IBM Research

Efficient Protocol for Collaborative Dictionary Learning in Decentralized Networks

<u>T. Idé ("Ide-san"</u>), R. Raymond, and D. T. Phan IBM Research, T.J. Watson Research Center IBM Research - Tokyo

- Problem setting and overview
- Global-local separation in exponential family
- Dynamical consensus with privacy
- Numerical example

What is this in a nutshell?

Multi-task density estimation + a novel set of constraints

- What is multi-task learning?
 - Multiple agents learn their own model based on their own data
 - Leverage commonality among agents to get a better model
- What are the "constraints"?
 - o Data privacy

This one is tricky

Decentralized learning may be harder than you might think...

Example: Aggregation (summation)

$$\bar{c} = c_1 + c_2 + \ldots + c_6$$

- Easy? Not really, if we do that only through local communications
 - Broadcasting your data to all?
 - ✓ No! Total privacy breach
 - o Select a leader to let her compute?
 - ✓ No! What if she is a bad guy?

Problem setting:

Decentralized multi-task density estimation with data privacy

Each agent wishes to learn its own probability density

No central server!

Our solution: summary

For principled probabilistic multitask learning For decentralized learning

For data privacy

(For reference) Prior work

Decentralized

Data privacy (under distributed environment)

- Actively studied area but
 Byzantine protocols mostly for supervised learning
- Not many of them are fully probabilistic
- Little is known about how to decentralize

- assume categorical values
- Multi-agent consensus methods are not in the context of multi-task learning
- Differential privacy is problematic in distributed environment
- Secure multi-party computation typically needs a central server
- Homomorphic encryption is too slow

Problem setting and overview

Global-local separation in exponential family

- Dynamical consensus with privacy
- Numerical example

We employ a mixture of exponential family for multi-task density estimation

Each agent holds its own data

 $\mathcal{D}^{s} = \{ \boldsymbol{x}^{s(n)} \mid n = 1, \dots, N^{s}; \; \boldsymbol{x}^{s(n)} \in \mathbb{R}^{M} \}$

Employ a mixture model with agent-specific weights

$$\circ \qquad p(\boldsymbol{x} \mid \boldsymbol{\Theta}, \boldsymbol{\Pi}^s) = \sum_{k=1}^{n} \pi_k^s f(\boldsymbol{x} \mid \boldsymbol{\theta}_k)$$

- $\circ~$ The mixture coefficients $\{\pi^1,...,\,\pi^{\mathsf{S}}\}$ is agent-specific
- \circ { $\boldsymbol{\theta}_1$, ..., $\boldsymbol{\theta}_{K}$ } are shared by all the agents
- For f, employ exponential family

 $f(\boldsymbol{x} \mid \boldsymbol{\theta}_k) = G(\boldsymbol{\theta}_k) H(\boldsymbol{x}) \exp\left\{\boldsymbol{\eta}(\boldsymbol{\theta}_k)^\top \boldsymbol{T}(\boldsymbol{x})\right\}$

S

Exponential family naturally leads to Global-Local Separation in maximum likelihood

Iterates until

convergence

Local updates:

compute statistics locally using only my own data (no risk of privacy breach)

Global consensus:

- Compute aggregation
- Perform optimization to store a unique result

- Problem setting and overview
- Global-local separation in exponential family
- Dynamical consensus with privacy
- Numerical example

Ο

Decentralized aggregation = Finding stationary state of Markovian process

Consider an aggregation task in general:

$$\bar{c} = \sum_{s=1}^{S} c^s = \mathbf{1}^{\top} \mathbf{c}$$
S-dimensional vector of ones

Idea: consider Markovian process whose stationary state is proportional to the 1 vector

$$c^{s} \leftarrow c^{s} + \epsilon \sum_{j=1}^{S} \mathsf{A}_{s,j}(c^{j} - c^{s}) \text{ or } c \leftarrow [\mathsf{I} - \epsilon(\mathsf{D} - \mathsf{A})]c$$

- A: Incidence matrix of the communication graph
- $\circ~$ D: Degree matrix of A
- This update equation converges to \overline{C} in all nodes

Global consensus:

- Compute aggregation
- Perform optimization to store a unique result

The largest

eigenvector is 1

What kind of communication graph A should be chosen?

- Cycle graph
 - \circ Pros
 - ✓ Sparse. Minimum number of neighbors. Good for privacy
 - ✓ Symmetric. Regular. Good for democracy.
 - ✓ Analytic expression of eigenvalues allows detailed convergence analysis
 - \circ Cons
 - ✓ Slow convergence.

- "Cycle with inverse chord" (or modified cycle graph)
 - o Pros
 - ✓ Sparse.
 - ✓ Fast convergence (~ log S)
 - \circ Cons
 - ✓ Not regular (=not fully democratic)
 - ✓ Eigenvalue is non-smooth with S

IBM Research

How can we guarantee data privacy? Simple secret sharing scheme by random chunking

Randomly split datum into N_c chunks 0 $\bar{c} =$

$$c^s = c^{s[1]} + c^{s[3]} + c^{s[3]}$$

- Do dynamic consensus N_c times and sum
 - $\bar{c} = \bar{c}^{[1]} + \bar{c}^{[2]} + \bar{c}^{[3]}$

s=1

- Note: Each chunking round has to use a different communication graph
 - ✓ Can be done simply by shuffling network address (needs network router's help)
 - ✓ Take a large Nc to make the probability of sending all the chucks to the same neighbor negligible

- Problem setting and overview
- Global-local separation in exponential family
- Dynamical consensus with privacy

Numerical example

Much faster than homomorphic encryption-based decentralized approach

- Proposed method is orders of magnitude faster than an existing fully-decentralized consensus algorithm using homomorphic encryption [Ruan+ 17;19]
- Number of iteration is ~ log S when using the modified cycle graph
 - S: The number of nodes

Figure 5: Computation time comparison between the proposed dynamic random chunking and the encryption-based method.

Thank you!