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Detecting anomalies from noisy multivariate sensor data Is
hard even to experienced engineers

» Example: sensor data of a
compressor of oil production

system

o Data taken under a normal
operational condition

o Noisy, nonstationary,
heterogeneous, high-dimensional

o Hard to recognize useful patterns
by human eye

» Data mining algorithms help
capture major patterns
embedded in the data

M W M{“‘ (simulation data)
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Anomaly Localization

» The traditional anomaly detection is to compute the degree of

anomalousness for a multivariate measurement, giving an overall
anomaly score.

» Anomaly localization focuses on a variable-wise anomaly score, and
two main lines of research have been proposed

o sparse principal components analysis (PCA) to identify a set of variables that have
nonzero weights in a subspace

o graph-based anomaly localization approach, where two separate dependency graphs
are inferred from training and testing data and an anomaly scoring method is used
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Model Building Phase

Past dataset
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Real-time sensor data
SENSOTr A oo™ ™ iy o o
SensorB T e e
SENSOr C v e Y e
Sensor D AT T e
Sensor E -~
SensorF —————"" T

™

- — Runtime Phase. -~

2. Compute a current dependency
graph from real-time sensor data

3. Compare two graphs

Anomaly Localization for Multivariate Noisy Sensor Data

Detecting anomalies amongst sensors in real-world situations helps operators
decide when and where maintenance is required
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Sparsity-Constrained Gaussian Graphical Model

= Problem: Given an empirical covariance matrix S € R™*"

N

S = N ;(yfi — ) (yi — N)T

find a sparse inverse covariance matrix X to represent the data
» Classical convex approach: Minimize the objective function

g{(li% F(X)+ M|IX]1, F(X)=tr(SX) — logdet(X)
-

F(X) is the negative log likelihood function and the ¢ term is a sparsity
promoting regularizer.
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Sparsity-Constrained Gaussian Graphical Model

= Convex approach: The ¢1 model minimizes

min tr(SX) — log det(X) + A[|X[|;
= Novel nonconvex approach: We directly constrain sparsity. The £o model
minimizes
1}?113 £(X) = tr(SX) — logdet(X) + % || X7
P

___________________________

___________________________

K . the maximally allowable number of nonzeros
J . the set of known conditionally independent variables

= |t Is a very challenging optimization problem: highly nonlinear, nonconvex
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L1 Model versus |10 Model
-~ B -

gﬁ%JTX):tdSX)—k%dﬂfo+%HXH%‘\
.
min tr(SX) — log det(X) + M| X1 st X0 < &

o Y, N X, =0Vv(ij)eT )

= ¢y based models often recover sparsity pattern better than its £1 counterpart
since ¢1 norm is just a relaxation of £o norm

» The {y-constraint guarantees that the solution will admit a certain level of sparsity

= The {2-regularization term keeps the magnitude of all entries uniformly similar
and encourages the capacity of selecting groups in the presence of highly
correlated variables

» Theorem: The solution set of ¢y model is bounded.
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Notations
= Define the constraint set as

QE{XeR"™ X0 <k, X;j=0.Y(i,)) €T}

* The projection operator is
Po(X) = in [ X Y|
o (X) = argmin | |7

= Itis a low-cost operator.

* The gradient is
VIAX)=S-X""+2X

11



IBM Research

Gradient-projection Algorithm

= Consider

min{ f(X) : X e R ||X]lo < k,Xi; =0, ¥(i,j) €3, X = 0,X=X"}

= Main idea;:

o Feasibility w.r.t membership in 2 ={[X]o<k. Xi;=0.VY(.j) €3} is handled via projection
o Symmetric positive-definiteness {x-0.Xx=X"} is ensured through a line-search procedure

Algorithm 1: Gradient projection - GP(X". Q. 1)

1

(8]

Given parameters 6 > 0,6 € (0, 1), [Gmin, Ognax] C (0,00). Set k = 0.
while some stopping criteria not satisfied do
Step a: Initialize step size
Choose og € [0min, Ognax]
Step b: Line search along projection arc
Set a = 6/ 0y, where J = 0 1s the smallest integer such that
FXEHD) < £(XK) — & XK+T — XK||7 and XK+1 - 0, where
X Py (XE — g V(X))

Step c¢: k +— k+ 1 and go to Step a.

12
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Convergence Analysis

» Theorem: Assume X' is a feasible solution, let {X*} be the sequence
generated by Algorithm 1. Suppose X*is an accumulation point of {X"}
Then the following hold.

(i) The sequence {f(X’!‘)} admits an accumulation point.

i) X™ is a strictly local minimizer.
y

13
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Graph learning: Execution Time and Accuracy Comparison

Proposed /[y model Convex /| model
Test n K time TNR TPR time TNR TPR
Rand | 1000 | 16848 | 15.55 | 0.9985 | 0.9149 29.13 | 09961 | 0.7706
Rand | 1500 | 25324 | 46.79 | 0.9992 | 0.9269 | 109.29 | 0.9972 | 0.7600
Rand | 2000 | 34160 |108.51 | 0.9993 | 09180 | 231.07 | 0.9978 | 0.7522
AR2 1000 | 4994 16.72 I | 68.09 | 0.9983 | 0.6700
AR?2 1500 | 7494 54.28 I I | 147.59 | 0.9989 | 0.6685
AR2 | 2000 | 9994 |112.52 I I | 45539 | 0.9992 | 0.6692
AR3 1000 | 4994 19.99 I | 61.48 | 0.9980 | 0.7149
AR3 1500 | 7494 56.13 I I ] 216.92 | 0.9987 | 0.7145
AR3 | 2000 | 9994 |123.01 I I | 433.73 | 0.9990 | 0.7145

true negative rate (specificity) TNR :

o _ {(.0):Xi;=0.5;,;=0}]
INHFE  [{(i,)): Si,;=0}|
true positive rate (sensitivity) TPR:
e _ () Xi,;#0, Si,;/#0}
TP+EN {(i.J) = Si j 705

~

S true covariance matrix
X estimated inverse covariance matrix
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Anomaly Localization: Sparsely Supervised with L,

lot+lo+ KL | £gt+La+QP | bg+ o+ SNN | €1+ KL | £1+QP | £1+SNN | {g+ KL | fo+ QP [ £g+SNN {1+ o+ KL{{1 + 2+ QP +£5+SNN
Sensor Error data
mean| 0.9767 0.9412 0.9637 0.9631 | 0.8334 | 0.9388 [0.9448 | 0.8606 | 0.9551 0.9627 0.9536 0.9454
std 0.0545 0.1318 0.0606 0.1043 | 0.1933 | 0.0747 [0.1039 | 0.1399 | 0.0650 0.1055 0.1095 0.0683
Sensor Error data with added noise
mean| 0.9071 0.8670 0.7635 0.8168 | 0.8418 | 0.6857 | 0.7371 | 0.6560 | 0.7350 0.8646 0.7952 0.6682
std 0.0768 0.1221 0.1156 0.1537 | 0.1128 | 0.1442 [ 0.1786 | 0.2062 | 0.1390 0.1561 0.1517 0.1437
Sun Spot Sensor data
mean | 0.8849 0.8917 0.7914 0.7472 | 0.7744 | 0.5777 | 0.7976 | 0.7846 | 0.7744 0.7471 0.7913 0.5810
std 0.1537 0.1461 0.1682 0.2896 | 0.2372 | 0.2718 [0.2057 | 0.2170 | 0.1721 0.2895 0.2214 0.2658
Sun Spot Sensor data with added noise
mean| 0.8515 0.8502 0.7336 0.7018 | 0.7211 | 0.5748 | 0.6638 | 0.7375 | 0.6015 0.7040 0.7278 0.5997
std 0.1691 0.1677 0.1832 0.2915 | 0.2739 | 0.2658 | 0.3128 | 0.2577 | 0.2599 0.2877 0.2538 0.3023

The mean and standard deviation for AUC values



IBM Research

Thank you!
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