A discrete pattern, formed by dots discretely arranged in two dimensions, is provided wherein the dots included in a rectangular area having a longitudinal length of \(L_x \) and a transverse length of \(L_y \) satisfy expression (1),

\[
D \leq 0.13 N^{-1.15}
\]

(in expression (1), \(N \) denotes the number of dots included in a predetermined area, and \(D \) is obtained by expression (2), wherein \(A(x,y) \) defines the number of dots, of a total of \(N \) dots, included in a rectangular area for which a line segment extended from reference coordinates \((0,0)\) to an arbitrary coordinate point \((x,y)\) is a diagonal line), [Ex. 2]

\[
D(L_x, L_y; N) = \int \int_{A(x,y)} \frac{A(x,y)}{N} \frac{x y}{L_x L_y} \, d x \, d y
\]

and wherein \(S_1 \) that is obtained by expression (3) [Ex. 3]

\[
S_1(r_1, r_2) = \int_0^{r_1} dr g(r; r_1, r_2) - g_{\text{av}}
\]

is equal to or smaller than 0.7. (In expression (3), \(g_1 \) is obtained by dividing the average radial distribution function \(g(r) \) of each dot in the area by an integration value of \(g(r) \) over a range of from \(r_1 \) to \(r_2 \) and \(g_{\text{av}} \) is the average value of \(g_1 \) within the range of from \(r_1 \) to \(r_2 \). When the dots are arranged in a square lattice to satisfy a given filling rate, \(r_1 \) and \(r_2 \) are chosen as one and four times the value of the lattice constant \(D \) respectively. The dot filling rate is a value obtained by multiplying the square of the maximum diameter of a dot by the number of dots, and dividing the product by the size of the area.)