
`0-Regularized Sparsity for Probabilistic Mixture Models

Dzung T. Phan ∗ Tsuyoshi Idé ∗

Abstract
This paper revisits a classical task of learning probabilistic
mixture models. Our major goal is to sparsely learn the mix-
ture weights to automatically determine the right number of
clusters. The key idea is to use a novel Bernoulli prior on
the mixture weights in a Bayesian learning framework, and
formalize the task of determining the mixture weights as an
`0-regularized optimization problem. By leveraging a spe-
cific mathematical structure, we derive a quadratic time al-
gorithm for efficiently solving the non-convex `0-based prob-
lem. In experiments, we evaluate the performance of our
proposed approach over existing methods in recovery capa-
bility and anomaly detection for synthetic as well as real-
world data sets.

1 Introduction
Probabilistic mixture models provide a powerful ap-
proach to modeling real-world complex distributions.
Thanks to their simplicity and interpretability, they
have been used in numerous applications. When us-
ing mixture models, one of the most important decision
points is how to determine the number of mixture com-
ponents. In spite of the seeming simplicity, correctly
inferring the number of clusters is known to be chal-
lenging because of the singularity of the model.

One standard solution to this problem is to use
infinite mixture models based on the non-parametric
Bayesian framework [14]. The idea is to start with a
model with an as large number of clusters as possi-
ble and let the algorithm choose active clusters. In a
sense, such an approach can be viewed as finding sparse
mixture weights over a large number of candidate clus-
ters. The infinite mixture methods require rather com-
plicated inference procedures via Monte Carlo sampling
[10, 11] or variational inference [18, 3, 16], which under-
mine the original benefit of simplicity of mixture models.

The other interesting but less known approach for
sparse mixture weights is to leverage an automatic rel-
evance determination (ARD) mechanism in Bayesian
learning [5]. As described in the next section in de-
tail, it treats the mixture weights as model parame-
ters of a latent variable. Then it determines the mix-

∗IBM Research, T. J. Watson Research Center, New York,
USA, Email: {phandu,tide}@us.ibm.com.

ture weights by maximizing the marginalized likelihood
(Eq. (2.3)). Empirically it is known that this simple
approach produces a sparse numerical solution. How-
ever, rather strangely, the optimization problem to de-
termine the mixture weights does not mathematically
have a sparse solution in the standard sense because
of the logarithmic terms (Eq. (2.4)). In a manner, a
sparse solution is obtained only as a numerical artifact.
Furthermore, there is no hyper-parameter to indirectly
or directly control the number of components; hence we
cannot regulate sparsity level. As a result, the approach
may not generate sufficiently sparse mixture models.

Motivated by these observations, we propose a new
approach to sparsify mixture weights of finite mixture
models by pruning irrelevant mixture components. In
particular, we introduce a novel Bernoulli prior to the
mixture model and formalize the task of finding mixture
weight as an `0-regularized optimization problem. Al-
though directly handling the `0 norm is generally known
to be challenging, due to the strongly-structured nature
of the problem, we can develop an efficient quadratic
time algorithm. To the best of our knowledge, this is
the first work to formalize the ARD mechanism of prob-
abilistic mixture models using `0 regularization and de-
rive its practical algorithm.

2 Background: probabilistic mixture models
We start with recapturing the basic setup of probabilis-
tic mixture models. For more details, readers may refer
to Section 10.2 of [2]. Consider a K-component mixture
model for an observable variable x ∈ RM as

(2.1)

P (x | z,Θ) =

K∏
k=1

p(x | θk)zk ,

p(z | π) =

K∏
k=1

πzkk ,

K∑
k=1

πk = 1,

where zk ∈ {0, 1} is the indicator variable of cluster
assignment, Θ ≡ {θ1, . . . ,θK} is a collection of model
parameters of each component, and π is the vector
of mixture weights to be determined from data. We
assume that we are given N samples for x as D ≡
{x(1), . . . ,x(N)}. The complete likelihood of this model

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

is then given by

P (D,Z,Θ | π) = P (Θ)

N∏
n=1

P (x(n) | z(n),Θ)p(z(n) | π)

(2.2)

where P (Θ) is a prior distribution for Θ and Z ≡
{z(1), . . . ,z(N)}, z(n) is the indicator variable assigned
to the n-th sample.

The goal of Bayesian inference for this model is
to find the posterior distributions of Z and Θ. The
variational Bayes (VB) method is a useful framework
to approximately find the posterior distribution under
the assumption that they are factorized as Q(Z,Θ) =
u(Z)v(Θ). By minimizing the Kullback–Leibler diver-
gence between the assumed factorized form and the true
posterior, one can derive update equations as

lnu(Z) = c.+ 〈lnP (D,Z,Θ | π)〉Θ,
ln v(Θ) = c.+ 〈lnP (D,Z,Θ | π)〉Z

for a given π, where 〈·〉Θ and 〈·〉Z represent expectation
w.r.t. v(Θ) and u(Z), respectively. The authors of [5]
numerically showed that by combining these equations
with a point-estimation equation

π = arg max
π
〈lnP (D,Z,Θ | π)〉Θ,Z,(2.3)

one can achieve sparsity over π through the ARD
mechanism, allowing automated determination of the
number of mixture components. Using Eqs. (2.1)
and (2.2), we can see that (2.3) is reduced to

max
π

K∑
k=1

rk lnπk subject to
K∑
k=1

πk = 1,(2.4)

where rk ≡
∑N
n=1〈z

(n)
k 〉Z. This is the main problem we

are interested in.
Sparsity for mixture weights related to the up-

date (2.4) has been rarely addressed explicitly in the
literature, partly because πk cannot be mathematically
zero. Although it is empirically known that the solu-
tion can achieve sparsity in many cases when combined
with a heuristically determined threshold in numerical
calculations to decide on zero components in {πk}. We
note that there is no mathematical guarantee for yield-
ing a sparse solution from (2.4) since no sparsity con-
straints are explicitly imposed. As a consequence, it
may not generate sufficiently sparse estimates. Unfor-
tunately, the common idea of using `1 regularizer does
not work in this case because the value of ‖π‖1 is fixed
(=1). We have a similar issue with alternative hierar-
chical Bayesian formulations such as the stick-breaking

process [18, 3, 8, 16] and Markov chain Monte-Carlo
sampling method [10, 11]. Our main motivation is to
explicitly introduce a sparsity-enforcing mechanism over
the mixture weights by placing a Bernoulli prior on π.

3 Convex mixed-integer programming
formulation for mixture weights

To explicitly deriving a sparsity promoting procedure,
we place a hyper prior on π. Especially, we use the
Bernoulli prior

(3.5) p(π) = γ‖π‖0(1− γ)K−‖π‖0

for the mixture weights, where ‖ · ‖0 is the `0-norm (the
number of nonzeros). We can recast Eq. (2.3) as

(3.6)
maxπ

∑K
k=1 ak ln(πk)− τ‖π‖0,

s.t.
∑K
k=1 πk = 1, πk ≥ 0,

where we introduce ak ≡ rk
N for simplicity and τ > 0 is

a regularization parameter.
Obviously, the problem (2.4) is recovered when τ =

0. Although solving a general nonconvex `0-norm op-
timization problem is computationally challenging [19],
we can show that the problem can be solved efficiently
in our particular setting. First, we reformulate Eq. (3.6)
as a convex mixed-integer programming (MIP)

(3.7)

min
π,y

−
∑K
k=1 ak ln(πk) + τ

∑K
k=1 yk

s.t.
∑K
k=1 πk = 1, πk ≥ 0,

yk ≥ πk, yk ∈ {0, 1}, k = 1, . . . ,K.

The equivalence between (3.6) and (3.7) comes from
the fact that ||π||0 =

∑K
k=1 yk for (3.7). In view of

the logarithmic term ln(πk), even explicitly enforcing
the sparsity promoting `0 norm, all the solutions πk
of (2.4) and (3.7) will be nonzero. This means that we
cannot get a sparse solution for π in the standard sense.
These facts bring us to a new notion of asymptotic
sparsification: we wish to have

|πk| ≤ ε

for many k’s, where ε is a very small number. Putting
formally,

Definition 1. For a given small ε > 0, a vector x
is called an ε-sparse solution if many elements satisfy
|xi| ≤ ε.

To find an ε-sparse solution, we propose to solve a
modified version of Eq. (3.7) by perturbing yk ≥ πk:

(3.8)

min
π,y

f(π,y) ≡ −
∑K
k=1 ak ln(πk) + τ

∑K
k=1 yk

s.t.
∑K
k=1 πk = 1, πk ≥ 0,

yk ≥ πk − ε, yk ∈ {0, 1}, k = 1, . . . ,K.

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

By using (3.8), we encourage to retain only important
components. We will see later that the second term∑K
k=1 yk equals to the number of elements πk satisfying

πk > ε. The following theorem guarantees that we can
achieve a sparse solution over mixture components in
the VB formulation:

Theorem 3.1. The following statements hold for
Eq. (3.8):

(i) It is a convex mixed-integer programming with a
bounded polyhedron feasible set.

(ii) For a suitable selection of the regularization param-
eter τ , the problem (3.8) generates an ε-sparse so-
lution.

(iii) There exist small enough positive numbers τ and ε
such that if (π,y) is a solution of (3.8) then π is
a minimizer of (2.4).

We note that (3.8) is only a relaxed version of (3.6),
they are not equivalent. Thus, the classical idea of
using the `0 regularization to control sparsity cannot
be directly applied in our setting. We introduced a new
ε-sparsity notation and a mixed integer programming.
Hence, it is necessary to formally point out how the
parameter τ control ε-sparsity. Furthermore, our result
in Theorem 3.1 (iii) is stronger than the conventional
one since we claim it in an absolute sense (hold true for
a fixed small τ) as opposed to the known asymptotic
sense (hold true when τ tends zero).

Proof. (i) We can see that the Hessian of the objective
is H = diag

(
a1
π2
1
, . . . , aK

π2
K
, 0, . . . , 0

)
, where diag(x) is an

2K by 2K diagonal matrix with i-th diagonal element
xi. From the definition of ak in Section 2, it follows that
ak is strictly positive for every k. Hence H is a positive
semi-definite matrix, which implies that the objective
function is convex. It is easy to see that all decision
variables are bounded in [0, 1], and every constraint is
linear. Thus, the feasible set is a polytope.

(ii) We claim that the sum
∑K
k=1 yk is equal to the

number of πk satisfying πk > ε. Since yk ≥ πk − ε and
yk ∈ {0, 1}, if πk > ε, then yk = 1. If πk ≤ ε, because we
are solving a minimization problem, then one must have
yk = 0. Hence the necessary and sufficient condition for
yk = 1 is πk > ε. We can choose a value for τ to
balance the first term in the objective and the number
of nonzero yi, which proves the statement.

(iii) Denote π̂ and (π̄, ȳ) by the optimal solutions
of problems (2.4) and (3.8), respectively. Define f̂ and
f̄ as the optimal function values of (2.4) and (3.8),
respectively. When τ = 0, the first-order optimality
conditions for Eq. (2.4) readily give the solution π̂k ∝

ak, leading to π̂k = ak∑K
l=1 al

= ak as a unique solution
of (2.4). We define

(3.9) ε = 0.5 min {ak| k = 1, . . . ,K} .

Since ak are strictly positive for every k, then ε > 0.
Hence, we have π̂k > ε because of the definition of ε.
Denote fε by the optimal function value of the following

(3.10)

fε = min
π

−
∑K
k=1 ak ln(πk)

s.t.
∑K
k=1 πk = 1

π1 ≤ ε.

When τ is chosen to be sufficiently small, τ
∑K
k=1 yk is

dominated by the first term in (3.8). Precisely, we can
select

(3.11) τ =
fε − f̂

2K
.

Since both (2.4) and (3.10) are strongly convex
problems and the feasible set of (3.10) is contained
in the feasible set of (2.4), but it does not include the
unique minimizer of (2.4) (because π̂k > ε for (2.4)),
we have fε > f̂ . Hence it follows τ > 0. We claim
that if ε and τ are defined as (3.9) and (3.11), then∑K
k=1 ȳk = K for (3.8), i.e., ȳk = 1 for every k . We

proceed by contradiction. Assume that
∑K
k=1 ȳk < K.

Hence, it implies π̄1 ≤ ε. We conclude that π̄ is feasible
to (3.10). We have

f(π̄, ȳ) = f̄ ≥ fε + τ

K∑
k=1

ȳk

= f̂ + τ(2K +
∑K
k=1 ȳk)

> f̂ + τK

= f(π̂, y̌),

where y̌ = 1. This is a contradiction since (π̂, y̌) is also
a feasible solution of (3.8). When ȳk = 1 for all k, the
problem (3.8) is reduced to (2.4). Thus it implies that
π̄ is an optimal solution of (2.4) for small ε and τ . �

4 Efficient algorithm for the ε-sparse problem
In general, solving a MIP is NP-hard since it involves
exhaustive combinatorial search. However, we can pro-
vide a semi-closed form solution for the problem (3.8).
Our strategy is relatively simple. We find a solution
of (3.8) for each discrete fixed value of

∑K
k=1 yk, and

select the best one from them.
Without loss of generality, we can assume that

(4.12) 0 < a1 ≤ a2 ≤ . . . ≤ aK ,

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

abc
(4.13) and if ai = aj for i < j then πi ≤ πj

for any solution π of (3.8). Note that
∑K
k=1 ak = 1.

Denote ‖y‖# by the number of zero elements of y. We
can characterize the location of zero entries of y and the
value ‖y‖# in Lemma 4.1.

Lemma 4.1. Assume (π,y) is an optimal solution of
(3.8) and the assumptions (4.12) and (4.13) are satis-
fied. We have:

(i) If ‖y‖# = m then y1 = . . . = ym = 0 and
ym+1 = . . . = yK = 1.

(ii) It holds that πk ≤ πl for every 1 ≤ k < l ≤ K.

Proof. (i) Assume that there exists some yk = 0 with
m < k ≤ K. It follows that there exists yl = 1 where
1 ≤ l ≤ m because ‖y‖# = m. We have

(4.14) πk ≤ ε < πl.

Consider (π,y) = (π1, . . . , πk, . . . , πl, . . . , xK , y1, . . . ,
yk, . . . , yl, . . . , yK). Then (π,y) is feasible to (3.8) and
‖y‖# = ‖y‖# = m. One has
(4.15)
f(π,y)− f(π,y) = −(ak − al)(ln(πk)− ln(πl)) ≤ 0.

Since πl > πk and al ≥ ak, we have al = ak. From
the assumption (4.13), we get πl ≤ πk, which is a
contradiction to (4.14).

(ii) If al = ak then πk ≤ πl because of the
assumption (4.13). If al < ak, from (4.15) we can
conclude that πk ≤ πl, which completes the proof. �

One of hidden parameters for the optimal solution
of (3.8) is the number of zero elements yk; that is
the value m = ‖y‖#. We parameterize (3.8) using
the parameter m. If m is known, by applying Lemma
4.1, solving (3.8) is equivalent to solving the convex
continuous problem:

(4.16)

min
π

−
∑K
k=1 ak ln(πk)

s.t.
∑K
k=1 πk = 1,

πk ≤ ε, k = 1, . . . ,m,

πk > ε, k = m+ 1, . . . ,K.

We can use exhaustive search for m = 0, . . . ,K− 1,
then define y as

yi =

{
0, if πi ≤ ε
1, otherwise,

and we get the value m giving the smallest f(π,y).
The convex problem (4.16) can be solved in polynomial

time by an interior-point method [4]; thus we can also
solve (3.8) in polynomial time. We observe that the
last constraints in (4.16) make it more complicated to
be solved. We propose an alternative (4.17), which can
be analytically solved for a fixed value m:

(4.17)

min
π

−
∑K
k=1 ak ln(πk)

s.t.
∑K
k=1 πk = 1,

πk ≤ ε, k = 1, . . . ,m.

Now we show that Eq. (4.17) has a semi-closed form
solution. Let us define

g(π) = −
K∑
k=1

ak ln(πk) + τ |{i : πi > ε}|,

where |S| denotes the number of elements of the set S.
We need to search for m giving the smallest value for
g(π). For a given m, if π and π̂ are solutions of (4.16)
and (4.17) respectively, we have g(π̂) ≤ g(π). However,
for an optimal value m of (3.8), it follows g(π̂) = g(π).
The Lagrangian of (4.17) is

L(π,y,µ, λ) =−
K∑
k=1

ak ln(πk) +
∑
k≤m

µk(πk − ε)

+ λ(

K∑
k=1

πk − 1).

The Karush-Kuhn-Tucker (KKT) conditions for (4.17)
give

(4.18)

ak
πk

=

{
λ, if k > m

λ+ µk, if k ≤ m

µk(πk − ε) = 0, k ≤ m
µk ≥ 0, k ≤ m.

We are seeking a vector π which satisfies both the KKT
conditions (4.18) and the feasibility for (4.17). The
following lemma points out conditions for which some
entries of π can be quickly determined.

Lemma 4.2. Assume π is an optimal solution of (4.17)
for a given m = ‖y‖#. The following holds

(i) If ak ≥ ε and k ≤ m then we have πk = ε.

(ii) If am ≤ ε or m = 0 then π = a.

Proof. (i) We proceed by contradiction. Assume πk < ε
for some k ≤ m, then πk < ε ≤ ak. From the
complementary slackness in the KKT conditions (4.18),
we have µk = 0. It implies

(4.19)
ak
πk

= λ > 1.

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Since µk ≥ 0 for every k ≤ m, we have ak
πk
≥ λ for all

1 ≤ k ≤ K. It follows

ak
λ
≥ πk.

Summing up the above inequality gives∑K
k=1 ak
λ

=
1

λ
≥

K∑
k=1

πk = 1.

Hence λ ≤ 1. This is a contradiction to (4.19), so the
proof is complete.

(ii) Ifm = 0, we proved π = a in Theorem 3.1. Now
assume am ≤ ε and m > 0. We can define λ = 1, µk = 0
and π = a. It is easy to see that the KKT conditions
(4.18) are satisfied. Furthermore, the objective function
of (4.17) is strictly convex in its domain and π = a is a
feasible solution, thus π = a is the unique solution. �

By using the same arguments in the proof of Lemma
4.1, we can conclude that 0 < π1 ≤ π2 ≤ . . . ≤ πK when
π is a solution of (4.17). For a given m, we need to
identify a break-point k̂ where

πk < ε, if k ≤ k̂(4.20)

πk = ε, if k̂ < k ≤ m.(4.21)

From the KKT conditions (4.18), we have πk = ak
λ for

any k ≤ k̂ and k > m. It holds that

1 =

K∑
k=1

πk =
∑

k≤k̂ or k>m
πk +

∑
k̂<k≤m

πk

=
∑

k≤k̂ or k>m

ak
λ + (m− k̂)ε.

Hence, we have λ =
(∑
k≤k̂ or k>m

ak
)
/
(
1 − (m − k̂)ε

)
.

For any k ≤ k̂ or k > m, one has

(4.22) πk =
ak(1− (m− k̂)ε)∑
i≤k̂ or i>m

ai
,

which is dependent of k̂. For any π defined as in (4.21)
and (4.22), it is satisfied all of the optimality conditions
of (4.17) provided that we can guarantee the feasibility
condition πk ≤ ε for every 1 ≤ k ≤ m and µk ≥ 0 for
any k̂ < k ≤ m. Note that because {ak} is an increasing
sequence and from (4.22) we have π1 ≤ π2 ≤ . . . ≤ πk̂.
It suffices to find a value k̂ such that πk̂ < ε. Let t be
the index satisfying

a1 ≤ . . . ≤ at−1 ≤ at < at+1 ≤ . . . ≤ am

where at < ε, and at+1 ≥ ε. From Lemma 4.2 we claim
that if there exists k̂ ≥ 1 such that πk < ε whenever
k ≤ k̂ then k̂ ≤ t. We should start to search for k̂ from
t to 1. Checking µk̂+1 ≥ 0 is equivalent to verifying

ak̂+1

ε
≥ λ =

∑
k≤k̂ or k>m

ak

1− (m− k̂)ε
.

That is, ak̂+1(1− (m− k̂)ε) ≥ ε
∑
k≤k̂ or k>m ak.

Now we are ready to present an algorithmic frame-
work denoted by SWSA for solving the problem (3.8) in
Algorithm 1 under the assumption (4.12).

By using techniques from convex optimization in-
cluding exploitation of KKT conditions, a conditional
closed-form expression for each mixture component has
been derived (fixing the number of components). The
point estimate can be determined by combining the
closed-form expression for a fixed number of active com-
ponents t and exhaustive search over t. By the above
analysis, we can state the following complexity result:

Algorithm 1 Sparse Weight Selection Algorithm
SWSA(a, τ , ε)

Set fmin ← −
∑K
k=1 ak ln(ak) + nτ

for m = 0, 1, . . . , n− 1 do
if m = 0 or am ≤ ε then
π ← a

else
Find t ≤ m such that at < ε ≤ at+1

if t = ∅ then

πk ←

{
ε, if k ≤ m
ak(1−mε)∑n

i=m+1 ai
, otherwise

else
for k̂ = t, t− 1, . . . , 1 do
πk ← Eqs. (4.21) and (4.22)
if
(
πk̂ < ε and ak̂+1(1 − (m − k̂)ε) ≥

ε
∑

i≤k̂ or i>m
ai

)
then

break
end if

end for
end if
g(π)← −

∑K
k=1 ak ln(πk) + τ |{i : πi > ε}|

if g(π) < fmin then
fmin ← g(π) and π∗ ← π

end if
end if

end for
return π∗

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

1

2

3

4

π1 = 0.4
1

2

3

4

π2 = 0.3
1

2

3

4

π3 = 0.3

Figure 1: True precision matrices for synthetic data

1

2

3

4

π1 = 0.4046
1

2

3

4

π2 = 0.3003
1

2

3

4

π3 = 0.2951

Figure 2: Learned precision matrices by SWSA

1

2

3

4

π1 = 0.4211
1

2

3

4

π2 = 0.0453
1

2

3

4

π3 = 0.2546
1

2

3

4

π4 = 0.0003
1

2

3

4

π5 = 0.2786

Figure 3: Learned precision matrices by the conventional ARD - CARD

Theorem 4.1. Algorithm 1 can find a global optimal
solution of Eq. (3.8) in quadratic time in terms of the
maximum number of mixture components K.

5 Experiments
In this section, we first show the recovery accuracy
and convergence behavior of our sparse mixture weight
model SWSA on synthetic data sets. We then access the
performance of our method in terms of the accuracy in
anomaly detection and the held-out log likelihood for
real data sets.

To be specific and as simple as possible, we assume
p(x|θk) to be the Gaussian distribution N (x|µk,Λ−1k),
where µk and Λk are the mean and the precision matrix
of the k-th component, respectively. To avoid potential
numerical instabilities, we use the Laplace distribution
for Λk as P (Θ) and use the MAP estimated value for
Λk for SWSA and the conventional automatic relevance
determination method (denoted by CARD) [5]. The k-
means clustering algorithm was used to initialize the
variational Bayes methods. The precision matrix Λk is
initialized by the graphical lasso algorithm [6] for each
cluster.

In SWSA, we chose ε = 10−4. The model parameter
τ in (3.8) was selected so that the Bayesian Information
Criterion (BIC) score [17] is maximized

BIC = 2L(x|π,Θ)− log(N)d,

where L(x|π,Θ) is the log-likelihood and d = KM(M+
3)/2 + K + 1 is the number of free parameters. To
check the convergence, we monitor the error at the t-th
iteration of the VB iteration defined as

err = ‖πt − πt−1‖

until reaching at the termination limit err < 10−6.

5.1 Synthetic data To check the utility of SWSA in
pruning irrelevant components as well as convergence
rate, we randomly and independently generated N =
3 000 samples from three distinctive four-variate Gaus-
sian distributions, say, A, B, and C. Their correspond-
ing precision matrices are shown in Fig. 1 and the true
mixture weights are given by π = (0.4, 0.3, 0.3). The
first component has the mean (5, 0, 0, 5)>, we use the
same mean of (0, 5, 5, 0)> for the second and third com-
ponents.

Figures 2 and 3 show the learned precision matrices
in terms of the partial correlation coefficients and mix-
ture weights from the proposed method SWSA and the
conventional ARD CARD. Our method precisely recovers
the pattern A, B, and C, from left to right, and the mix-
ture weights are also essentially consistent to the true
values. The correct number of components K = 3 is
automatically found as opposed to the provided initial
condition of K = 10, thanks to the explicit sparsity en-
forcement. On the other hand, the conventional ARD
generates an incorrect number of components K = 5,
which results in two superfluous components: the sec-
ond and the fourth ones in Fig 3. We note that the as-
sociated mixture weights related to the unwanted com-
ponents are relatively small (0.0453 and 0.0003), which
are removed by our sparsity-promoting technique.

Figure 4 compares the behaviors of err and the
log-likelihood progresses for the proposed and the con-
ventional ARD approaches. We observe that the con-
ventional approach sometimes gets stuck at local min-
ima, while SWSA can stably find the right solution with a
much smaller number of iterations, as shown in the fig-
ure (368 versus 655 iterations). We notice that the error
and log-likelihood curves for SWSA are quite bumpy. One
explanation is that the sparsity-promoting formula (3.8)
effectively enforces some small weights suddenly fall be-

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

0 200 400 600 700

10
−6

10
−4

10
−2

number of iterations

er
ro

r

conventional ARD
proposed

0 200 400 600 700

−10
4.27

−10
4.3

−10
4.33

−10
4.36

number of iterations

lo
g−

lik
eh

oo
d

conventional ARD
proposed

Figure 4: Comparison of convergence rates when the conventional method CARD failed

0 150 300 450 500

10
−6

10
−4

10
−2

number of iterations

er
ro

r

conventional ARD
proposed

0 150 300 450 500

−10
4.7

−10
4.8

number of iterations

lo
g−

lik
eh

oo
d

conventional ARD
proposed

Figure 5: Comparison of convergence rates when both SWSA and CARD were successful

low ε at some intermediate iterations, which correspond
to big jumps. Note that for this experiment, our method
obtained a better log-likelihood (-18 721.5 vs -19 108.1).
The smooth curve of the conventional approach sug-
gests that the conventional algorithm strongly encour-
ages convergence by forcing small components to be
even smaller. Although Fig. 4 is just for one instance,
in our repeated experiments with different random num-
ber seeds for the data with this size, CARD produced a
noticeably worse solution in most cases.

We also tested a data set, on which both methods
converged to the same optimal solution and produced
correct estimate. We used a data instance with the
same ground truth as before but larger sample size, in
particular, consisting of 10000 samples. The result in
Fig. 5 shows the same trend as discussed in the previous
experiment, the convergence of the proposed method is
faster (377 versus 487 iterations).

5.2 Anomaly detection We compare the proposed
method SWSA with CARD, principal component analysis
(denoted by PCA) [13], and the mean Hotelling’s T 2

statistic (denoted by T2) [7] for anomaly detection task.
From the learned predictive distribution ppred(x) =∑K
k=1 π

kN (x|µk,Λ−1k), the anomaly score for a new
observation is computed by

a(x) = − ln ppred(x).

We test on two real-world data sets. The first data
set (Wafer) is collected from an etching tool in a su-
perconductor manufacturing process. A semiconduc-
tor wafer is processed in an etching chamber and goes
through 13 distinctive processing steps. Each of the

steps is monitored with 48 sensors such as tempera-
tures, currents, pressures and the flow rate of reactive
gases, which can be represented as a vector of length
624(= 13 × 48). Wafer quality (normal/abnomal) is
labeled using an on-wafer electric resistance measure-
ment. We used 545 normal samples for training, and
100 samples for testing. For the test set, there are 42
abnormal observations and 58 normal observations. The
second data set1 is a 32-dimensional letter recognition
dataset (Letter). We have 100 abnormal observations
and 200 normal observations in the test set. The model
was trained on 1300 normal data points.

We show the Receiver Operating Characteristics
(ROC) curves in Fig. 6 together with the area under
the ROC curve (AUC) in Table 1 to analyze the trade-
off between the true positive rate and the false positive
rate. The model parameters were chosen so that the
AUC values are maximized on the test data. We used
the number of initial K = 30. Upon convergence, SWSA
has 18 and 14 active components for Wafer and Letter,
respectively; but there are 23 and 17 non-empty clusters
for CARD. It can be seen that the ROC curves of SWSA
clearly dominate the baselines. Particularly, the AUC
values of SWSA outperform that of CARD, but using fewer
number of mixture components.

SWSA CARD T2 PCA
Wafer 0.96 0.88 0.86 0.81
Letter 0.97 0.91 0.85 0.84

Table 1: Comparison of AUC values

1http://odds.cs.stonybrook.edu/
letter-recognition-dataset/. See [12, 15] for details.

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PCA
T2
CARD
SWSA

Wafer

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Letter

PCA
T2
CARD
SWSA

Figure 6: ROC curves

log-like. BICscore Component
Breast Cancer
SWSA 276.75 1153.72 5.3
CARD 230.94 907.45 14.2
CSBDP 203.51 - 12.6
VDP 224.86 - 7.5

Cloud
SWSA 262.88 2410.21 7.4
CARD 228.11 1905.44 10.1
CSBDP 249.51 - 7.8
VDP 231.02 - 6.6

Parkinsons
SWSA -89.02 -3615.72 2.6
CARD -107.53 -5135.02 5.8
CSBDP -98.61 - 6.5
VDP -86.09 - 2.4

Anuran Calls
SWSA 2592.58 42528.4 3.2
CARD 2357.89 37413.6 11.6
CSBDP 2426.55 - 13.7
VDP 2386.32 - 3.8

Table 2: Performance comparison for held-out log
likelihood and the final number of components

5.3 Held-out log likelihood We compare our pro-
posed method SWSA with the conventional ARD ap-
proach CARD, variational Dirichlet process (VDP) [3],
and collapsed variational stick-breaking Dirichlet pro-
cess (CSBDP) [8] in terms of the log likelihood assigned
to held-out data2. Hyperparameters of Dirichlet process
methods such as initial number of clusters are selected
by cross validation. Four real data sets are used to test
our algorithm SWSA. All of them can be accessed from
UCI Machine Learning Repository [9]. We summarize
the detailed information as follows.

• The Breast Cancer data set from digitized images
of a fine needle aspirate of a breast mass has 683

2The codes are available at https://sites.
google.com/site/kenichikurihara/academic-software/
variational-dirichlet-process-gaussian-mixture-model

points in 10 dimensional space.

• The Cloud data set from cloud cover images is
composed of 1024 vectors in 10 dimensions.

• The Parkinsons data set consists of 195 individual
voice recordings, each record is represented by a 21
dimensional feature vector.

• The Anuran Calls data set collected from frog
croaking sounds has 7195 points in 22 dimensions
belonging to 10 species. We used a major species
HypsiboasCordobae having 1121 sample points.

In each data set, 90% of samples are used for train-
ing and 10% for testing, with which the log likelihood
(i.e. ln ppred) is computed as a measure of goodness.
The score is averaged over 10 random splits. The VB
algorithms start with initial values given by the k-means
method for K = 15. In Table 2, we show log likelihood
for the predictive distributions (“log-like.”) of the
test data, the BIC score (“BICscore”), and the final
number of components (“Component”). A better model
should assign higher probability to the test data.

We see that SWSA produced final solutions with
the number of components much less than that of the
conventional ARD approach CARD, which illustrates the
benefit of adding the `0 regularization. Our method
also gives a higher log likelihood value than that of
CARD, which demonstrates a better generalization ability
achieved by the removal of spurious components. The
BIC scores computed on the training data from SWSA
are also higher than CARD.

The Dirichlet process methods CSBDP and VDP can
get very sparse mixture weights, especially VDP, but
they incur a lower held-out log probability for Breast
Cancer and Cloud. Our method has the best perfor-
mance in 3 out of 4 instances (Breast Cancer, Cloud,
and Anuran Calls), and is ranked second in the remain-
ing (Parkinsons). Overall, SWSA often gets the sparsest
solution (Breast Cancer and Anuran Calls) and very
sparse one for the others.

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

101 102 103 104
10−4

10−3

10−2

10−1

100

101

102

103

number of mixing weights K

ru
nn

in
g

tim
e

(s
)

proposed
NLP
MIP

Figure 7: Running times versus the maximum number
of components K

5.4 Scalability comparison for SWSA We compare
the running times between our algorithm SWSA for solv-
ing the problem (3.8) with the mixed-integer nonlinear
programming solver SCIP [1] (denoted by “MIP”), and a
method using the nonlinear programming solver IPOPT
[20] (denoted by “NLP”) to solve the subprolem (4.16).
We randomly generated the vector a as follows: 0.2K,
0.4K and 0.4K elements of a are uniformly distributed
random numbers between [1e−7, 1e−3], [1e−4, 1], and
[1, 100], respectively. We choose τ = 0.1 and ε = 1e−4.
Our algorithm was written in Matlab and run on a
ThinkPad W540 laptop using MATLAB 8.3 with a 64-
bit Windows 7 with Intel i7-4800MQ 2.7GHz CPU and
16GB of RAM. The result is summarized in Fig. 7 as
a function of the maximum number of components K.
We observe that our algorithm scales well with the di-
mension, and run much faster than other approaches.

6 Conclusions
This paper introduces a novel method for automatic se-
lection of sparse mixture weights in probabilistic mix-
ture models as an alternative to the conventional ARD
approach. Based on the new concept ε-sparsity, we have
proposed a mathematical formula based on `0 regular-
ization for mixture weight update. We present an ef-
ficient algorithm to solve the model in quadratic time.
Using synthetic data, we have shown that the proposed
method was able to stably identify the correct number
of mixture components with a fewer number of itera-
tions, while the conventional ARD got stuck with local
minima. For real data sets, our method used a small
number of mixture components but often gave better
performance in anomaly detection as well as held-out
log likehood over existing methods.

References

[1] T. Achterberg. Scip: solving constraint integer
programs. Mathematical Programming Computation,
1(1):1–41, 2009.

[2] C. M. Bishop. Pattern Recognition and Machine
Learning. Springer-Verlag, 2006.

[3] D. M. Blei and M. I. Jordan. Variational inference
for dirichlet process mixtures. Bayesian Analysis,
1(1):121–143, 03 2006.

[4] S. Boyd and L. Vandenberghe. Convex optimization.
Cambridge University Press, 2004.

[5] A. Corduneanu and C. M. Bishop. Variational bayesian
model selection for mixture distributions. In Artificial
intelligence and Statistics, pages 27–34, 2001.

[6] J. Friedman, T. Hastie, and R. Tibshirani. Sparse
inverse covariance estimation with the graphical lasso.
Biostatistics, 9(3):432–441, 2008.

[7] T. Idé, D. T. Phan, and J. Kalagnanam. Change
detection using directional statistics. In Proceedings of
the 25th International Joint Conference on Artificial
Intelligence, IJCAI’16, pages 1613–1619, 2016.

[8] K. Kurihara, M. Welling, and Y. W. Teh. Collapsed
variational dirichlet process mixture models. In Pro-
ceedings of the 20th International Joint Conference on
Artifical Intelligence, IJCAI’07, pages 2796–2801, 2007.

[9] M. Lichman. UCI machine learning repository, 2018.
[10] G. Malsiner-Walli, S. Frühwirth-Schnatter, and

B. Grün. Model-based clustering based on sparse
finite gaussian mixtures. Statistics and Computing,
26(1):303–324, 2016.

[11] G. Malsiner-Walli, S. Frühwirth-Schnatter, and
B. Grün. Identifying mixtures of mixtures using
bayesian estimation. Journal of Computational and
Graphical Statistics, 26(2):285–295, 2017.

[12] B. Micenková, B. Mcwilliams, and I. Assent. Learning
outlier ensembles: The best of both worlds supervised
and unsupervised. In KDD ODD2 Workshop, 2014.

[13] S. Papadimitriou and P. Yu. Optimal multi-scale pat-
terns in time series streams. In Proc. ACM SIGMOD
Intl. Conf. Management of Data, pages 647–658, 2006.

[14] C. E. Rasmussen. The infinite gaussian mixture model.
In Advances in neural information processing systems,
pages 554–560, 2000.

[15] S. Rayana and L. Akoglu. Less is more: Building
selective anomaly ensembles. ACM Transactions on
Knowledge Discovery from Data (TKDD), 10(4):42:1–
42:33, May 2016.

[16] A. Roychowdhury and B. Kulis. Gamma processes,
stick-breaking, and variational inference. In AISTATS,
2015.

[17] G. Schwarz. Estimating the dimension of a model. The
Annals of Statistics, 6(2):461–464, 1978.

[18] J. Sethuraman. A constructive definition of dirichlet
priors. Statistica sinica, pages 639–650, 1994.

[19] S. A. Vavasis. Nonlinear Optimization: Complexity
Issues. Oxford University Press, Inc., New York, NY,
USA, 1991.

[20] A. Wächter and L. T. Biegler. On the implementa-
tion of an interior-point filter line-search algorithm for
large-scale nonlinear programming. Mathematical Pro-
gramming, 106(1):25–57, 2006.

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

