, we use the same values as
those of the corresponding priors. In practice, we stop the VB
iterations when this condition is satisfied:(

DKL

(
q
∥∥p)−DKL

(
q′
∥∥p))2

DKL

(
q′
∥∥p)2 < 10−10, (16)

where q′ is the trial distribution at the previous iteration. After
the above stopping condition is satisfied, we obtain the final
outcome q(h) directly, which corresponds to an approximation
of the learned posterior p(h|x,X) since the trial distribution
q has been factorized as shown in Eq. (8). From Eq.(1), using
the learned q(h), we can estimate the number of objects in
the new observation as

h∗ ' argmax
h

q(h). (17)

IV. EXPERIMENTAL RESULTS

A. Vehicle-Counting from Web Camera Images

To demonstrate the utility of our approach, we applied the
proposed framework to the task of counting vehicles in web
camera images. The images were captured at five different
locations in Nairobi, Kenya [24], as shown in Fig. 2.

Regarding feature x, we used Vehicle Pixel Area (VPA),
which is defined as the total number of pixels that may corre-
spond to moving objects in an image. The VPA is computed
by the noise reduction filter, the luminance normalization and
the standard image-binarization method without any labeled
training data [16]. In this paper, VPA was normalized to be in
x ∈ [−1, 1] by dividing by half of the maximum VPA in the
N training data and subtracting one. It will suffice as a feature
wherein x is a monotonically increasing function with respect
to the count, as assumed in the proposed model in Eq. (4). In
this problem setting, h is the vehicle count. For the proposed
approach, we use N = 100 unlabeled training data for each
location. This is merely a set of past observations. For efficient
implementation of the VB algorithm with SBP, we replace the



infinite dimension of the model with the training data size N ,
which is the maximum resolution of the observations [25].

B. Comparison of Estimation Errors

Figure 3 compares our unsupervised approach with several
supervised alternatives. To train those, we used the true count
labels in addition to the VPA, and hence the comparison is
extremely preferable to the alternatives. We used least squares
linear regression (LS), least absolute values (LAV), and MM
estimator (MM). See [26] for details of the algorithms. We
also compared our unsupervised approach with a widely used
object recognition approach by Viola and Jones (VJ) [27] as
another baseline method using features other than from VPA.

Notice that these supervised alternatives, LS, LAV, and MM,
require labeled training data customized for each camera
location, which is in fact impractical in city-wide traffic
monitoring scenarios. We gave these methods 100 labeled data
for each location. In the VJ training, we prepared 2000 labeled
images for positive and negative examples. They consisted of
popular image databases that include vehicles [28]–[31] and
several hundred manually labeled images that came from our
training data set. For the training of the supervised alternatives,
manual vehicle-counting and labeling were used to create
the labeled data, and they took several days to complete. In
contrast, the computational time for our VB inference took
only a few seconds on a moderately capable laptop computer
and the time complexity is O(N).

The goal of this experiment was to see if our unsupervised
method is comparable in performance to these supervised
alternatives. For each location, we evaluated the results with
regard to the relative mean absolute error (RMAE) over
M = 100 images. RMAE is defined as

RMAE =
1

M

M∑
m=1

∣∣∣d(m)
true − d

(m)
estimate

∣∣∣
d
(m)
true + 1

, (18)

where d(m)
true is the true number of vehicles in the m-th image,

and d(m)
estimate is the estimated number of vehicles for the m-th

image. We computed the standard error of the relative absolute
error (the error bars in Fig. 3).

From Fig. 3, we can see that the overall performance of
our method is comparable to or even better than those of the
supervised alternatives. This is rather surprising, because our
method does not use any labeled training data. Our method
gives quite stable RMAE scores for the various camera loca-
tions in contrast to most of the supervised alternatives, which
have significantly worse scores at the Nationkimathi location
due to outliers and occlusions. These results demonstrate the
robustness of our approach against the image conditions.

Finally, for a reality check of the VB inference, Fig. 4
compares the estimated p(x) distribution with the true one
created from the data. To get p(x), we marginalized all of the
parameters except for x using the variational posterior q. The
result confirms that the estimated density is consistent with
the true observed histogram.
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Fig. 3. Comparison of the proposed unsupervised method and supervised
alternatives for all of the camera locations

V. RELATED WORK

In the task of counting objects in an image, existing
approaches are categorized into two groups, depending on
whether they use individual object recognition. In the first
approach, which is based on explicit object recognition, once
all of the objects are identified in an image, counting them
is a trivial task [5], [7], [12]–[14]. For object recognition, the
existing studies use either image patch classification [32], [33]
or template matching [1], [34], [35]. A more direct approach
is one that estimates the appearance of objects of interest for
each point in an image [2], [6]. We can say that this approach
learns an object classifier for each objective set of images and
objects. These approaches clearly differ from our unsupervised
approach in that they require a labeled training data set.

The second approach, which is not based on object-
recognition [8], [15], [16], extracts image features from an
image. Examples of the image features include local variances
of pixels [20] and the total area that may correspond to moving
objects [16], [19], [36], [37]. Extraction of image features is
easier than object recognition, and it can work on images
whose quality is lower than what would be required by the
object recognition approach. However, these methods need
to translate the features into the number of objects with a
regression model and a labeled training data set.

The task of object counting itself appears in a variety of
literature, such as the count of a specific word in a text [38]–



(a) Observed histogram of x

(b) Estimated density of x

Fig. 4. Observed histogram and estimated density of x

[41], the number of times a specific pattern appears in time-
series data [42]–[44]. None of these, however, propose a
probabilistic framework as we have proposed here.

VI. CONCLUDING REMARKS

We have proposed a new framework for estimating the
number of objects without any labeled data. We formulated the
problem as an unsupervised density estimation using a mixture
model, wherein each of the components has a particular
interpretation of the count. We showed that the SBP prior
works well to regularize the solution. The proposed method
does not rely on any knowledge or labeled training data
tailored to the objects being counted, which constitutes a clear
advantage in practice. Using real-world data, we demonstrated
that our completely unsupervised approach performed as well
as the supervised alternatives in our experiments and was quite
robust regarding the quality of images.

As future work, including many other features and introduc-
ing a non-linear relationship in the proposed GMM would be
an important research area. Applying the proposed approach to
other applications, such as crowd counting and cell counting,
would be another promising area of study.
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APPENDIX

A. Conjugate Priors for Model Parameters

For the prior distributions of θ, β, and v, we simply use
the conjugate priors:

p(θ|ρ0, ρ1) ≡ N
(
θ0
∣∣µ(0)
θ0
, ρ0
)
N
(
θ1
∣∣µ(0)
θ1
, ρ1
)
, (19)

p(β) ≡ Gamma
(
β
∣∣a(0)β , b(0)β ), (20)

and p(v|α) ≡
∞∏
d=0

Beta(vd|1, α), (21)

where the parameters µ(0)
θ0

, µ(0)
θ1

, a(0)β , and b
(0)
β are treated as

input parameters given as part of the model, ρ0 and ρ1 (> 0)
represent the precision parameters for θ0 and θ1, and α (>
0) is another hyperparameter controlling the strength of the
order constraint for the index frequency by SBP [25], [45].
The hyperparameters ρ0, ρ1, and α are marginalized out in
the same procedure as for our VB inference.

In addition, we define hyperprior distributions for ρ0, ρ1,
and α using the conjugate priors:

p(ρ0, ρ1, α) ≡ Gamma
(
ρ0
∣∣a(0)ρ0 , b(0)ρ0) (22)

×Gamma
(
ρ1
∣∣a(0)ρ1 , b(0)ρ1)Gamma

(
α
∣∣a(0)α , b(0)α ),

where a(0)ρ0 , b(0)ρ0 , a(0)ρ1 , b(0)ρ1 ,a(0)α , and b(0)α are input parameters.
We chose the hyperparameter values in Eqs. (19) to (22)

to be as non-informative as possible and to have a flat
distribution: a(0)β = a

(0)
ρ0 = a

(0)
ρ1 = a

(0)
α = 1, b(0)β = b

(0)
ρ0 =

b
(0)
ρ1 = b

(0)
α = 10−10, µ(0)

θ0
= −1 and µ

(0)
θ1

= 0.3. Here, the
prior means µ(0)

θ0
and µ

(0)
θ1

do not significantly affect the final
results since the values of the precision parameters ρ0 and ρ1
for p(θ|ρ0, ρ1) are estimated from the observations. When the
observations do not fit µ(0)

θ0
and µ(0)

θ1
, ρ0 and ρ1 is estimated to

be a very small value and the prior and its mean µ(0)
θ0

and µ(0)
θ1

do not have much influence on the final estimate of θ. For
fairness, we used this hyperparameter setting for all of our
experiments, and the accuracy was consistent for all of them.

B. Probability Distributions

Here, we give the definitions of the gamma, beta, Gaussian,
and categorical distributions:

Gamma(x|a, b) ≡ ba

Γ(a)
xa−1e−bx (x > 0),

Beta(x|α, β) ≡ 1

B(α, β)
xα−1(1− x)β−1 (0 < x < 1),

N (x|µ,Σ)

≡ |2πΣ|− 1
2 e−

1
2 (x−µ)

>Σ−1(x−µ) (x ∈ RN ), and

Categorical(x|ξ) ≡
D∏
d=1

ξxd

d (xd ∈ {0, 1},
D∑
d=1

xd = 1),

where Γ and B denote the gamma and beta functions, respec-
tively. | • | denotes the determinant of the given matrix. The



parameters a > 0, b > 0, µ ∈ RN , Σ ∈ RN×N , 0 ≤ ξd ≤ 1
and

∑D
d=1 ξd = 1. The variables in these definitions are not

related to the variables that appear in the main text.
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