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Abstract—This paper proposes a new framework for anomaly
detection when collectively monitoring many complex systems.
The prerequisite for condition-based monitoring in industrial
applications is the capability of (1) capturing multiple opera-
tional states, (2) managing many similar but different assets,
and (3) providing insights into the internal relationship of the
variables.

To meet these criteria, we propose a multi-task learning
approach based on a sparse mixture of sparse Gaussian
graphical models (GGMs). Unlike existing fused- and group-
lasso-based approaches, each task is represented by a sparse
mixture of sparse GGMs, and can handle multi-modalities.
We develop a variational inference algorithm combined with
a novel sparse mixture weight selection algorithm. To handle
issues in the conventional automatic relevance determination
(ARD) approach, we propose a new `0-regularized formulation
that has guaranteed sparsity in mixture weights. We show
that our framework eliminates well-known issues of numerical
instability in the iterative procedure of mixture model learning.
We also show better performance in anomaly detection tasks
on real-world data sets. To the best of our knowledge, this is
the first proposal of multi-task GGM learning allowing multi-
modal distributions.

1. Introduction

Keeping good operational conditions of industrial equip-
ment is a major business interest across many industries.
Although detecting indications of system malfunctions from
noisy sensor data is sometimes challenging even to seasoned
engineers, statistical machine learning has a lot of potential
to automatically capture major patterns of normal operating
conditions for condition-based monitoring (CbM). In a typ-
ical setting, physical sensor data from multiple sensors are
taken as the input, and anomaly scores, numerical values
representing the degree of anomalousness of the operational
state, are computed. Then human administrators decide to
take actions to mitigate the risk of e.g. service interruptions.

We are interested in the scenario where there is a col-
lection of many assets that are similar but not identical, and
we wish to develop a comprehensive monitoring system by
leveraging the commonality of those assets while paying
attention to the individuality of each. This is a frequently en-
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Figure 1. Overall model structure of the multi-task multi-modal model for
collective condition-based monitoring.

countered problem in Internet-of-Things (IoT) applications.
For example, a car company may wish to build a fault de-
tection model for thousands of electric vehicles in a certain
area. Since the occurrence of vehicle malfunction is quite
rare, it is tempting to combine information from individual
vehicles to get some common insights. On the other hand,
since driving conditions can be significantly different for
each driver, the model should capture the individuality of
the individual vehicles.

To formalize the task of anomaly detection for a col-
lection of systems, we leverage the framework of multi-
task learning (MTL) [1]. In practical CbM scenarios, firstly,
anomaly detection models must not be a black box. A
detection model has to provide quantitative insights into
the individual role of each variable, based on which human
operators can see what is really happening in the system.
Secondly, a detection model must handle a variety of nor-
mal operating conditions, i.e. multi-modality. For example,
sensor data from an electric vehicle may have drastically
different statistical natures between when starting the engine
and when cruising on highways.

To this end, we focus on multi-task learning of Gaus-
sian graphical models (GGMs). Thanks to sparsity-enforcing
regularization techniques [2], [3], GGMs are known to be a
powerful tool in anomaly detection from the viewpoint of
interpretability and robustness to the noise [4], [5]. To learn
GGMs in the multi-task setting, there have been proposed
mainly three techniques so far: group-lasso-based [6], [7],



[8], fused-lasso-based [9], [10], and Bayesian methods [11].
However, most of the existing studies aim at learning a
single common graph across the tasks and are unable to
handle multi-modal natures of the real world.

The main motivation of this paper is to extend existing
work to be able to handle multi-modalities and to propose
a practical framework for collective CbM. As illustrated in
Fig. 1, our model lets all the S tasks (or systems) share the
K sparse GGMs as a “pattern dictionary.” The individuality
of each task is represented by the mixture weights over
those K patterns. The mixture weights and the K GGMs
are learned from data based on a Bayesian formulation.

The contribution of this paper is threefold:

• The first proposal of a multi-task multi-modal GGM
learning model.

• The first derivation of a variational Bayes algorithm
having a guaranteed sparsity in both variable rela-
tionship and mixture weights.

• The first proposal of a practical CbM framework for
a fleet of assets.

Regarding the second point, we propose a novel `0-
regularized formulation for mixture weight determina-
tion. This indeed sheds a new mathematical light on
the traditional notion of automatic relevance determination
(ARD) [12], [13], [14] for Bayesian mixture models.

2. Problem setting

2.1. Data and notations

We are given a training data set D = D1 ∪ . . . ∪ DS ,
where Ds is the data set for the s-th system or task (the term
task is used interchangeably with system in this paper). D
is assumed to be collected under the normal conditions of
the systems. Each Ds is a set of Ns samples as

Ds = {xs(n) ∈ RM | n = 1, . . . , Ns}, (1)

where M is the dimensionality of the samples (or the
number of sensors), which is assumed to be the same
across the tasks. We let S be the total number of tasks and
N =

∑S
s=1N

s be the total number of samples. We use
the superscript to represent the sample and task indexes.
Vectors are represented with the bold face, e.g. xs(n) =

(x
s(n)
1 , . . . , x

s(n)
i , . . . , x

s(n)
M )>, and matrices are represented

with the sans serif face, e.g. Λk = (Λki,j). The elements
of vectors and matrices are denoted with the subscripts. As
outlined in Introduction, we use a mixture model to capture
multi-modalities. Each mixture component is indexed typi-
cally by k (and sometimes l), which appears either as the
super- or subscript (see Sec. 3 for the detail).

2.2. Anomaly score

Our goal is to compute the anomaly score for a (set
of) new sample(s) observed in an arbitrary task. For a new

sample x in the s-th task, following [15], we define the
overall anomaly score as

as(x) = − ln ps(x | D), (2)

up to unimportant additive and multiplicative constants,
where ps(·|D) is the predictive distribution of the s-th
task, which is to be learned based on the training data D
(eventually given by Eq. (34)).

In addition to the overall anomaly score, we also define
the variable-wise anomaly scores using the negative log
conditional predictive distribution as

asi (x) = − ln ps(xi | x−i,D), (3)

where asi denotes the anomaly score for the i-th variable
at the s-th task, and x−i ≡ (x1, . . . , xi−1, xi+1, xM )>. To
compute this, we need detailed information on the variable
dependency. Unlike other outlier detection methods such
as one-class support vector machines [16], GGMs provides
a clear-cut way of computing the predictive conditional
distribution. This is a major reason why we focus on GGM-
based anomaly detection methods in this paper. As long
as using GGM as a basic building block of the model,
the conditional distribution can easily be obtained via the
standard partitioning formula of Gaussians [13].

Since sensor data of industrial applications are very
noisy in general, we are often interested in averaged
anomaly scores over a sliding window. If we denote the
window by Dtest, the averaged version of the anomaly
scores are defined as

as(Dstest) = − 1

|Dstest|
∑

xs∈Ds
test

ln ps(xs | D), (4)

asi (Dstest) = − 1

|Dstest|
∑

xs∈Ds
test

ln ps(xi | xs−i,D), (5)

where |Dstest| is the size of the set Dstest.

2.3. Motivating example

To fully understand the need for multi-task multi-modal
models in real applications, consider a one-dimensional (1D)
two-task example. To be specific, imagine we are monitoring
two vehicles (two tasks) through the temperature (single
variable) of a wheel axle of each car. In Fig. 2, the top row
is for Vehicle 1 and the bottom row is for Vehicle 2. The
histograms in the same row are all the same, showing the
empirical distribution (i.e. ground truth) of the temperature.
Since driving conditions should be different between Vehicle
1 and 2, the histogram for Vehicle 1 is different from that
of Vehicle 2. Possibly due to weather conditions (rainy or
not), it is likely for the temperature to have a bi-modal
distribution. This is a simple example of multi-task and
multi-modal situations.

To fit the empirical distribution, the figure compares
three different approaches: multi-task and multi-modal
(MTL-MM), non-MTL Gaussian mixture (GMM), and
single-modal MTL models, corresponding to the columns.
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Figure 2. Example of multi-modal distributions with task-dependence. One variable (M = 1) and two task (S = 2) case is shown. The histograms show
the empirical distribution (ground truth) and are fit by three different models: multi-task multi-modal (MTL-MM), standard Gaussian mixture (GMM),
and multi-task learning (MTL) models. Only MTL-MM can capture the multi-modality in a task-dependent fashion.

The curves illustrate typical results of fitting. As shown in
the figure, traditional non-MTL Gaussian mixture models
(GMM; second column) disregard the individuality of the
tasks, and existing GGM-based MTL models (third column)
cannot handle the multi-modality since their goal is to
find a single precision matrix on a task-wise basis. It is
clear that these models lead to significant error in anomaly
detection. Our goal is to develop a GGM-based MTL model
that is capable of handling the multi-modality while taking
advantage of task-relatedness. Although this is an illustration
with a 1D model, we are interested in modeling multivariate
systems, i.e., M > 1.

3. Multi-task sparse GGM mixture

To capture multiple operational states of the systems, we
employ a novel probabilistic Gaussian mixture model fea-
turing double sparsity: sparsity in the dependency structure
of GGM and sparsity over the mixture components. This
section focuses mainly on the former along with the overall
framework.

3.1. Observation model and priors

We employ a Bayesian Gaussian mixture model having
K mixture components. First, we define the observation
model of the s-th task by

p(xs | zs,µ,Λ) ≡
K∏
k=1

N (xs | µk, (Λk)−1)z
s
k , (6)

where µ and Λ are collective notations representing {µk}
and {Λk}, respectively. Also, zs is the indicator variable
of cluster assignment. As usual, zsk ∈ {0, 1} for all s, and∑K

k=1 z
s
k = 1.

We place the Gauss-Laplace prior on (µk,Λk) and the
categorical distribution on z:

p(µk,Λk) = N (µk|m0, (λ0Λk)−1) Lap(Λk|ρ), (7)

Lap(Λk|ρ) ≡
(ρ

4

)M2

exp
(
−ρ

2
‖Λk‖1

)
, (8)

p(zs|πs) =

K∏
k=1

(πsk)z
s
k s.t.

K∑
k=1

πsk = 1, πsk ≥ 0, (9)

where ‖Λk‖1 =
∑

i,j |Λki,j |. The parameter πs is determined
as a part of the model while ρ, λ0,m0 are given constants.
From these equations, we can write down the complete
likelihood as

P (D,Z,Λ,µ | π) ≡
K∏
k=1

p(µk,Λk)

×
S∏
s=1

Ns∏
n=1

p(zs(n)|πs)p(xs(n) | zs(n),µ,Λ), (10)

where zs(n) is the cluster assignment variable for the n-th
sample in the s-th task. π and Z are collective notations for
{πs} and {zs(n)k }, respectively.

Note that {µk} and {Λk} are not task-specific and
shared by all the tasks. It is the cluster assignment prob-
ability πs that reflects the individuality of the tasks. Thus
πs can be used as the signature of the s-th task.

3.2. Variational Bayes inference

A general goal of Bayesian formulations is to find the
posterior distributions. We leverage the variational Bayes
(VB) approach [13] to get a tractable algorithm. The central
assumption of VB is that the posterior distribution has a



factorized form. In this case, we assume the categorical
distribution for Z and the Gauss-delta distribution for (µ,Λ):

q(Z) =

S∏
s=1

Ns∏
n=1

K∏
k=1

(r
s(n)
k )z

s(n)
k , (11)

q(µ,Λ) =

K∏
k=1

N (µk|mk, (λkΛk)−1)δ(Λk − Λ̄k), (12)

where δ(·) is Dirac’s delta function and {rs(n)k ,mk, λk, Λ̄
k}

are model parameters to be learned. We combine VB anal-
ysis for {Z,µ,Λ} with point estimation for the mixture
weight πs.

In the VB formulation, the model parameters
{mk, λk, Λ̄

k} are determined so that the Kullback-Leibler
(KL) divergence between q(Z)q(µ,Λ) and P (D,Z,Λ,µ|π)
is minimized. It is well-known [13] that minimization
of the KL divergence leads to extremely simple iterative
equations:

ln q(Z) = c.+ 〈lnP (D,Z,Λ,µ|π)〉Λ,µ , (13)
ln q(Λ,µ) = c.+ 〈lnP (D,Z,Λ,µ|π)〉Z , (14)

where c. symbolically represents an unimportant constant,
〈·〉Λ,µ is the expectation w.r.t. q(µ,Λ), and 〈·〉Z is the
expectation w.r.t. q(Z).

To compute these expectations, we need to know the
value of π. In the proposed VB framework, an optimization
problem to determine π is solved alternately with Eqs. (13)
and (14) until convergence. We will discuss the details in
Section 4.

3.3. VB iterative equations

Now let us find explicit expressions of the VB equa-
tions (13) and (14). Given {mk, λk, Λ̄

k} and an initialized
πs, the first VB equation (13) gives

ln r
s(n)
k ← ln

{
πsk N (xs(n) |mk, (Λ̄k)−1)

}
− M

2λk
(15)

r
s(n)
k ←

r
s(n)
k∑k

l=1 r
s(n)
l

. (16)

To get the first equation, we calculated the expectation
w.r.t. µk and Λk using the expression of Eq. (12). The
second equation is due to the normalization condition∑

k π
s
k = 1.

To solve the second VB equation (14), we first decom-
pose the posterior as q(µ,Λ) = q(µ|Λ)q(Λ). For q(µk|Λk),

by arranging the terms of 〈lnP 〉Z related to µk, we readily
get

Nk ←
S∑
s=1

Ns∑
n=1

r
s(n)
k , (17)

x̄k ← 1

Nk

S∑
s=1

Ns∑
n=1

r
s(n)
k xs(n), (18)

λk ← λ0 +Nk, (19)

mk ← 1

λk
(λ0m

0 +Nkx̄
k), (20)

given {Λk, rs(n)k }.
For q(Λ), the VB equation does not have an analytic

solution. We instead find the mode of ln q(Λ) by solving

Λ̄k ← arg max
Λk

{
ln |Λk| − Tr(ΛkQk)− ρ

Nk
‖Λk‖1

}
, (21)

with

Σk ← 1

Nk

S∑
s=1

Ns∑
n=1

r
s(n)
k xs(n)xs(n)

>
− x̄k(x̄k)> (22)

Qk ← Σk +
λ0
λk

(x̄k −m0)(x̄k −m0)>. (23)

As shown in [2], the objective function in Eq. (21) is convex.
This means that the posterior q(Λ) is guaranteed to be
unimodal, and approximating q(Λ) by the delta function is
reasonable.

As stated earlier, the VB iterative equations (15)-(23)
are combined with point-estimation of πs. The next section
discusses the details of the approach.

4. Sparse mixture weight selection

This section introduces a novel formulation to find a
sparse solution for {πs}.

4.1. Conventional ARD approach

To determine π, the conventional VB formulation [13]
maximizes 〈lnP (D,Z,Λ,µ|π)〉Λ,µ,Z under the normaliza-
tion condition. With Eqs. (9) and (10), we readily have

〈lnP (D,Z,Λ,µ|πs)〉Λ,µ,Z = c. +

Ns∑
n=1

K∑
k=1

〈zs(n)k 〉Z lnπsk

as a function of πs. The expectation is computed using
Eq. (11) as 〈zs(n)k 〉Z = r

s(n)
k . Now the optimization problem

we solve reads

max
πs

K∑
k=1

csk lnπsk s.t. ‖πs‖1 = 1, (24)

where ‖πs‖1 is the `1 norm of πs, and we defined

csk ≡
1

Ns

Ns∑
n=1

r
s(n)
k (25)



so
∑K

k=1 c
s
k = 1 holds.

By introducing a Lagrange multiplier for the constraint
‖πs‖1 = 1, it is straightforward to show that the optimal
solution πs∗ is given by

πs∗k = csk. (26)

As discussed in [14], when combined with a small
threshold value below which πsk is regarded as zero, the
problem (24) often gives a sparse solution, which is some-
times referred to as an instance of the automatic relevance
determination (ARD). However, πsk cannot be mathemati-
cally zero because of the logarithm function. This means
that the sparsity is governed by the heuristically provided
numerical threshold and the convergence of the VB algo-
rithm may depend on chance. In fact, the conventional VB
iterative algorithm is known to be sometimes numerically
unstable. This can be a serious issue especially in the multi-
task anomaly detection scenario since we need to manage
S different anomaly detection models at once.

Keeping this fundamental limitation of the conventional
VB formulation in mind, we introduce a new formulation
for sparse mixture weight selection in the next subsection.

4.2. Convex mixed-integer programming approach

To achieve sparsity in a mathematically well-defined
fashion in (24), first, we explicitly impose regularization
on πs. Similarly to the Laplace prior on Λk, let us for-
mally assume that πs has a prior in the form of p(πs) ∼
exp(−τ‖πs‖0/Ns), where ‖ · ‖0 denotes the `0-norm (the
number of nonzeros), and τ > 0 is a constant assumed to
be given. The optimization problem now looks like:

max
πs

{
K∑
k=1

csk lnπsk − τ‖πs‖0

}
s.t. ‖πs‖1 = 1. (27)

Obviously, the solution (26) is recovered when τ = 0. Note
that we cannot use the `1 norm here because of the constraint
‖πs‖1 = 1.

Second, we formally define the notion of ε-sparsity:

Definition 1. For a given small ε, a vector x is called an
ε-sparse solution if many elements satisfy |xi| ≤ ε.

Third and finally, we modify the problem (27) into a
convex mixed-integer programming (MIP) to get an ε-sparse
solution:

max
πs,ys

K∑
k=1

{csk lnπsk − τysk} s.t.
K∑
k=1

πsk = 1,

ysk ≥ πsk − ε, ysk ∈ {0, 1} for k = 1, . . . ,K, (28)

where 0 < ε� 1 is another constant controlling the sparsity.
ys plays a role of indicator variable of πs. Notice that the
inequality constraint ysk ≥ πsk−ε grantees that ysk = 1 when
πsk > ε and ysk = 0 when πsk ≤ ε. The latter follows from
the fact that ysk = 1 gives a smaller objective value and can
be ignored when seeking an optimal solution. Thus we see
that ‖πs‖0 is equal to

∑K
k=1 y

s
k.

We also see that the problem (28) is convex. By directly
calculating the second derivative w.r.t. πs and ys, we see
that the Hessian is a 2K × 2K diagonal matrix whose
diagonal element is either −csk/(πsk)2 (k = 1, . . . ,K) or 0.
Since csk > 0, the Hessian is negative semi-definite. Also, all
decision variables are bounded in [0, 1], and every constraint
is linear. Thus the problem (28) is a convex mixed-integer
programming with a bounded polyhedron feasible set.

Since ε is just an explicit representation of the threshold
value that has been used heuristically [13] and the objective
function is dominated by the first term when τ ≥ 0 is small,
we conclude that the problem (28) is a mathematically well-
defined surrogate of the original (24).

Let us formally summarize the above discussion:

Theorem 1 (Convex MIP mixture weight selection).

(i) The problem (28) is a convex mixed-integer pro-
gramming with a bounded polyhedron feasible set.

(ii) The problem (28) generates an ε-sparse solution for
a suitable selection of τ .

(iii) There exist small enough positive numbers τ and ε
such that (26) is a solution of (28).

4.3. Solving Eq. (28)

Although solving MIP generally involves exhaustive
combinatorial search and thus computationally very expen-
sive, we can derive an efficient algorithm for the prob-
lem (28). The strategy is simple. We find a solution of (28)
for each value of

∑
k y

s
k, and pick the best one from them.

This is a practical approach since K is on the order of 10
in most CbM scenarios. In this subsection, we illustrate the
outline of the approach. For proofs and more detailed dis-
cussions, the reader can refer to our companion paper [17].

Without loss of generality, we can assume that {csk} have
been sorted in increasing order, cs1 ≤ · · · ≤ csK . Since the
objective is symmetric w.r.t. k, in order to remove duplicated
solutions, we also assume πsi ≤ πsj , when csi = csj and i < j.
In that case, since we are solving a maximization problem,
we intuitively expect that, for a given K0 ≡ K −

∑
k y

s
k,

ys1 = · · · = ysK0
= 0, ysK0+1 = · · · = ysK = 1 (29)

because this choice keeps as many larger csk’s as possible.
Based on this, we can eliminate ys from (28) to define a
K0-specific problem:

max
πs

K∑
k=1

csk lnπsk s.t.
K∑
k=1

πsk = 1,

πsk ≤ ε for k = 1, . . . ,K0. (30)

To find the optimality condition, we define the Lagrange
function as

L(πs,αs, ηs) ≡
K∑
k=1

csk lnπsk − ηs
K∑
k=1

πsk −
K0∑
k=1

αsk(ε− πsk),



where {αsk} and ηs are Lagrange’s multipliers. By differen-
tiating L w.r.t. πs, we have the Karush-Kuhn-Tucker (KKT)
conditions for the problem (30):

csk
πsk

=

{
ηs + αsk, k ≤ K0

ηs, k > K0,
(31)

αsk(ε− πsk) = 0, αsk ≥ 0 for k ≤ K0. (32)

This leads to the solution for the assumed K0:

πsk
∗(K0) =

{
ε, k ≤ K0, c

s
k ≥ εηs,

csk
ηs , otherwise,

(33)

where the condition csk ≥ εηs comes from αsk ≥ 0. The
multiplier ηs is determined so

∑K
k=1 π

s
k = 1. It is easy to

verify that Eq. (33) satisfies the KKT conditions. For more
mathematical details, see our companion paper [17].

The solution πsk
∗(K0) is computed for different K0’s,

and we pick the one which gives the maximum objective
value of Eq. (28) (not (30)). The computational cost to find
the solution is on the order of K2 in the worst case.

4.4. Algorithm summary and remarks

Equations (15)-(23) and (28) are iteratively computed
for all the components k and the tasks s until convergence.
Notice that the equation for Λ̄k preserves the original `1-
regularized GGM formulation [3]. We see that the fewer
samples a cluster have, the more the `1 regularization is
applied due to the ρ/Nk term. This means that we do not
trust samples assigned to minor clusters too much. To solve
this, we can use, e.g., the graphical lasso algorithm [3].

Once all the model parameters are found, with Ak ≡
λk

1+λk
Λ̄k the predictive distribution is given by

ps(xs|D) =

K∑
k=1

πsk

∫
dµk
∫

dΛk N (xs|µk, (Λk)−1)q(µk,Λk),

=

K∑
k=1

πskN (xs |mk, (Ak)−1). (34)

Algorithm 1 summarizes the proposed MTL-MM algo-
rithm. To initialize {mk, Λ̄k}, in the context of industrial
CbM, one reasonable approach is to disjointly partition each
data along the time axis as Ds = Ds1 ∪ Ds2 . . . and apply
the graphical lasso algorithm [3] on each. For data sets of
i.i.d. samples, on the other hand, k-means clustering [13]
can be used to get {mk}, followed by graphical lasso for
{Λk}. The initial number of mixture components K should
be large enough to be able to automatically find an optimal
number of non-empty clusters, K ′ < K. For standardized
data, λ0 = 1 and m0 = 0 are a reasonable choice. For the
MIP parameters, τ can be a value in (0, 1] such as 0.1. Since
ε has the meaning of minimum resolution of mixture weight
(the probability to find a sample in the cluster), a value such
as 10−5 should be reasonable. Virtually the only parameter
to be determined via cross-validation is ρ. In the context of
anomaly detection, ρ is determined so a performance metric

Algorithm 1 Multi-task multi-modal GGM

procedure MTL-MM(D, λ0, m0, ρ, ε,τ )
Initialize {(mk,Λk)}
Set πsk = 1

K , λk = λ0 + N
K for all k, s

repeat
for s← 1, S do

for n← 1, Ns do
for k ← 1,K do

r
s(n)
k ← Eq. (15)

end for
r
s(n)
k ← r

s(n)
k /

∑K
l=1 r

s(n)
l

end for
end for
for k ← 1,K do

for s← 1, S do
πsk ← Eq. (28)

end for
Nk ←

∑S
s=1

∑Ns

n=1 r
s(n)
k

λk ← λ0 +Nk
mk ← Eq. (20)
Λ̄k ← Eq. (21)

end for
until convergence

return {πs} and {µk,Λk, λk}
end procedure

such as the AUC (area-under-curve) and the F-measure is
maximized.

5. Related work

In the context of anomaly detection, there are three lines
of research relevant to the present work: MTL for anomaly
detection, Gaussian mixture models, and MTL for GGM.

As explained in Introduction, the original concept of
MTL is highly tempting for anomaly detection, since
anomaly samples are always limited. In fact, there are a
number of studies [18], [19], [20] to attempt to pursue MTL-
based anomaly detection. However, with these methods, it is
not straightforward to compute variable-wise contributions
and obtain insights into the internal dependency of multi-
variate systems, which are an integral part of the practical
requirements.

Gaussian mixture models have been used in a wide
variety of applications, and numerous prior studies ex-
ist e.g. [10], [15], [21]. However, little is known about how
to extend them to MTL in the context of anomaly detection.

Finally, MTL-based sparse GGM learning has been one
of the recent hot topics in the machine learning and statistics
communities [6], [7], [8], [9], [10], [11]. An MTL-like
setting has also been discussed in the context of anomaly
detection [5]. However, few of them focus on the multi-
modality, which is critical in many real industrial applica-
tions, especially in anomaly detection.



Figure 3. Ground truth precision matrices. See Sec. 6.1.

Figure 4. Learned precision matrices. (a) Conventional ARD approach. (b)
Proposed MIP approach. Mixture weights are also described on the graphs.
See Sec. 6.1.

6. Experiments

This section shows the utility of the proposed multi-task
multi-modal framework with the convex MIP-based mixture
weight selection. We first demonstrate a better convergence
of the convex MIP formulation of the mixture weights. We
then test performance in anomaly detection using synthetic
and real-world data.

6.1. Comparison with conventional ARD approach

To test the convex MIP formulation for the mixture
weight, we generated a 4-variate (M = 4) synthetic data
set. Since Eq. (28) is solved independently for each task
s, we simply set S = 1 in this subsection (thus the super-
script s will be dropped for now). We randomly generated
N = 3 800 samples with three component Gaussian mixture
with π = (0.4, 0.3, 0.3)>. The first component has the mean
(5, 0, 0, 5)>, while both of the second and third components
share the same mean of (0, 5, 5, 0)>. The precision matrices
for these components are shown in Fig. 3.

For initialization, as mentioned in Sec. 4.4, we split
the data set into K = 10 disjoint blocks, and learn the
precision matrix using the graphical lasso algorithm. We
chose parameters as ρ = 0.01, τ = 0.25, ε = 10−4. In
the conventional ARD approach (Eq. (26)), we removed
components once πk < ε is satisfied during the iteration. In
the proposed MIP method, all the K components are kept
during the iteration, and those having πk < ε are removed
from the model upon convergence.

Figure 4 shows learned precision matrix (in terms of the
partial correlation coefficients) and their mixture weights.
We see that the proposed method precisely converged into

Figure 5. Log likelihood towards convergence. The conventional approach
(“regular”) fails to find the ground truth. See Sec. 6.1.

the ground truth (K ′ = 3) in spite of the initial number of
components, K = 10, but the conventional approach pro-
duced two spurious components. This is one manifestation
of numerical instabilities of the conventional ARD method.

To get further insights, we monitored the log likelihood
as a function of the number of iterations, as shown in
Fig. 5. We see that the proposed MIP formulation found
the optimal solution much quicker, while the conventional
approach gets stuck with a local minimum. The smooth
curve of the conventional approach suggests that the conven-
tional algorithm strongly encourages convergence by forcing
smaller components to be even smaller. Although Fig. 5
is just for one instance, in our repeated experiments with
different random number seeds for the data, the conventional
approach produced a noticeably worse solution in most
cases.

In the proposed MTL framework, the most expensive
step is to learn {Λk} (Eq. (21)). Although the MIP equa-
tion (28) incurs more computational cost than the conven-
tional one per se, the total computational cost per one itera-
tion is dominated by Eq. (21). Thus the smaller the number
iterations, the faster we reach the solution. We conclude that
the proposed convex MIP-based mixture weight selection
approach is faster and more stable than the conventional
ARD approach.

6.2. Multi-modal graph learning: synthetic data

To illustrate how MTL-MM works, we compare the pro-
posed method with two alternatives that can learn sparse
and thus interpretable dependency structures in the MTL
setting: the group graphical lasso (ggl) and fused graphical
lasso (fgl) algorithms [9]. These methods find task-wise
precision matrices {Λs} by maximizing

S∑
s=1

Ns
{

ln |Λs| − Tr(ŜsΛs)
}
−

S∑
s=1

η1‖Λs‖1 − η2P ({Λs}),
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Figure 6. Synthetic data. The sample size is Ns = 300 for each task.
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Figure 7. Learned precision matrices in terms of the partial correlation
coefficients. See Sec. 6.2.

where Ŝs is the sample covariance matrix of the s-th task,
and

P ({Λs}) =

{∑
i6=j

√∑S
s=1 Λsi,j

2 (ggl)∑
s′>s

∑
i,j |Λsi,j − Λs

′

i,j | (fgl)
(35)

Since the goal of these algorithms to find a single Gaussian
graphical model for each task, the anomaly score (2) is
defined as − lnN (·|µ̂s,Λs) for each task s, where µ̂s is
the sample mean on the s-th task.

We generated a three-task (S = 3) four-variate (M = 4)
synthetic data. As shown in Fig. 6, the data were generated
from three distinctive four-variate Gaussian distributions,
say, A, B, and C. The first 2

3 and 1
3 of task 1 were generated

by A and B, respectively. The first 1
3 and 2

3 of task 2 were
generated by A and B, respectively. Task 3 was generated
only with C. We also independently generated test data using
the same pattern combinations.

To train the MTL-MM model, we split each of the tasks
into halves and used them to initialize {(mk,Λk)}, resulting
in K = 6 initial number of clusters. Upon convergence,
MTL-MM gave K ′ = 3 non-empty clusters. We used ρ = 0.1,
which was chosen as the minimizer of the overall anomaly
score on the test data (see below).

Figures 7 and 8 show the learned precision matrices and
the mixture weights, respectively. The three graphs in Fig. 7
precisely recover the pattern A, B, and C, from left to right,
and the mixture weights are also consistent with the training
data. This result confirms the capability of our algorithm to
capture multi-modal patterns even under heavy noise. We
also note that the correct number of clusters is automatically
found thanks to the guaranteed sparsity formulation.

Finally, we computed the averaged anomaly score
Eq. (4) for each task on the test data. Since the test data
follow the same generative model as the training data, the
anomaly score should be small as long as the learned model
is faithful to the ground truth distribution. In Eq. (4), the
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Figure 8. Learned mixture weights πs for s = 1, 2, 3.

window size was taken as the same as the total number
of samples of each task (Ns = 300). To train ggl and
fgl, we fixed η1 = 0.1 and computed the anomaly score
as a function of η2. Figure 9 shows the result, where the
vertical axes represent the ratio to the overall anomaly scores
computed by MTL-MM. We see that ggl and fgl give
values close to one only for task 3 while having much larger
anomaly scores for tasks 1 and 2, meaning that they failed
to capture the underlying distribution correctly. We also see
that the group lasso and fused lasso penalties do not help
improve the fit of the models. This clearly shows the failure
of the existing MTL-based GGM learning approaches in
terms of multi-modality in such tasks as 1 and 2.
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Figure 9. Averaged overall anomaly score calculated by ggl (dashed line)
and fgl (dash-dotted line), relative to that of MTL-MM (solid line at the
level of 1). Smaller is better.

6.3. Anomaly detection: London School data

The London School data1 are widely used bench-
mark data for multi-task learning. The data contain the
score of an examination of students along with other three
student-specific attributes (VRband, gender, ethnicity) and
five school-specific attributes. We picked schools with more
than or equal to 200 students, ending up with S = 11
schools as tasks. Although the original data are not intended
for anomaly detection, we held out the students whose
ethnicity is categorized into “others” as anomalous samples.
We also randomly picked normal samples so that a half of
samples of the test data is normal. To be fair to the uni-
modal alternatives, we re-labeled the categorical attributes
of VRband and ethnicity so the largest categories come in
the middle and the smallest categories come at the both
ends. We used only the student-specific variables (M = 4),
each of which was standardized to have zero mean and unit
variance and then was added Gaussian noise of standard
deviation of 0.1. As a result, we obtained 2 355 samples in
total over S = 11 tasks in the training data, and 104 samples

1. Downloadable at http://www.bristol.ac.uk/cmm/learning/support/
datasets/. See [22] for original descriptions.
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Figure 10. Variable-wise distribution of London School training data
with Gaussian noise. Samples are aggregated over S = 11 schools as
tasks.

in total in the test data. Figure 10 shows the distribution of
the training data for each variable.

We compared the performance of anomaly detection
of MTL-MM with ggl and fgl with the ROC (receiver
operating characteristic) curve. Equation (2) was used for
anomaly scoring. The regularization parameters were cho-
sen so the AUC values are maximized on the test data:
ρ = 1.1, (η1, η2)ggl = (0.25, 0.25), and (η1, η2)fgl =
(0.19, 0.13). The k-means clustering (repeated five times
to pick the best one) was used to initialize MTL-MM with
two initial clusters for each task, i.e. K = 22. The other
parameters were set to be their default values as described
in Sec. 4.4. Upon convergence, we had K ′ = 13 non-empty
clusters.

The ROC curves in Fig. 11 clearly show that the pro-
posed multi-modal model outperforms the uni-modal al-
ternatives. The AUC values are summarized in Table 1.
As is evident from Fig. 10, the distribution of this data
is multi-modal. Even to ethnicity, for example, MTL-MM
assigned major weights on three Gaussians in most tasks. As
a result, the uni-modal alternatives sometimes fail to detect
the anomalous samples. This is a clear demonstration of the
utility of the proposed mixture model.

6.4. Anomaly detection: Anuran Calls data

Next we applied MTL-MM to Anuran Calls
data [23], a real-world data set collected from frog
croaking sounds2. We picked three major species of
AdenomeraAndre, Ameeregatrivittata, and HylaMinuta as
tasks (S = 3), in which the first ten MFCCs (Mel-frequency
cepstral coefficients) were used as the variables (M = 10).
Although the original data are not intended for anomaly
detection, we used the species of Rhinellagranulosa as
the anomalous class. For each task, we created an equal
mixture between the 68 anomalous samples and randomly
picked normal samples. The remaining normal samples
were used as the training data. As a result, the test data
have 68 × 2 samples for each task, and the training data
have samples of (N1, N2, N3) = (604, 474, 242).

2. Downloadable from UCI Archive at https://archive.ics.uci.edu/ml/.
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Figure 11. Comparison of anomaly detection performance on the London
School data. The test samples are aggregated over the S = 11 tasks.

We again compared the performance of anomaly detec-
tion with the ROC curve. To train MTL-MM, we initialized
the cluster with the k-means scheme, where three initial
clusters were generated for each task, i.e. K = 9. The
parameters ρ, η1, η2 were chosen so the AUC is maxi-
mized, resulting in ρ = 9.5, (η1, η2)ggl = (10−2, 0.02), and
(η1, η2)fgl = (10−4, 10−5). The other parameters were set
to be their default values as described in Sec. 4.4. Upon
convergence, we got only K ′ = 2 non-empty clusters as
shown in Fig. 12. For the mixture weight between these,
we obtained π1 = (0.59, 0.41)>, π2 = (0.13, 0.87)>, and
π3 = (0.00, 1.00)>. These numbers suggest that the first
and second tasks have significant multi-modality. In fact,
this is the major reason why they mis-predicted on the test
samples, as evidenced by the ROC curves in Fig. 13 and
their AUC values in Table 1.

7. Conclusion

We have proposed a new framework for collective
anomaly detection based on a Bayesian multi-task multi-
modal sparse mixture of sparse GGMs. By combining the
variational Bayes framework with (1) Laplace prior-based
sparse structure learning and (2) a novel `0-based sparse
mixture weight selection approach, our formulation has
guaranteed dual sparsity over both variable-variable depen-
dency and mixture components, which helps to efficiently
learn multi-modal distributions that are very often observed
in Internet-of-Things applications. We confirmed that our
formulation successfully eliminated the well-known issue

TABLE 1. AUC VALUES.

MTL-MM ggl fgl
London School (Fig. 11) 0.967 0.714 0.770
Anuran Calls (Fig. 13) 0.849 0.654 0.637
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Figure 13. Comparison of anomaly detection performance on the Anuran
Calls data. The test samples are aggregated over the S = 3 tasks.

of numerical instability in mixture weight learning. We
also demonstrated better performance in anomaly detection
thanks to the capability of handling multi-modal multi-task
learning.
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