
学位論文

Theoretical Study on Nonlocal Effects
in Resonant X-Ray Emission Spectra

of Strongly-Correlated Systems

強相関電子系の共鳴Ｘ線発光スペクトルにおける
非局所効果の理論的研究

平成11年 12月博士（理学）申請

東京大学大学院理学系研究科

物理学専攻

井手剛



Thesis

Theoretical Study on Nonlocal Effects

in Resonant X-Ray Emission Spectra

of Strongly-Correlated Systems

Department of Physics, Faculty of Science,

The University of Tokyo

December, 1999
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Chapter 1

General Introduction

In this chapter, a brief survey is given of the ideas that lie at the basis of the other chapters in this thesis.

We first explain the historical background of this study. Next we derive formulae for scattering cross

section of the second order optical process, and explain its general properties. Model Hamiltonians, the

Zhang-Rice singlet, core excitons and numerical techniques are sketched in the rest of this chapter. We

finally summarize our motivation of this thesis.

1.1 Historical Survey on High-Energy Spectroscopies

1.1.1 Core-level spectroscopies

Since before the advent of quantum mechanics, light rays have been used as a tool to investigate the

microscopic world. In fact, it is since the success in explaining the experimentally observed optical

spectra such as the Balmer series of hydrogen [1] that the Schrödinger and the Heisenberg equations

have been acknowledged as the fundamental equations. The discovery of the spin degrees of freedom

is also associated with spectroscopic experimental facts such as the Zeeman effect or the Pashen-Back

effect [2]. In this sense, spectroscopies had played a role of a cradle of quantum mechanics. The atomic

theory of spectroscopy had been completed before the end of the World War II by the famous papers by

Slater [3], and by Racah [4], all of which were accidentally titled “theory of complex spectra”. It was

Racah who introduced the notion of spherical tensors. In these papers, they classified the eigenstates of

atoms containing many electrons according to SO(3) group, and clarified selection rules in an optical

transition. Since sufficiently deep core orbitals in solids nearly exactly maintain the SO(3) symmetry,

their theories often appear as a leitmotiv in core-level spectroscopy (CLS) studies on solids at present.

The development of many-body physics has promoted the application of CLSs to the solid state. Let

us concentrate our attention to CLSs in the X-ray regime. Apart from the academic trend of research

on the Fermi edge singularity, it was Siegbahn and co-workers who stated the significance of CLS

in material science of solid states. They named X-ray photoemission spectroscopy ESCA (Electron

Spectroscopy for Chemical Analysis), and had carried out extensive studies. Their first review article

was issued in 1967 [5]. The systematic analysis let Siegbahn have won the Nobel Prize in 1981. Because

of the recent development of synchrotron light sources, and the establishment of modern theory of CLS

as will be explained in the next subsection, CLS occupies a huge research area in material science today.
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Figure 1.1: Schematic explanation of various core-level spectroscopies in an insulator. The horizontal

and vertical axes schematically represent the energy and density of states of one-electron state, respec-

tively. There are an empty upper band and a filled valence band in the system. The core level is

represented with the horizontal bar. XAS and XPS are classified into the first-order optical process,

whereas RXES and RXES are into the second-order optical process. See the explanation in the text.

Figure 1.1 shows several modes of CLS for insulators. In X-ray absorption spectroscopy (XAS), a

core electron is photoexcited by incident X-rays with energyΩ into an empty valence state. Roughly

speaking, the density of states (DOS) of the unoccupied band would reflect on the XAS spectrum. In

the case of X-ray photoemission spectroscopy (XPS), a core electron is photoexcited into the high-

energy continuum. The energy of the photoelectron is simply that of the core level if there were no

core-valence Coulomb interaction. However, the existence of valence fluctuation in a class of materials

and strong Coulomb interaction gives rise to complicated spectra. XAS and XPS are classified into

first-order optical processes, where “first-order” means that they can be described within the first-order

perturbation theory of electron-photon interaction.

Resonant X-ray emission spectroscopy (RXES) is one of the second-order optical processes, where

a core electron is resonantly photoexcited to an empty valence level, then a valence electron makes a

radiative transition to emit an X-ray with energyω. In contrast to XAS and XPS, there is no deep core

hole in the final state, and the number of electrons in the final state is the same as that of the ground

state. Thus, its spectra can be directly compared to those of valence level experiments,e.g.,optical

conductivity. RXES, however, has several advantages over other spectroscopies.First, it is a site- and

shell-selective experiment. For example, one can separately excite a Cu2p orbital or an O1s orbital in

a CuO2 plane of high-Tc cuprates, by tuning incident photon energyΩ at an appropriate range. This is a

common feature of CLS, and it makes CLS free from overlapping effects between,e.g.,the Cu3d and

O 2p orbitals in the CuO2 plane in valence spectroscopies.

Thesecondadvantage of RXES as a photon-in and photon-out experiment is bulk-sensitivity, which

owes the long escape depth of X-rays. Generally, the escape depth of X-rays is hundreds of times longer

2



than that of a photoelectron, which is of order of at most a few tenÅ [6, 7]. The third advantage of

RXES is due to its resonance behavior. By tuningΩ at a specific structure of XAS, one can choose

the corresponding excited state “by hand” in the final state. This freedom is quite useful to study gap

structures. In addition, RXES can sensitively reflect the electron dynamics associated with variety of

relaxation processes after the creation of a core hole, through the resonant selection of an intermediate

state. Thefourth advantage of RXES is due to its selection rule. As will be explained using explicit

expressions of the spectral function in§ 1.2, RXES obeys selection rules of the local point group such

as the dipole selection rule, as well as of the translational group of a whole crystal. This duality is

extremely suitable for studying strongly correlated systems, where local as well as itinerant natures of

electrons appear often at once.

energy

DOS

core

(a) PES (b) BIS (c) 

Ω

Ω

ω

Auger electron
emission 

Figure 1.2: Schematic explanation of valence spectroscopies and Auger electron emission process in an

insulator. See the caption in Fig. 1.1 and the explanation in the text.

Let us turn our eyes to other spectroscopies again. Figure 1.1 (d) shows the “normal” X-ray emis-

sion spectroscopy (NXES), where a core electron is photoexcited into a high-energy continuum, not

into valence states. Evidently, its intermediate state is the same as the final state of XPS, whereas the

intermediate state of RXES is the same as that of XAS. Despite the apparent resemblance, NXES is

quite different from RXES in at least two respects. First, the emitted photon energyω is independent of

the incident photon energyΩ in principle;ω roughly reflects DOS of the filled valence band. Second,

apart from the photoelectron, the number of electrons in the final state decreases by one from that of the

initial state. Accordingly, one has to use a spectral function considerably different from that of RXES

in order to calculate NXES spectra.

Figure 1.2 (a) shows valence photoemission spectroscopy (v-PES or simply PES), where a valence

electron is photoexcited into the high energy continuum, so that the valence band information is directly

obtained. Figure 1.2 (b) shows a radiative process caused by a fast electron beam. As expected from

the figure, it roughly reflects DOS of the unoccupied band. This type of spectroscopy is called inverse

photoemission spectroscopy (IPES) or Bremsstrahlung Isocromat Spectroscopy (BIS). Although these

valence spectroscopies have subtle things such as surface-sensitivity and charging effects for insulators,
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the experimental resolution in the latest PES technique is still higher than that of RXES at present, where

the resolution of order of a few hundred meV is reported at best. Recent improvements in experimental

apparatus [8], however, would make possible higher resolution for RXES in the near future.

Figure 1.2 (c) shows the Auger decay process. After a core hole is photocreated, electronic correla-

tion between electrons can cause a nonradiative decay involving a simultaneous creation of an unbound

electron. Mathematically, this is due to a term such as

UAc†
rβ †

ε ar1ar2 (1.1)

in the Hamiltonian, whereUA represents Coulomb interaction energy, andc†
r is a creation operator of a

core electron at a given siter. ar1 andar2 are annihilation operators of different kind of valence orbitals,

respectively.β †
ε is a creation operator of an unbound state with energyε. We discuss a role of the Auger

effect in RXES in the next section.

1.1.2 Origin of impurity models

The effects of impurity atoms on the properties of a metal is of considerable physical interest, because

of its singular behavior beyond uniform Fermi liquid theory [9]. A typical example is the resistance

minimum, which is observed in such metals as Cu and Al doped with a small amount of Fe or Ni.

In 1961, Anderson proposed the following model [10], the Anderson model, to discuss the magnetic

moment of the impurities,

HAnd = ∑
k,σ

εka†
k,σ ak,σ +∑

σ
εdd†

σ dσ +
1√
N

∑
k,σ

(
Vka†

k,σ dσ +H.c.
)

+Uddd†
↑d↑d

†
↓d↓, (1.2)

wherea†
R,σ is a creation operator of a conduction electron of the host metal with wave numberk and

a spin componentσ . Similarly, d†
σ is a creation operator of the impurity3d orbital. εk and εd are

one-electron energies of the conduction band and the impurity orbital, respectively.Udd is the Coulomb

interaction of the impurity orbital.Vk is the hybridization energy between conduction electron and the

impurity orbital.N is the number of atoms of the host metal. In the limit of|Vk/Udd| ¿ 1, HAnd is trans-

formed into thesd model through Schrieffer-Wolff transformation [11], the model with which Kondo

gives a clear-cut explanation for the long-standing challenge of the resistance minimum in 1964 [12].

Since the middle of the 1960s, the impurity model had been applied to the Fermi edge problem of X-

ray spectra. To discuss XAS or XPS spectra of simple metals1, a localized core orbital was introduced

in place ofdσ in HAnd, and the Coulomb interactionUc between conduction and core orbitals were

added,

HMND = ∑
k,σ

εka†
k,σ ak,σ −Uc∑

σ
a†

0,σ a0,σ nc + εc(1−nc), (1.3)

wherenc is the number of core holes at a given site, say, the origin0. nc is 0 for the initial state, 1

for the final state.a†
0,σ is a creation operator of the conduction electron at the site0. This is often

called Mahan-Nozìeres-DeDominicis (MND) model [13]. Based on this Hamiltonian, Nozières and

De Dominicis (ND) completely disclosed the origin of the Fermi edge singurarity [14], with elaborate

techniques in those days [15].

1While X-ray emission spectra had been also discussed in those days, it was regarded as a first order optical process, i.e. neither

resonant nor normal X-ray emission processes.
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Subsequently to their celebrated work, Kotani and Toyozawa (KT) dealt with core level spectra of

metals with incomplete shells [16]. They added a localized orbitalf to the MHD model,

HKT = ∑
k

εka†
k
ak + ε f f † f + εc(1−nc)−U f c f † f nc +

V√
N

∑
k

(
a†

k
f +H.c.

)
, (1.4)

with which they explained a satellite structure of La3d-XPS of La metal [17]. Figure 1.3 schematically

shows their theory. In the ground (initial) state, La metal takes af 0 configuration because the energy of

La 4 f levelε f is high enough from the Fermi energyεF . In the final state, however, the strong core hole

potentialU f c pulls down the4 f level, so that “well-screened”4 f 1 and “poorly-screened”4 f 0 states are

realized. The former involves the infinite number of electron-hole pairs near the Fermi level to exhibit a

divergent line shape at the threshold. Thef 0 state can be regarded as a virtual bound state occupied by

a conduction electron, with a Lorentzian-broadened line shape. The KT theory is the first recognition

that dynamicscreeningprocesses due to the local perturbation give rise to the variety of line shapes of

core-level spectra, and in this sense it opened a door to the modern theory of CLS.

ε
fc

4f

εF
U

(a) (b)

La 3d

La 4f

Figure 1.3: Schematic explanation of Kotani-Toyozawa theory, reprinted from Ref. [17] with unessential

modifications. (a) In the ground state, La4 f orbitals are above the Fermi levelεF , and3d core orbitals

are far belowεF and filled. (b) A final state of La3d-XPS, where a core electron is photoexcited

into high-energy continuum. The strong core hole potentialU f c pulls down the4 f level belowεF .

A conduction electron screens the core hole through a finite value of hybridization between4 f and

conduction electrons.

From a viewpoint of theoretical physics, the KT theory can be regarded as an epitaph on the ND

theory, one of the most brilliant theories in the 1960s. Their framework has provided some topics ever

since, such as a renormalization group study on the KT model [18] and a revisit of the ND theory in the

context of Tomonaga-Luttinger theory [19].

The next remarkable development in CLS was done by Gunnarson and Schönhammer (GS) in

1983 [20]. They applied the KT model to valence-fluctuated systems. For CePd3 or CeO2, the 4 f

occupation number in the ground state takes a given value from 0 to 1 in contrast to the La metal, where

the4 f 0 weight is predominant in the ground state. If one goes along the KT theory, it is expected that

three peaks with mainly4 f 0, 4 f 1 and4 f 2 configurations are observed in Ce 3d-XPS spectra. As will
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be explained in§ 1.4.1, GS extended the KT model to include the degeneracy of4 f orbital and the

Coulomb interaction between4 f electrons, and showed a systematic way to calculate XAS, XPS and

BIS. One can say that GS led the KT theory to its complete form within the impurity problem. The GS

model is now referred to also as impurity Anderson model. We will use the word “impurity model” for

the GS-type model hereafter.

1.1.3 Mott-Hubbard vs charge-transfer insulator

It is not surprising that the direction of studies on CLS turned toward application to material science

after the establishment of the basic concept. This trend was motivated by successful works on the clas-

sification of insulators such as NiO by Fujimori-Minami [21] and Zaanen-Sawatzky-Allen (ZSA) [22].

Ti2O3, V2O3, NiO, etc. have been well-known insulators, where the Coulomb interactionUdd plays

an essential role [23]. In fact, they would be metals according to the simple band theory ifUdd were

missing.Prior to the works by Fujimori-Minami and ZSA, the lowest charge excitation in these com-

pounds were believed to be made by an inter-sited-d charge transfer:

(dn)i(dn) j → (dn−1)i(dn+1) j ,

wheren is the nominal occupation number of a material considered,i and j label transition metal sites.

This process gives a charge gap of order ofUdd, and this type of insulators have been called a Mott-

Hubbard (MH) insulator after pioneer works by Mott [24] and their mathematical sophistication by

Hubbard [25].

Using a NiO−10
6 octahedral cluster model, Fujimori-Minami discussed photoemission spectra of

NiO, and they concluded from their calculation that the charge gap is realized by a transition to a metal

3d site from its surrounding oxygen2p orbitals. They estimated the value of∆I =4.0 andUdd=7.5 for

NiO, where charge-transfer (CT) energy∆I is defined by the energy difference

∆I ≡ E(dn+1L)−E(dn), (1.5)

whereL stands for a ligand hole2. ZSA, on the other hand, performed systematic estimation of charge

gaps in transition metal compounds with the GS theory. They classified the insulators into three groups

according to relative value between∆I andUdd: MH type, CT type and their intermediate type. Standing

on their classification, one can regard NiO as a CT insulator because ofUdd > ∆I .

In this connection, a while after their works, Uozumi performed extensive calculations on 2p-XPS

of M2O3-type transition metal oxides with aMO6 cluster model forM=Ti, V, Cr, Mn and Fe including

full multiplet [26, 27]. While he obtained parameter values that∆I > Udd for Ti and V, and∆I < Udd

for others, he concluded that Ti, V, Cr and Mn sesquioxides should be classified into the intermedi-

ate type insulator because of large values of metal-ligand hybridization. His results are summarized

in Fig. 1.4. This conclusion was supported by Bocquetet al., who also discussed2p-XPS for various

transition metal oxides [28]. These studies are representative of application of CLS to investigation of

electronic structure for strongly-correlated insulators. The site-selectivity encourages us to use the im-

purity models for a quantitative analysis of core-level spectra. While CLS’s need additional parameters

such as core-valence interaction, it is possible to estimate them to satisfactory accuracy with the stan-

dard atomic Hartree-Fock procedure [26, 27]. With contemporary numerical diagonalization techniques

2One should average over all irreducible representations to evaluate the energy.
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and new generation synchrotron radiation sources, a comparative study of this kind between theory

and experiment in CLS has established reputation of being one of the most reliable tools to investigate

correlated systems.

Figure 1.4: The ZSA diagram by Uozumiet al. [27]. Ti2O3, V2O3, Cr2O3 and Mn2O3 are located in the

intermediate region between CT- and MH-insulators, whereas Fe2O3 is classified as a CT-type insulator.

1.1.4 Nonlocal screening

As is the case of the theories of Fujimori-Minami or Uozumiet al., theoretical studies with impu-

rity models are based on an assumption that a broken translational symmetry calculation is, as far as

transition metal ions are considered, a good approximation for transition metal compounds. An exact

calculation in principle should include also the translational symmetry of the transition metal ions. Since

d-band dispersion width have been believed to be usually very small compared toUdd or ∆I , it has been

expected that neglect of this would only cause small errors in calculated insulating gaps, and would not

change the physics unless perhaps if the gaps also turn out to be very small [22].

The discovery of high-Tc compounds [29], however, provided a new viewpoint on this assumption,

and thus on interpretation of core-level spectra. The traditional BCS theory states that Cooper pair

creation at the Fermi surface gives rise to superconductivity [30]. The high-Tc superconductivity is,

however, caused by carrier doping into an insulating phase. In the insulating parent compounds such

as La2CuO4, the stoichiometry leads to ad9 configuration for Cu2+ ions. Since these compounds with

such incomplete filledd band would be metals if strongUdd were absent, it is clear that the Coulomb

correlation prevents the motion of electrons. There is a consensus that the parent compounds are located

in the CT regime. Upon doping, by replacing a few percent of La with Sr in the case of La2CuO4 for

instance, a dopant hole mainly goes into the O2p orbitals, keeping away from energetically unfavorable

d8 configuration. Experimental evidence of this negligibled8 weight was given by valence PES results

by Fujimoriet al.[31] and other groups [32]. Subsequently, experimental studies on O1s-XAS [33] and

Cu 2p-XAS [34, 35] conclusively demonstrated their conclusion, making full use of the advantages of
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CLS such as the site-selectivity and dipole-selectivity. These are also worth referring to as an example

for application of CLS to material science.

The high-Tc systems were impressive for the fresh interplay between localized (insulating) and itin-

erant (superconducting) natures. Analogous to these systems, it was natural for van Veenendaal and co-

workers to anticipate doping dependence on Ni2p-XPS ofMxNi1−xO (M=Li, Na). Extending the NiO6
cluster model of Fujimori-Minami to include a “reservoir” Ni, they showed that a description beyond an

atomic multiplet calculation is required [36]. Subsequently, they discussed influence of superexchange

interaction [37, 38] on isotropic Ni2p-XAS in NiO [39] with the reservoir model, and reported that

spin-spin correlation has a direct effect on the spectra [40]. Encouraged by these results, they performed

a calculation on Ni2p-XPS of NiO with a Ni7O36 cluster model, where only3d eg orbitals and the

σ -bonding O2p orbitals are taken into account [41]. Thereby they pointed out that an experimentally

observed shoulder structure in the main manifold of2p-XPS originates from a CT screening process

from a neighboring NiO6 unit, not only from the oxygen orbitals adjacent to the photoexcited Ni site.

This is the first discovery of nonlocal screening effects.

Their results are shown in Fig. 1.5 in comparison with a result with NiO6 cluster, where three peaks

mainly due toc3d9L, c3d8 andc3d10L2 weight are observed (left figure).c andL represent a hole at a

core orbital and a ligand orbital, respectively. In the right figure, the curve (b) exhibits a clear shoulder

structure beside the main peak at zero. This is the contribution of the nonlocal screening.

More surprisingly, they disclosed that themain peak of Cu2p-XPS of CuO and high-Tc cuprates

also originates from a nonlocal screening process, where a hole is pushed out by a strong intra-atomic

Cu2p-3d interaction into the neighboring CuO4 units to form a Zhang-Rice singlet [43]. The calculated

curve in Fig. 1.5 (c) shows their result, where the main peak at zero is the Zhang-Rice singlet peak. The

shoulder at about 2 eV and the satellite at about 9 eV are attributed to contributions mainly ofc3d10L

andc3d9, respectively. These two peaks have been known from analysis based on impurity models.

Do these striking results mean that all theoretical studies on CLS to date based on the impurity

models should be thrown away? The clear answer has not been known so far. Although a systematic

study on CLS of transition metal compounds with such “large”-cluster models beyond the impurity limit

is clearly desirable, the limitation of memory size of computers prevents us from investigation with

realistic models. In fact, the inclusion of orbital degeneracy in a multi-metal-ion cluster is extremely

difficult within exact diagonalization methods. To the author’s knowledge, the only attempt is a full-

multiplet calculation of valence spectra with a Cu3O10 cluster by Tanaka and Jo [44]. This kind of

calculation fordn materials with2≤ n≤ 8 is far from the ability of the present supercomputers. Now

clear that a model study to grasp the essential physics is needed.

At least for metal2p-XPS of NiO and high-Tc cuprates, the reason why the nonlocal screening effect

plays the severe role is that each material has a specific stabilization mechanism such as the Zhang-Rice

singlet formation in cuprates. In this respect, van Veenendaalet al. demonstrated in their analysis on

Ni 2p-XPS [41] that the doubly-peaked structure disappears when raising thed orbital energies on sites

other than the photoexcited Ni atom, because of the absence ofd orbitals in the valence band region.

The strong nonlocal contribution on2p-XPS in NiO and CuO or high-Tc cuprates may be related to their

character as a typical CT-type insulator [45].
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Figure 1.5: The discovery of nonlocal screening effect in Ni2p-XPS of NiO and cuprates [41]. Left:

Calculated Ni2p-XPS spectrum with a NiO6 cluster model as described in the inset. Right: (a) Experi-

mental spectrum of Ni2p-XPS [42]. (b) Calculated Ni2p-XPS spectrum with a Ni7O36 cluster model

as described in the inset. (c) Calculated Cu2p-XPS spectrum of a Cu3O10 cluster model as described

in the inset.
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1.1.5 A new aspect of nonlocal effects

Recent development of synchrotron radiation sources shed a light on nonlocal effects of CLS from

another side. As explained, RXES, whose experimental resolution was drastically improved with such

high-brilliance light sources, has the remarkable feature that it reflects local as well as itinerant natures

of electronic systems. Thus, it is expected that nonlocal effects emerge in a specific manner different

from XAS or XPS. Recent experiments on metal3d-2p RXES of transition metal oxides clearly suggest

this sign. Tezukaet al. first reported strange excitation energy (Ω) dependence of RXES spectra in a

d0 compound TiO2 [46]. Figure 1.6 shows Ti3d-2p RXES of ad0 compound FeTiO3 measured by

Butorin et al. [47], exhibiting a similar feature to that of TiO2. We see that there is a broad spectrum

at about 450 eV for nearly allΩ as if emitted photon energy (ω) had little dependence onΩ. We call

these spectra fluorescence-like component hereafter. On the other hand, there are observedΩ-dependent

spectra which move nearly in parallel toΩ, keeping their energy distance from the elastic line constant.

If we arrange the same spectra with Raman shift, which is defined byω −Ω, they will stand in a line

at a value of Raman shift. Hence, we call them simply Raman component hereafter. This double-

component feature in metal3d-2p RXES is observed in various transition metal oxides [48] in addition

to these compounds.

Figure 1.6: Experimental XAS, NXES and RXES spectra of FeTiO3 [47]. The arrows attached to the

XAS spectrum indicate the excitation energy. The NXES spectrum is at the top of the array of RXES

spectra for excitation energy well above the absorption threshold (490.0 eV). A small but relatively

sharp peak at the highest emitted photon energy in each of excitation energy is the elastic line. The

fluorescence-like spectra are clearly observed.
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The fluorescence-like spectra are not understandable from a viewpoint of impurity models. XAS

and XPS spectra of TiO2 are extremely well reproduced with a TiO6 cluster model [49]. Thus it is

expected that a dominant class of intermediate state whenΩ is tuned at the absorption threshold is fairly

localized in a photoexcited TiO6 unit, and that final states left after an X-ray emission process from

these intermediate states should be described within local CT excitations, being strongly dependent

on the well- or poorly-screened natures of the intermediate states. In other words, the intermediate

state keeps full memory of the incident X-ray, and the corresponding final state should depend onΩ
accordingly. Since energy scale of local CT excitations is determined by∆I or Veff (see§ 1.4), which

has the value of order of at most 10 eV, the energy conservation rule

ω = Eg−Ef +Ω

never predicts the fluorescence-like spectra over whole range of the absorption threshold,Eg andEf

being electronic energies of the ground state and a final state, respectively. It rather predicts only the

existence of the Raman component.

The fluorescence-like spectra suggest a dynamicaldissipationprocess of the photoexcited electron,

which results in loss of the memory of the photoexcited site. If the dissipation from the photoexcited

site to the surrounding reservoir system completely occurs in the intermediate state, an X-ray emission

process necessarily resembles NXES, resulting in the fluorescence-like spectra. Hence, we consider the

double-component spectra to be a direct consequence of interplay between local and itinerant excitations

of an electronic system. This is a new kind of nonlocal effect in CLS, which might bring about a new

understanding as to the local-itinerant duality of3d systems. Together with the “traditional” nonlocal

effect van Veenendaalet al. have demonstrated, the main theme of this thesis is to study how the

nonlocal effects appear in RXES spectra.

1.2 Resonant Scattering

1.2.1 Quantum theory of radiation

The classical radiation field is governed by the following reduced Maxwell equations for the vector

potentialA under the radiation (Coulomb) gauge [50]:

(
∇·∇− 1

c2

∂ 2

∂ t2

)
A = 0 (1.6)

∇·A = 0. (1.7)

We adopt the MKSA rationalized unit throughout this section. The magnetic fieldB and electronic field

E are derived fromA :

B = ∇×A (1.8)

E =
∂A
∂ t

. (1.9)

Multiplying Eq. (1.6) by∂A/∂ t, we have

1
2

∂
∂ t

[
1
c2

(
∂A
∂ t

)2

+(∇×A)2

]
= ∇·

[
∂A
∂ t
×(∇×A)

]
, (1.10)
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where the transversality condition Eq. (1.7) and mathematical identities that

∇×(∇×A) = ∇(∇·A)− (∇·∇)A

and

∇·
[
(∇×A)×∂A

∂ t

]
=

∂A
∂ t
· [∇×(∇×A)]− (∇×A)·

(
∇×∂A

∂ t

)

have been used. The right side of Eq. (1.10) vanishes according to the Gauss’ divergence theorem when

integrated over the total volume, so that

Hr ≡ 1
2

∫
d3x

(
ε0E2 +

1
µ0

B2
)

(1.11)

is a time-independent constant.µ0 andε0 are the magnetic permeability and dielectric constant of the

vacuum, respectively. The integrand of the above equation has the unit of energy density, because the

units of E andε0 are [NC−1] and [C2Nm−2], respectively. Hence, one can interpretHr as the total

energy function of the radiation field.

The quadratic form in Eq. (1.11) suggests Fourier decomposition as

A(x, t) =
1

2
√

V
∑
q,ε

ε
[
a∗q,ε (t)eiq·x+aq,ε (t)e−iq·x

]
, (1.12)

from which we have

E(x, t) =− 1

2
√

V
∑
q,ε

ε
[
ȧ∗q,ε (t)eiq·x+ ȧq,ε (t)e−iq·x

]
(1.13)

B(x, t) =
1

2
√

V
∑
q,ε

iε×q
[
a∗q,ε (t)eiq·x−aq,ε (t)e−iq·x

]
. (1.14)

The polarization vectorε is restricted within the plane perpendicular toq according to the transversality

condition. Each Fourier component satisfies the conditiona∗−q,ε =aq,ε . By substituting with them,

Eq. (1.11) reads

Hr =
ε0

2 ∑
q,ε

(
ȧ−q,ε ȧq,ε +c2q2a−q,ε aq,ε

)
(1.15)

after some algebra. In the free radiation field, this function is regarded as the LangangianL for canoni-

cal coordinates{aq,ε}. Following the standard procedure in classical mechanics [51], we define canon-

ical momentumpq,ε as

pq,ε ≡ ∂L

∂aq,ε
=

1
2

ε0ȧ−q,ε .

Now we introduce quantized canonical variables by postulating quantization conditions

[a−q,ε , pq′,ε ′ ] = ih̄δq,q′δε ,ε ′

[aq,ε ,aq′,ε ′ ] = [pq,ε , pq′,ε ′ ] = 0,

where square brackets represent the commutator, and the deltas represent the Kronecker’s delta func-

tions. Additional conditionsa†
q,ε = a−q,ε and p†

q,ε = p−q,ε are naturally assumed. In addition, we

introduce the Bose operators as

b†
q,ε =

√
ε0ωq
2h̄

a−q,ε + i

√
2

h̄ε0ωq
pq,ε ,
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so that the classical HamiltonianHr({aq,ε , pq,ε}) is associated with quantum mechanical Hamiltonian

Hr

Hr = ∑
q,ε

h̄ωqb†
q,ε bq,ε , (1.16)

where we denotec|q| by ωq. Equation (1.16) encourages us to interpret the Bose operatorb†
q,ε as the

creation operator of a photon with the polarization vectorε and wave number vectorq. After all, A is

quantized in terms of the boson operators as

A(x) =

√
h̄

2ε0ωqV ∑
q,ε

ε
(

b†
q,ε eiq·x+bq,ε e−iq·x

)
. (1.17)

1.2.2 Electron-photon interaction

The electron-photon interaction is given by [52]

Hep =
∫

d3xΨ(x)†
[

e
me

A·(−ih̄∇)
]

Ψ(x), (1.18)

whereΨ(x)† represents the creation operator of the electron field atx. The charge and mass of an elec-

tron are represented aseandme, respectively. We postulate thatΨ(x)† andΨ(x) obey the anticomutation

relations (quantization condition)

{Ψ(x),Ψ(x′)†}= δ 3(x−x′)

{Ψ(x),Ψ(x′)}= {Ψ(x)†,Ψ(x′)†}= 0,

whereδ 3(x−x′) is the three-dimensional version of Dirac’s delta function. Since we are only interested

in physics near absorption edges, the Thomson term(eA)2/2me is omitted from Eq. (1.18). In XAS and

RXES, one can usually assign principal and angular quantum numbers of core and valence orbitals by

tuning the excitation energyΩ at the appropriate absorption edge3. Now Ψ(x)† is expanded as

Ψ(x)† = ∑
Rσ

[
∑
m

φm(x−R)∗l†
Rmσ +∑

mc

ψmc(x−R)∗c†
Rmcσ

]
, (1.19)

whereφm and ψmc are Wannier functions with atomic quantum numbers of(n, l ,m) and (nc, lc,mc),
respectively.l†

Rmσ creates a valence electron withσ -component of spin atR site, andc†
Rmcσ is the same

operator for the core electrons. Substituting the above equation and Eq. (1.17) into Eq. (1.18),Hep is

expressed as the summation of the following operators

Ta =
1√
N

∑
R

eiq1·RTa
ε (R) (1.20)

Te =
1√
N

∑
R

e−iq2·RTe
ε ′(R), (1.21)

whereN is the number of the unit cell of the electronic system, and

Ta
ε (R) = ∑

m,mc

√
h̄e2

2ε0V0m2
eωq1

(nlm|e−iq1·xε ·p|nclcmc)l†
Rmσ cRmcσ (1.22)

Te
ε ′(R) = ∑

m,mc

√
h̄e2

2ε0V0m2
eωq2

(nclcmc|eiq2·xε ′·p|nlm)c†
Rmcσ lRmσ . (1.23)

3We can easily extend the theory when a few orbitals with different angular momentum participate in the transition.
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Here we dropped the photon operators, assuming that a photon with(q1,ε) is absorbed into the elec-

tronic system, and a photon with(q2,ε ′) is emitted from the electronic system.V0=V/N is the volume

of the unit cell. Obviously,Ta andTe describes X-ray absorption and emission processes, respectively.

The factor before the Fermi operators is defined as

(nlm|e−iq1·xε ·p|nclcmc) =
∫

d3x φm(x)∗e−iq1·xε · (−ih̄∇)ψmc(x). (1.24)

In the hard X-ray regime, the wavelength of photon is of order of 1Å, and is comparable to lattice

constants of a crystal in consideration. Hence one must not neglect the exponential factor in Eqs. (1.20)

and (1.21). The spatial extent of the core orbital, however, is expected to be much smaller than the

lattice constants, so that we approximate the above equation as

(nlm|ε ·p|nclcmc)'
∫

d3x φm(x)∗ε · (−ih̄∇)ψmc(x). (1.25)

This is the nontrivial lowest approximation of the integral, and we refer to it asatomicdipole approx-

mation4. Note thatTa andTe in Eqs. (1.20) and (1.21) become the form of Fourier summation of the

atomic operators.

1.2.3 Perturbation Theory

Consider a direct product of the electronic ground state|g〉 by a one-photon state|q1ε〉, and Hilbert

space spanned by such states|g;q1ε〉. The transition amplitude from|I〉 ≡ |g;q1ε〉 to a final state

|F〉 ≡ | f ;q2ε ′〉 is given by theS-matrix [56] as

SFI ≡ 〈F |Ui(∞,−∞)|I〉,

whereUi(t, t ′) is the time-evolution operator of the whole electron-photon system from timet ′ to t in

the interaction representation [57]. The total Hamiltonian is given by

Htot = H +Hr +(Hep+HA), (1.26)

whereHA represents an electronic Hamiltonian of the Auger process containing the terms like Eq. (1.1).

H is the Hamiltonian of the electronic system other thanHA . We denoteHep+ HA by H ′ for a while.

Apart from the case ofF=I , theS-matrix is directly reduced to [58]

SFI =−2π i〈F |H ′Ui(0,−∞)|I〉δ (EF −EI ),

from which the transition probability per time is obtained,

wFI =
2π
h̄

∣∣〈F |H ′Ui(0,−∞)|I〉
∣∣2 δ (EF −EI ). (1.27)

We here introduce theT-matrix as

〈F |H ′Ui(0,−∞)|I〉= 〈F |T|I〉.

4The quadrupole transition is experimentally observed, for example, as a prepeak inK-XAS of transition metal oxides [53, 54,

55], where the intensity ratio of dipole and quadrupole transition is of order of 100.
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The standard Lippman-Schwinger theory shows that theT-operator obeys equations such that [58]

T = H ′+H ′GH′ (1.28)

G = G0 +G0H ′G, (1.29)

whereG andG0 are resolvent operators which are defined as(EI −Htot + i0)−1 and(EI −H + i0)−1,

respectively. Counting the number of states within a regiond3q2, and dividing Eq. (1.27) by the incident

flux c/V, we have differential cross section as

σ(F ; I) =
(

Vq2

2πch̄

)2

|〈F |T|I〉|2 (1.30)

for a transition fromI to F such thatEF = EI .

Now we proceed to a perturbation theory with respect toH ′. In general, electron-photon interaction

is much weaker than interaction among electrons. Hence we are allowed to evaluate theT-matrix within

the second order ofHep for RXES, whereas electron-electron interaction should be taken to the infinite

order. Let us consider the contribution of the Auger effect in the context of perturbation theory. To the

second order ofHep, we have

〈F |T|I〉= 〈F |HepG̃Hep|I〉, (1.31)

whereG̃ satisfies

G̃ = G0 +G0HAG0 +G0HAG0HAG̃. (1.32)

This is nothing but Eq. (1.29) in theHep→ 0 limit. Note that the first term of Eq. (1.28) is not contribute

to theT-matrix, and thatHA |F〉=HA |I〉=0, because bothF andI have no core hole to decay.

Exact evaluation of Eq. (1.31) is generally a tough task. To avoid mathematical complications, we

introduce Feynman diagrams to represent the series of theT-matrix in Fig. 1.7. If we project out high

energy transient states that have Auger electrons more than one, only diagrams (b), (c), ... contribute to

give a renormalized intermediate state. Assuming

〈r|HAG0HA |r ′〉= 〈r|HAG0HA |r〉δr,r ′

for simplicity, where|r〉 and|r ′〉 are some states with a core hole and no photon, we have

〈r|G̃|r〉=
1

EI −Er + i0

[
1+ 〈r|HAG0HA |r〉〈r|G̃|r〉

]
(1.33)

from Eq. (1.32), resulting in

〈r|G̃|r〉=
1

EI −Er −〈r|HAG0HA |r〉 . (1.34)

Corresponding to the “open oyster” diagram [59] in Fig. 1.7 (b) or (c), we have “proper” self-energy [60]

due to the Auger effect as

Σ?
A(r) = 〈r|HAG0HA |r〉

= ∑
m

|〈m|HA |r〉|2
EI −Em+ i0

=℘∑
m

|〈m|HA |r〉|2
EI −Em

− iπ ∑
m
|〈m|HA |r〉|2δ (EI −Em) (1.35)

as depicted in Fig. 1.7 (d).℘ denotes Cauchy’s principal value.

15



g

f

q

+ +  .....  =

g

f

+

g

f

g

f

A

(a) (b) (c) (d)

A

A

1 q1 q1
q1

q2 q2 q2
q2

Figure 1.7: Feynman diagrams of theT-matrix expansion. The solid and wavy lines represent the

propagation of electronic and photon states, respectively. (a) The ground state|g〉 absorbs a photon with

a wave vectorq1, then the intermediate state emits a photon with a wave vectorq2, resulting in a final

state| f 〉. (b) The same as (a), but an Auger electron “A” is created once in the intermediate state. (c)

The same as (a), but an Auger electron is created twice in the intermediate state. The transient states

with two Auger electrons are out of the summation. (d) The Auger effect renormalizes the intermediate

state.
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Although the energy andr-dependence of the imaginary part ofΣ?
A(r) considerably contributes to

relatively shallow core level photoemission spectra, for example Ni 3p-XPS of NiCl2 [61] or 4d-XPS

of heavy rare-earth elements [62], we take it as a given constantΓ for each system in consideration in

this thesis. The real part ofΣ?
A(r) is regarded to have been included in observed energies. Together with

Eq. (1.30), we have

σ(F ; I) =
(

Vq2

2πch̄

)2 ∣∣∣∣〈F |Hep
1

EI −H + iΓ
Hep|I〉

∣∣∣∣
2

, (1.36)

where we have dropped a nonresonant term, which brings about two-photon intermediate states [50].

Substituting the explicit representations ofHep into Eq. (1.36), we reach the final form of the differ-

ential cross section of RXES,

σ( f q2ε ′;gq1ε) = r2
0

(
ωq2

ωq1

)∣∣∣∣∣∑
R

eiq·RMε ′ε (R)

∣∣∣∣∣
2

, (1.37)

whereq = q2−q1, andr0 is the classical radius of electron

r0 =
e2

4πε0mec2 ' 2.8×10−15[m].

We assume that the electronic HamiltonianH is diagonal with respect to the core orbital, i.e.,

Hcore= ∑
Rξ σ

εcc
†
Rξ σ cRξ σ , (1.38)

and that all the core orbitals are filled in|g〉. ξ stands for a quantum number of the core orbital. Equation

(1.38) means that the core orbitals are localized at each lattice site with no transfer to the neighboring

sites, the assumption that would be justified in the soft and hard X-ray excitations. As a result, the

nondimensional factorMε ′ε (R) is represented as

Mε ′ε (R) =
1

me
∑

m,m′,mc,σ
(nclcmc| ε ′·p|nlm′)(nlm|ε ·p|nclcmc)×

〈 f |c†
Rmcσ lRm′σ G0(Ω)l†

Rmσ cRmcσ |g〉, (1.39)

whereG0(Ω) is re-defined as(EI −H + iΓ)−1 with EI = Eg + Ω. We write hereafter the incident and

emitted photon energies asΩ andω, respectively. The local transition amplitudeMε ′ε (R) obviously

depends onΩ, although we did not write it explicitly.

1.3 Some Aspects on Spectral Functions

1.3.1 Momentum conservation law in RXES

Consider an electronic Hamiltonian with the translational symmetry, i.e.,

Tr(R)HTr(R)−1 = H

for any Bravais vectorR, whereTr(R) is the translation operator of the electronic system. Its definition

is given by

Tr(R)≡ exp(P·R/ih̄), (1.40)
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whereP is the momentum operator

P≡
∫

d3xΨ(x)†(−ih̄∇)Ψ(x).

For the translational Hamiltonian,|g〉 and| f 〉 can be simultaneous eigenstates of bothH andTr , so that,

for ∀R, real vectorsKg andK f exist such that

Tr(R)|g〉= exp(Kg·R/ih̄)|g〉 (1.41)

Tr(R)| f 〉= exp(K f ·R/ih̄)| f 〉. (1.42)

With these equations we have

〈 f |c†
Rmcσ lRm′σ G0(Ω)l†

Rmσ cRmcσ |g〉
= 〈 f |Tr(R)c†

0mcσ l0m′σ G0(Ω)l†
0mσ c0mcσ Tr(R)−1|g〉

= 〈 f |c†
0mcσ l0m′σ G0(Ω)l†

0mσ c0mcσ |g〉×exp
[
i(K f −Kg)·R

]
,

resulting in

Mε ′ε (R) = Mε ′ε (0)exp
[
i(K f−Kg)·R

]
. (1.43)

We have just used the fact[G0,Tr ] = 0. Now Eq. (1.37) reads

σ( f q2ε ′;gq1ε) = N2r2
0

(
ωq2

ωq1

)
|Mε ′ε (0)|2 δq+K f ,Kg

, (1.44)

where a well-known relation
1
N ∑

R

eik·R = δk,0 (1.45)

is used. Equation (1.44) states that the cross section is zero unlessq+K f = Kg is satisfied. This is the

wave vector conservation rule of RXES [63]5. Equation (1.44) shows an essential aspect of RXES. The

origin of this conservation rule is the summation in Eq. (1.37), where the cross section is proportional

to a factor quite similar to the definition of the structure factor [64, 65]. If we fixed a core hole to a

particular site, the wave vector conservation rule does not hold. This means that the all core orbitals

in the system participate in one scattering process, and we can say that the wave vector conservation

rule is a result of spatial coherence of the crystal. Intuitively speaking, the electron wave created by

a phtoexcitation survives without phase cancellation only when it “fits” to the lattice. In the case of

first order optical processes such as XAS or XPS, however, we can calculate spectra by fixing the core

hole site, as shown later. This feature makes impurity models, which breaks the translational invariance,

appropriate to study the first-order spectra, but not the case in RXES.

On the other hand,Mε ′ε (0) reflects an internal symmetry of an atom at the origin. In fact, first, it

strictly obeys the dipole selection rule for both X-ray absorption and emission processes, as seen from

Eq. (1.39). Second, it reflects a spatial direction of orbitals at0 through theε ′- andε-dependence. With

these features, RXES should be one of the most useful tools to investigate strongly correlated systems,

where interplay between itinerant and localized nature of electrons is realized.

5We will briefly discuss an additional SU(2) selection rule in spin space in the next chapter.
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1.3.2 Elastic-inelastic intensity ratio

We first prove a theorem on the elastic scattering.

Theorem 1 If ε ·ε ′ = 0, then intensity of the elastic scattering such thatm=m′ is zero within the atomic

dipole approximation.

Note that the elastic scattering of a system with no electron in thel -shell always satisfies the condition

m=m′. For example, any elastic scattering of3d-2p RXES of d0 compounds or Cu4p-1s RXES of

cuprates is forbidden whenε · ε ′ = 0 according to this theorem. For proof, we define a quantity

Iε ′,ε (m′,m)≡ (nclcmc|ε ′·p|nlm′)(nlm|ε ·p|nclcmc). (1.46)

Note thatIε ′,ε (m′,m) strictly obeys Wigner-Eckart’s theorem [66] of SO(3). We takeε=ez for simplic-

ity, whereez is the unit vector alongz-axis fixed to the electronic system. Sincep·ez=pz is the zero

component of spherical tensor operators of rank one, the Wigner-Eckart theorem limitsm to mc. How-

ever, this condition is never satisfied whenε · ε ′ = 0, becauseε ′·p in this case is 1 or−1 component of

the spherical tensor operator. HenceIε ′,ε =0 follows in the case thatm=m′. The conditionε · ε ′ = 0 is

experimentally called “depolarized” configuration.

We see from Eq. (1.44) that the cross section isO(N2) (order ofN2) as far asIε ′,ε andMε ′ε (0) is

O(1). Let us define a nondimensional quantity

Jm′m(0)≡ 〈 f |c†
0mcσ l0m′σ G0(Ω)l†

0mσ c0mcσ |g〉×Γ,

and assume thatIε ′,ε is O(1). We first consider a local transition process, which will be realized when

Ω is tuned at a state bound to the core hole at0. This contains two cases. One is the elastic scattering

process withm=m′, and the other is (inelastic) scattering involving an intra-site excitation such as intra-

site t2g → eg excitation depicted in Fig. 1.8. Since the selected intermediate state should have the hole

occupation number of order 1 in thelm orbital, and moreover the electron occupation number of order 1

in the lm′ orbital, |Jm′m(0)| ∼ O(1) obviously holds. We haveO(N2) scattering intensity in these cases

thereby.

As will be explained in§ 1.4.4, there are unbound states in the intermediate state even under a strong

core hole potentialUc. Utilizing Fourier transformation

l†
kmσ

=
1√
N

∑
R

eik·Rl†
Rmσ , (1.47)

we have another expression ofJm′m(0) as

Jm′m(0) =
1

N2 ∑
k1,k2

〈 f |c†
k1mcσ lk2m′σ G0(Ω)l†

k2mσ ck1mcσ |g〉×Γ,

where the wave vector conservation and Eq. (1.38) are implicitly assumed. Since the photoexcited

electron is considerably delocalized, we are allowed to neglectUc in the intermediate state, so that wave

number is good quantum number also in the intermediate state. Let us consider an insulator having

nearly independent electrons. When the incident photon energy is assigned to make resonance at its

absorption edge,ΓG0(Ω)∼−i follows, so that

Jm′m(0)∼ −i
N ∑

k

〈 f |lkm′σ l†
kmσ |g〉,
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Figure 1.8: Left: Schematic picture of the intra-site excitation. The2p-3d-2p RXES process is shown

for instance. Right: RXES process in a band insulator. There are an empty conduction band, a filled

valence band, and a filled core band in the ground state. For both diagrams,Ω andω represent incident

and emitted photon energies, respectively.

where we used the fact that both initial and final states have a filled core band, and we implicitly assume

a condition

Γ¿W, (1.48)

whereW is a band width of an empty conduction band. For the elastic scattering such thatf =g and

m = m′, the matrix element equals the hole occupation number oflm orbital in the ground state. Al-

though other orbitals, especially ligand orbitals, strongly contribute to an upper band of the insulator in

consideration, the matrix element is still expected to beO(1), resulting in|Jm′m(0)| ∼ O(1).
For an inelastic scattering, there is one electron in a conduction band and one hole in a valence

band in a typical final state, as shown in Fig. 1.8 (right), so that a final state| f 〉 gives a nonzero matrix

element for a few oflkm′σ l†
kmσ |g〉. Consequently,|Jm′m(0)| ∼ O( 1

N ) for a specific final state of this

kind. While this result leads to a cross section ofO(1), theN dependence of density of states recovers

spectral intensity ofO(N). This is because final states of this kind are densely distributed in general

in a region6. Hence we haveN2 intensity for the elastic scattering, whereasN intensity for nonlocally

excited inelastic scattering in this case. The ratio of them diverges in the thermodynamic limit [67, 92].

Experimentally, never is observed the divergence. A part of the reason possibly comes from a

finite coherent length of X-rays. If an incident photon is incomplete plain wave, theN → ∞ limit is

not realistic, and interference between “fragments” of plain wave may occur, resulting in finite elastic

intensity. Another possible reason is associated with Eq (1.48). It is evident that the above estimation is

forced to make modifications ifΓ ∼W or Γ has term-dependence. At any rate, quantitative estimation

of the ratio is extremely difficult7. We will not discuss the elastic scattering hereafter.

6Because of the assumption of insulator, the elastic line is isolated alone.
7Recently, Jiḿenez-Mieret al. reported an estimation of the ratio within a specific model on3d-2p RXES of Ti com-

pounds [68]. However, the estimated value sensitively depends in principle on what number of transition paths is taken into

consideration. Since they made a drastic approximation that, e.g., the effect of core hole potential is completely disregarded, their

statement on the ratio makes little sense.
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1.3.3 Other spectral functions

Apart from a prefactor, the spectral function of RXES is now written as

FRXES(ω;Ω) =
1
N ∑

f

|σ( f q2ε ′;gq1ε)|2δ (Ef +ω−Eg−Ω). (1.49)

Similarly, the spectral function of XAS is written as

FXAS(Ω) =
1
N ∑

mR

|〈m(R)|Ta
ε (R)|g〉|2δ (Ω−Em+Eg), (1.50)

where|m(R)〉 is a final state with a core hole atR. Note the assumption Eq. (1.38). Under this assump-

tion, we can delete the position degrees of freedom of a core hole fromFXAS. Since the core hole site is

a good quantum number in the final state of XAS,

〈m(R)|Ta
ε (R)|g〉 = 〈m(0)|Tr(R)†Tr(R)Ta

ε (0)Tr(R)†|g〉
= 〈m(0)|Ta

ε (0)|g〉e−iKg·R,

leading the XAS spectral function to

FXAS(Ω) = ∑
m
|〈m(0)|Ta

ε (0)|g〉|2δ (Ω−Em+Eg). (1.51)

Let us consider spectral functions of XPS, where a core hole is photoexcited to a high-energy con-

tinuum, as explained in§ 1.1. Since interaction between the photoelectron and valence electrons is

negligible, and the continuum states have nearly all kinds of symmetry, one does not need to handle the

photoelectron degrees of freedom explicitly. Apart from a prefactor, we set the transition operator of

XPS simply to be

Tp = ∑
R

Tp(R) = ∑
R,mc,σ

cRmcσ ,

leading to the XPS spectral function

FXPS(EB) = ∑
µ
|〈µ(0)|Tp(0)|g〉|2δ (EB−Eµ +Eg), (1.52)

whereEB represents the binding energy, and theTr manipulation as explained above has been used.

NXES is the second-order optical process where a core electron is excited by the incident photon to

high-energy continuum well above the absorption edge. An energy interval of the continuum levels is

so close that the momentum information of the system is hardly maintained through the NXES process.

Therefore, final states with any wave number are allowed. This situation is mathematically realized by

fixing the core hole site. The spectral function of NXES is then given by

FNXES(ω) =
1
N

∫
dεD(ε)∑

f ,σ
|〈 f |Te

ε ′(0)G0(Ω− ε)Tp(0)|g〉|2

×δ (ω +Ef + ε−Ω−Eg), (1.53)

whereD(ε) is the density of states of the continuum levelε, andG0(Ω−ε) = (Eg+Ω−ε−H + iΓ)−1.

We will takeD(ε) as a given constant. Because of the integration overε, the spectral shape of NXES

does not depend onΩ.
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1.4 Model Hamiltonians and Their Implications

1.4.1 Impurity Anderson model

The impurity Anderson model which GS proposed for a degenerate4 f system is written as

HIAM = ∑
m,σ

[
(ε f −U f cnc) f †

mσ fmσ +∑
k

(
Vk f †

mσ akσ +H.c.
)
]

+ U f f ∑
m>m′,σ ,σ ′

f †
mσ fmσ f †

m′σ ′ fm′σ ′ + ∑
k,σ

εka†
kσ akσ + εc(1−nc), (1.54)

where f †
mσ creates a4 f electron with an orbital indexm and spin componentσ , anda†

kσ creates a

conduction electron with wave numberk and spin componentσ . ε f , εk andεc are one-electron energies

for 4 f , conduction electron, and core orbitals, respectively.nc is the number of core holes.Vk is the

hybridization strength between4 f and conduction electrons. Note that this model exhibits a permutation

symmetry such thatm↔m′. Making full use of this fact implicitly, GS introduced a set of states which

have the same permutation symmetry as4 f 0 state, and successfully discussed core-level spectra of

valence-fluctuated systems, as explained before.

To apply this model to transition metal compounds, one should include the anisotropy of orbitals,

which breaks the permutation symmetry. A simplified model in which only the nearest-neighbor ligand

orbitals are taken into account is often used. We refer to this model as impurity cluster model,

HICM = ∑
γ,σ

[
εdγd†

γσ dγσ +
(
Vγ d†

γσ pγσ +H.c.
)]

+ εc ∑
ξ ,σ

c†
ξ σ cξ σ

+ Udd ∑
γ>γ ′,σ ,σ ′

d†
γσ dγσ d†

γ ′σ ′dγ ′σ ′ −Udc ∑
γ,ξ ,σ ,σ ′

d†
νσ dνσ c†

ξ σ ′cξ σ ′ , (1.55)

whereγ runs over irreducible representations around the impurity atom.d†
γσ and p†

γσ are creation

operators of ad orbital and a ligand molecular orbital, respectively.c†
ξ σ is a creation operator of the

core orbital with a quantum numberξ . One-electron energies ofεdγ andεc are measured with respect

to the one-electron energy of thep orbitals. In general, multipole part of Coulomb interaction and spin-

orbit interaction are added toHICM or HIAM . Figure 1.9 shows a schematic picture ofHICM . We note

that there is no transfer between differentγ ’s, and onlyUdd couples them.

This model describes at least two excitation modes in RXES spectra:

1. intra-sited-d excitations (10Dq),

2. CT excitations (∆ or Veff),

where we write representative energy scales for each excitation in the brackets.10Dq is crystal field

splitting, which is the energy difference typically between3d(eg) and3d(t2g) orbitals in a crystal of Oh
symmetry.Veff is the effective hybridization energy between metal and ligand molecular orbitals, and

generally has a value of order of
√

NdVγ , whereNd is the number of unoccupied metal orbitals.

An example of intra-sited-d excitations has been shown in Fig. 1.8. Historically, the first theoretical

prediction on the observation of intra-sited-d excitation with RXES was given by Tanaka and Kotani

in 1993 ford9 systems [69], which is also nominallyd1 configuration in the hole picture. It was the

first theoretical study of RXES as a second-order optical process in the framework of many-body prob-

lem [70]. Very recently, Kuiperet al. measured Cu3d-3p RXES of Sr2CuO2Cl2, and observed the

intra-site transition of a hole from3dx2−y2 to 3dxy, and to3dyz and3dyz [71]. To distinguish between
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Figure 1.9: Schematic diagram of an impurity cluster model for transition metal insulators. The metal

3d orbital and oxygen 2p molecular orbitals are represented with closed and open circles, respectively.

The darkly-shaded smaller circle at the center stands for the core orbital. The Coulomb interactions

which correlate different symmetryγi each other are represented with the shaded area.

3dxy and3dyz (or 3dyz), they made use of the angular dependence of Eq. (1.46). This measurement is

regarded as a quantitative experimental confirmation of the Tanaka-Kotani theory.

1.4.2 Periodic Anderson model

For systems in which nonlocal screening effects are expected, the relevant start point is the periodic

Anderson model

HPAM = Hcore+Hdp+Hdc.

This is the Hamiltonian with which we will investigate core level spectra in this thesis. The first term

has already defined in Eq. (1.38). Corresponding to Eq. (1.55), the second and third terms are defined

as

Hdp = ∑
R,ν

εdνd†
νRdνR + ∑

r ,µ
εpν p†

νr pνr + ∑
〈r ,r ′〉,µ ,µ ′

(
Tpp p†

µr pµ ′r ′ +H.c.
)

+ ∑
〈R,r〉,ν ,µ

(
Tpdd†

νRpµr +H.c.
)
+Udd ∑

R,ν>ν ′
d†

νRdνRd†
ν ′Rdν ′R (1.56)

Hdc = −Udc ∑
R,ν ,ξ

d†
νRdνRc†

ξR
cξR, (1.57)

whered†
νR represents a creation operator of ad carrier with a quantum numberν at R site. Similarly,

p†
νr creates ap carrier with(r,ν), andc†

ξR
a creation operator of a core hole with(R,ξ ). We denote spin

and orbital quantum numbers together by Greek indicesν , µ andξ . Udd andUdc are on-site Coulomb

interaction ford-d andd-core, respectively. Notice thed†
νRpµr term, where orbitals with different local
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point group symmetry are no longer decoupled as the case in Eq. (1.55). It makes hard to calculate

spectra for systems with an intermediate filling.

This model describes at least four excitation modes. In addition to those of the impurity model,

3. inter-site spin excitations (J),

4. inter-sited-d excitations (Udd),

whereJ represents the superexchange interaction.

These modes appear in CLS in various phases, depending on filling and excitation process. Let

us consider relatively simple cases:d0 andd1 fillings. For the former, valence excitations are mainly

dominated by only CT excitations. Recall the fact RXES can strongly reflect charge dynamics due to

core hole creation, and that its description would be hard within the impurity models. The relatively

simple electronic structure ofd0 systems will be rather helpful to elucidate this side of spectra. This is

the theme of Chap. 2.

For d1 systems, all the modes are concerned in principle. In fact, we will show that intra- and inter-

sited-d excitations as well as CT excitations are observed in calculated spectra with specific excitation

energy dependence. It is interesting to reproduce interplay between intra- and inter-site effects. This

subject will be discussed in Chap. 3. For the dependence of inter-site spin excitations in RXES, few

studies have been done so far, and it is left for the future problem.

1.4.3 Zhang-Rice singlet

Soon after the spectroscopic methods revealed that dopant holes are primarily on oxygen sites in high-Tc

cuprates, Zhang and Rice proposed a picture on the conductivity in the doped cuprates: A dopant hole

forms a local singlet on a CuO4 square, then it moves over the whole CuO2 plane [43].

To elucidate their idea, consider a two-hole singlet state, where one hole is localized at a3di(x2−y2)
orbital (i labels a Cu site), and the other is contained in the O2p molecular orbital around the3di site.

These orbitals are described in the left figure in Fig. 1.10. The molecular orbital which couples with3di

orbital is

L†
iσ =

1
2

(
−p†

i+ x̂
2σ
− p†

i+ ŷ
2σ

+ p†
i− x̂

2σ
+ p†

i− ŷ
2σ

)
, (1.58)

with which we can construct a singlet state

|si〉=
1√
2

(
d†

i↑Li↓−d†
i↓Li↑

)
|0〉,

where|0〉 is the vacuum of holes. Operation of the two-hole spin operators2 = (sd +sL)2 directly leads

to s2|si〉= 0|si〉. With rearrangement of a set of Wannier functions, Zhang and Rice derived an effective

Hamiltonian, which describes the motion of this kind of singlet state, the Zhang-Rice singlet. Their

Hamiltonian is now called thet-J model.

It is amusing that the motion of the Zhang-Rice singlet is directly observed in Cu2p-XPS ofundoped

cuprates. When an incident X-ray photon comes into the system, the Zhang-Rice singlet is formed with

the following procedure: The photo-created core hole acts as a strong repulsive potential to a 3d hole

at the same plaquette, then the3d hole escapes from the singular plaquette. The slipped hole goes into

another plaquette to form the Zhang-Rice singlet there. In contrast to the photo-doping in the case of

valence photoemission, we can call this process “potential doping”. This subject will be explored in

Chap. 4.
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O 2p

Cu 3d

Figure 1.10: Left: Explanation of relative phases between O2p and Cu3dx2−y2 orbitals [43]. Right:

Schematic picture of the hole-doped CuO2 plane, where a dopant hole forms the Zhang-Rice singlet at

the central plaquette. The open and closed circles represent O2p and Cu3dx2−y2 orbitals, respectively.

The arrows represent holes.

1.4.4 Core exciton

In this section, we sketch the core exciton theory with an exactly solvable model. The aim is twofold.

First, to supply a basis for the estimation ofN-dependence of the RXES cross section under the core

hole potentialUc. Second, to give an insight into the core hole effect especially ind0 systems.

Let us consider a one-dimensional nondegenerate periodic Anderson model underd0 filling in the

limit of Udd/|εdν − εpµ | → ∞ andUdd/|Tpd| → ∞. In this limit, the system is described with a spinless

Fermion model withoutUdd. As far as periodic systems are concerned, the Hamiltonian is decomposed

according to wave numberk via Fourier transform (Eq. (1.47)),H = ∑k hk. By diagonalizing eachhk,

we have a band structure of the system. There are an empty conduction band and a filled valence band

in the ground state underd0 filling, as well as the filled core band with no energy dispersion, as shown

in Fig. 1.8 (right). As a model of the conduction band, we assume a cosine-type one-dimensional band

εk = η0 +4γ sin2(k/2)

for the first Brillouin zone−π < k≤ π with given energy constantsη0 andγ. Our spinless Fermion

model is now written as

H = ∑
k

εka
†
kak +Hv−Uc∑

l

a†
l al c

†
l cl ,

wherea†
k creates a conduction electron with wave vectork. a†

l andc†
l create a conduction electron and a

core hole atl site.Hv describes the filled valence band. The energy origin is defined with respect to the

core level.

Let us consider the X-ray absorption process in this model. As shown in Eq. (1.51), the only core

orbital at a site, say, the origin 0 is sufficient to calculate XAS spectrum. Accordingly, the above

Hamiltonian is reduced to a MHD type model,

H = ∑
k

εka
†
kak +Hv−Uca

†
0a0nc0, (1.59)
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wherenc0 is the number of core hole at the origin. Although the transition operator can not be generally

written in terms of onlya†
k’s, we treat a simplified operator

Ta = ∑
l

a†
l cl = ∑

k

a†
kck

in place of Eq. (1.20) under the assumption that the polarization vector of the incident photon is parallel

to the chain. The second equal sign is due to Fourier transformation. This transition operator creates

only one conduction electron in XAS final state (nc=1). Hence we can set aj-th eigenstate as

|α j〉= ∑
k

A jka†
k|g〉

without loss of generality. OperatingH to this state, we have the Schrödinger equation to determine the

coefficientsA jk as

(ε j − εk)A jk =−Uc

N ∑
k′

A jk′ ,

whereN is the number of sites. Dividing the both sides by(ε j − εk), and summing overk, we have the

eigenequation
1
N ∑

k

1
ε j − εk

=− 1
Uc

, (1.60)

which is transformed into ∫ π

−π

dk
2π

1
ε j − εk

=− 1
Uc

in the thermodynamic limit. Forε j < η0, an analytic solution is obtained by using the residue theorem,

ε0 = η0 +2γ−
√

(2γ)2 +Uc
2,

where we labeled this solution withj = 0. Substitutingε j with ε0, we have an eigenstate as

A0k =
1√
N

√
Uc

λ

(
Uc

λ −2γ cosk

)
,

whereλ =
√

(2γ)2 +Uc
2. Note thatA0k→ 1√

N
in the limit of 2γ/Uc¿ 1, so that Fourier transformation

in Eq. (1.47) shows

|α0〉 → a†
0|g〉, (1.61)

i.e. a state bound to the core hole. The bound state|α0〉 is calledcore exciton.

A graphical representation of Eq. (1.60) shows that other eigenvalues which do not satisfyε j < η0

are nearly the same as the unperturbed valuesεk, so that an eigenstate withε j ' εk has large amplitude

only for thek.

In summary, the XAS final states are classified into two types. One is the core exciton state, which

is fairly localized around the core hole. The others are itinerant states, whose wave functions are quite

similar to those of the unperturbed states. As suggested by the formula of Fourier transformation

a†
k =

1√
N

∑
l

eikla†
l , (1.62)

Each of these states has amplitude of order of1√
N

at the core hole site.
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Since the X-ray absorption process is the intra-site excitation, the more probability to find a conduc-

tion electron at the0 site we have, the more absorption intensity we observe. Comparing Eq. (1.61) with

Eq. (1.62), we can roughly estimate the intensity ratio between the above two states as1 : 1
N , indicating

the concentration of intensity at the exciton state. Figure 1.11 schematically shows the XAS spectrum.

The same would be true for a more realistic model, although such analytic solution is possibly hard to

obtain. This is the basis of the discussion on theN dependence of the RXES cross section in§ 1.3.

in
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O(1)
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1/ N

Figure 1.11: Schematic shape of the XAS spectrum. Generally, the continuum has a few sharp peaks

due to the van Hove singularity.

1.5 Exact Diagonalization Techniques

1.5.1 Lanczos method

Throughout this thesis, the exact diagonalization method is used to calculate the optical spectral func-

tions. As explained, we are interested in dynamical properties in large-cluster models. Other “less

exact” numerical approaches such as Quantum Monte Carlo methods [72] are not suitable for extracting

dynamical information.

The newly developed technique, the density matrix renormalization group (DMRG) approach [73],

is a renormalization-group-like diagonalization method where the basis set is optimized to well repro-

duce lower excited states as the cluster size is extended. DMRG is now accepted as a standard method

to calculate static quantities of one-dimensional systems. Although a few attempts have done to extend

DMRG to obtain dynamical correlation functions [74, 75], the exact approach based on Lanczos algo-

rithm is currently the only reliable technique for evaluating the second-order spectral functions in higher

dimensional systems involving charge excitations8.

The Lanczos algorithm is a procedure to transform a Hermite matrixH into a tridiagonalized matrix

T via a unitary transformation

T = U†HU .

8Very recently, Tanaka developed a DMRG-like approach in a cell-perturbative manner to calculate electron removal spectra

of one- or two-dimensional cuprates [76]. It would be possible in principle to extend his method to evaluate spectral functions of

the second order processes.
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We regardH as the Hamiltonian of a given system, and set the order ofH to beNH (∼ a few million).

Since the number of nonzero elements ofH is much smaller thanNH
2 in many cases, we can make a

subroutine in advance that returnsHu for a column vectoru, using,e.g., JDS method [77].

The Lanczos iterative procedure is as follows: Prepare an arbitrary column vectoru1 andv1 = Hu1.

Repeat

ai = u†
i vi

wi = vi −aiui

bi+1 =
√

w†
i wi

ui+1 = wi/bi+1

vi+1 = Hui+1,

then we have

T =




a1 b2 0 · · ·
b2 a2 b3 · · ·
0 b3 a3

. . .
...

...
. . .

. . .




andU = (u1,u2,u3, · · ·) [78]. By diagonalizingT to give an eigenvectorxi , we have an eigenvector of

H asUxi . The eigenvalues ofT andH are exactly the same becauseU is unitary. Note that the number

of iterationNi is often of order of only 100, much smaller thanNH , to obtain the lowest eigenvalue to a

given accuracy, say, 0.0001%.

Generally, the limitation of memory size of computers forces us to repeat the whole Lanczos process

twice to get the ground state vectorg. In the first Lanczos process, all ofai andbi ’s but none ofui ’s

are memorized. Then the tridiagonalized matrixT is diagonalized with the Householder method [79] to

give the ground state energyEg and the corresponding eigenvectorx0 = (x0
1,x0

2,x0
3, · · · , ,x0

Ni )T, where

T represents transposition. Then the second Lanczos process is started again with the same initial vector

u1. With ui in each step, we have the ground state as

g = x0
1u1 +x0

2u2 + · · ·+x0
Ni uNi .

The Lanczos method is easily extended to obtain a spectral function. Consider to calculate the

XPS spectral function. We prepare the ground state vectoru1 = g with the eigenenergyEg. The Lanc-

zos procedure is carried out with afinal state Hamiltonian for a given iteration numberNi to give the

tridiagonalized matrixT. ThenT is diagonalized with the Householder method, resulting in a set of

eigenvalues and eigenvectors

{Ei , f i |i = 1,2, · · · ,Ni}.
To obtain transition amplitudeF†

i g for one of the final satesF i , we do not need to explicitly handle

the vectorui . Since the transformation unitary matrixU is written asU = (u1,u2,u3, · · · ,uNi ), theF i is

expressed as

F i = U f i = ∑
j

u j fi
j ,

where fi j is the j-th element off i . Hence the transition amplitude now readsF†g = F†u1 = ( fi1)∗, so

that

FXPS(EB) = ∑
i
| fi1|2δ (EB−Ei +Eg). (1.63)
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By choosing the initial vectorui asTa|g〉 or TeG0Ta|g〉, the spectral functions of other spectroscopies

are numerically obtained in the same manner.

1.5.2 Conjugate gradient method

The other important algorithm to evaluate the spectral function of RXES and NXES is the BiCG (bi-

conjugate gradient) algorithm [77, 80]. This is a procedure to evaluate a column vectorx such that

x = A−1b

for a given column vectorb. The matrixA we are interested in is the typeA = (Eg + Ω + iΓ)1−H,

which is not Hermite but transposed symmetricAT = A. The unit matrix is written as1.

Now the BiCG procedure is as follows: For a given column vectorb and an arbitrary column vector

x0, setr0 = b−Ax0 andβ−1 = 0. Repeat

pn = rn +βn−1pn−1

αn =
rT

nrn

pT
nApn

xn+1 = xn +αnpn

rn+1 = rn−αnApn

βn =
rT

n+1rn+1

rT
nrn

for n= 0,1,2, · · · until r†
n+1rn+1≤ εb†b, whereε is a given small real number (usually of order of10−6),

then the resultant vectorxn+1 is an approximate solution of the equationAx= b. Note the discrimination

betweenT and†. The latter means Hermite conjugate such thatr†
n+1 = (rT

n+1)
∗, where the star means

complex conjugate. It is said that mathematically little has been known about convergence behavior of

the BiCG algorithm [77]. To the author’s experience, the iteration number gets much smaller whenA is

arranged so that all eigenvalues are positive definite.

To apply these iterative methods to large-clusters, it is essential to reduce the dimension of Hilbert

space in advance by making full use of the space group of the whole system, as proposed by Fano,

Ortolani and Parola [81]. The largest RXES calculation ever known was done by Tsutsuiet al. for a

4×4 Hubbard model [82].

1.6 Scope

The motivation of this thesis is to clarify the role of nonlocal effects in RXES. It is roughly divided into

two parts. The first part is associated with theoretical explanation of the appearance of the fluorescence-

like component inM 3d-2p RXES of transition metal (M) oxides, which is one of the most important

problem in the theoretical study on RXES. This subject is explored in Chaps. 2 and 3. The other part

(Chaps. 4 and 5) describes some theoretical aspects of Cu4p-1sRXES of cuprates with special attention

to the nonlocal screening effect due to the Zhang-Rice singlet formation. The content of each chapter is

described somewhat in detail below.

With the aid of numerical calculations with a simplified periodic Anderson model, we discuss the

origin of the fluorescence-like component ind0 systems in Chap. 2. A crucial role of the translational
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symmetry of the system, the momentum conservation law and electronic correlation is demonstrated.

The reason why an analysis with an impurity Anderson model successfully explains the experimental

spectra of anf 0 system is qualitatively clarified. This chapter is based on the first proposal of ours on

the electronic-origin mechanism of the appearance of the fluorescence-like component [83].

The nondegenerate model calculations in Chap. 2 exhibit relatively weak Raman component for a

TiO2-like system. We demonstrate in Chap. 3 that thecoexistencebetween fluorescence-like and Raman

components is clearly shown by including orbital degeneracy into the model. The calculated results

well explain the latest experimental data on polarization-resolved Ti3d-2p RXES of TiO2 in spite of

the simplicity of the model. Experimentally, the coexistence is observed also in MH systems. We also

show in this chapter that the fluorescence-like component appears in the MH systems, and that orbital

degeneracy is essential for it. The author believes that the electronic-origin mechanism of the interplay

between fluorescence-like and Raman components is established by the investigation in Chaps. 2 and 3.

Chapter 4 is devoted to studying Cu4p-1s RXES of Nd2CuO4. While the nonlocal screening effect

due to the Zhang-Rice singlet formation is known in2p-XPS, no one has demonstrated its contribution

to RXES so far. We quantitatively prove its essential role in Cu4p-1s RXES in this chapter for the first

time, and give a clear explanation in terms of spatial extent of CT excitations [84].

Theoretical study on newly-developed experimental techniques such as momentum- or angle-

resolved RXES is another interesting theme. This point is discussed in Chap. 5 together with the latest

experimental data on Cu4pσ -1s RXES of Nd2CuO4. We will show that a local transition operator is

sufficient to describe the polarization and angular dependence of the “6 eV” CT excitation, and there-

fore impurity models would work well. We will also point out that RXES with hard X-rays provides

momentum-resolved information on electronic structure ink-space.

In the final chapter, a brief summary of conclusions in this thesis is given, and future problems are

presented.
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Chapter 2

A Model Study on Cluster Size Effects

of Resonant X-Ray Emission Spectra

Cluster size dependence of XAS, XPS, and RXES are theoretically studied with a one-dimensional peri-

odic Anderson model, which qualitatively describes effects of the translational symmetry for nominally

d0 (or f 0) compounds such as TiO2 (CeO2). It is shown that RXES depends more sensitively on the

cluster size than XAS and XPS, so that RXES is a useful probe in studying the duality between itinerant

and localized characters of3d or 4 f electrons. From results calculated by changing the cluster size

and parameter values such asd-p hybridization strength,d-d Coulomb interaction etc., it is explained

why the experimental Ce4 f -3d RXES of CeO2 is well reproduced by calculations with a single-cation

impurity Anderson model, but the Ti3d-2p RXES of TiO2 is not well reproduced.1

2.1 Introduction

It has been accepted that one of the key concepts to understand electronic properties of strongly cor-

related systems involving 3d or 4f orbitals is the duality between localized and itinerant natures of

electrons. High-energy spectroscopies have played vital roles to investigate these systems. It is reason-

able that XPS and XAS of these systems are considerably well described with the impurity Anderson

model including a single cation [6, 85], because a completely localized core electron is involved in these

spectroscopies and the core hole acts as a localized attractive potential on the3d or 4f electrons. How-

ever, since van Veenendaalet al. demonstrated importance of nonlocal screening effects in analyses of

metal2p XPS for NiO [41] and high-Tc compounds [86, 87, 88], those phenomena in which the itinerant

property of3d electrons plays an essential role have attracted much attention in this field. As explained

in the preceding chapter, it is likely that their itinerancy and their dynamics are well expressed with

RXES. The main motivation of this chapter is to investigate how their itinerancy appears in the spectra.

It necessarily needs an extended cluster model beyond the single-cation impurity limit.

Experimental data of RXES for graphite [89], Si [90] and diamond [91] have shown that the wave

vector conservation rule, which is a mathematical consequence of the itinerancy of valence electrons,

plays an important role in RXES spectra. Note that the wave vector conservation rule holds even when

1T. Idé and A. Kotani, J. Phys. Soc. Jpn.67 (1998) 3621-3629.
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core hole effects exist [92]. As explained in the preceding chapter, for transition metal compounds such

as TiO2 [46] and FeTiO3 [47] remarkable spectral features have been observed (Fig. 1.6): in addition

to inelastic X-ray scattering peaks whose emitted photon energy moves in parallel with the incident

photon energy, giant inelastic spectra are observed at nearly the same energy position for any incident

photon energy, and they are connected smoothly to the line shape of NXES as the incident photon energy

increases far above the absorption threshold. We named the former the Raman component, and the latter

the fluorescence-like component.

A recent experimental and theoretical study on Ti3d-2p RXES of gas-phase TiCl4 [93] clearly

suggest that the fluorescence-like feature, which is hard to understand with the single-cation impurity

model, originates from the solid state effect. We would like to study how the translational symmetry of

crystals modifies RXES spectra for the3d system, and to give a physical picture of the X-ray emission

process. On the other hand, Nakazawaet al. showed that Ce4 f -3d RXES of CeO2, which have a4 f 0

configuration, is well reproduced with an impurity Anderson model [94] despite the apparent similarity

in electronic configuration betweend0 and f 0 systems. Their results is shown in Fig. 2.1 for readers’

convenience. Now questions come arise: What systems do impurity models cover? Does the transla-

tional symmetry give a negligible effect for a system corresponding CeO2? To study these questions,

we adopt a one-dimensional periodic Anderson model without orbital degeneracies as a minimal model

having explicit translational symmetry.

Figure 2.1: Theoretical and experimental XAS and RXES spectra of CeO2. The thin solid curves and

dotted thick curves represent calculated and experimental results, respectively [94]. The calculation was

based on an impurity Anderson model. The experimental spectra were measured by Butorinet al. [95].

The agreement between calculated and experimental results is good.

The structure of this chapter is as follows: in§ 2.2 we explain the model used. In§ 2.3 we give

results of numerical calculations on XAS, XPS, RXES and NXES for TiO2-like and CeO2-like systems.

In § 2.4 physical interpretations for these spectra are presented with special attention to role of the wave

vector conservation rule. In the last section, we will give a brief summary of the present study.
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2.2 Formulation

We consider a one-dimensional (1D) version of the periodic Anderson model:

H = Hdp+Hdc+Hcore, (2.1)

where

Hdp = ∑
l ,σ

[
(∆+ εp)d†

lσ dlσ + εp p†
lσ plσ ]

]

+ ∑
〈i, j〉

∑
σ

[
vd†

iσ p jσ +H.c.
]
+Udd ∑

l

d†
l↑dl↑d†

l↓dl↓, (2.2)

Hdc =−Udc ∑
l

(
∑
σ

d†
lσ dlσ

)(
∑
σ ′

clσ ′c
†
lσ ′

)
, (2.3)

and

Hcore= ∑
l ,σ

εcc†
lσ clσ . (2.4)

In the above equations,d†
lσ (p†

lσ ) is a creation operator of an electron ofσ (↑ or ↓) spin on thed (p) site

in l -th unit cell,∆ is the charge-transfer energy betweend andp orbitals,Udd is the on-sited-d Coulomb

correlation energy, andUdc is the intra-atomic core hole potential. One-electron energy of thep orbitals

is represented withεp. c†
lσ (clσ ) is a creation (annihilation) operator of a core electron with one-electron

energyεc. Geometry of the system is shown in Fig. 2.2. We set the number of valence electrons in the

ground state as2N for dM pN system, and assume thez-component of the total spinSz to be zero. Note

that our model explicitly comprises bothUdd andUdc, which are essential to have realistic discussion

onbothXAS and RXES [49].

Thed1p2 cluster withopenboundary condition (Fig. 2.2 (b)) is used as a reference system represent-

ing the smallest cluster with a single cation (or the impurity Anderson model), and large-cluster effects

are studied usingdN pN clusters with theperiodic boundary condition (Fig. 2.2 (a)) by comparing the

results calculated with differentN (also with thed1p2 system).

The second term in Eq. (2.2) describes nearest-neighbord-p hopping processes. Although the

present model does not explicitly include orbital degeneracies, we take them into account by estimating

thed-p hopping energyv as

v =
1
2

√
4V(eg)2 +6V(t2g)2, (2.5)

whereV(eg) andV(t2g) are hybridization strengths of the TiO6 cluster model [49], so that we have the

same bonding-antibonding separation in the final state of RXES as that of the TiO6 cluster model. We

explain the derivation in Appendix.

Okada and Kotani [49] used parameter valuesV(eg)=3.0 andV(t2g)=−1.5, from which we have

v=3.5 (in units of eV). Other parameters are chosen to be the same as their estimation:∆=4.0,Udd=4.0

andUdc=6.0 (in eV). These will be referred to as “TiO2-like” parameters.

We have regarded thed, p and core orbitals as Ti3d, O 2p and Ti 2p orbitals. The Hamiltonian

described above can also be used for Ce4 f -3d RXES spectra of a “CeO2-like” system by regarding

d, p andc as Ce4 f , O 2p and Ce3d orbitals, respectively. Since the impurity Anderson model with

local SO(3) symmetry has well reproduced Ce3d XAS spectra [94, 96], thef -p hybridization strength

mapped onto 1D Hamiltonian should be simply given byv =
√

14V/2, where 14 is the degeneracy
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(b) single-cation
    (impurity limit)

(c) reduced
single-cation model

d

(a) d  p   cluster with PBC

v2

v L dp p1 2

1 2 ... N

N N

Figure 2.2: Geometry of the system. The closed circles representd and core orbitals, and the open

circles representp orbitals. (a) The multi-cationdN pN system with periodic boundary condition. The

rectangle indicates a unit cluster of the system. (b) The single-cation (d1p2) model withopenboundary

condition. This is used as a reference system representing the smallest cluster with a single cation. (c)

The reduced single-cation model, whereL is a linear combination of the twop orbitals in (b) such as

L†
σ = (p†

1σ + p†
2σ )/

√
2, resulting in the value

√
2v of d-L transfer energy.

of 4 f state. Considering the results by Jo and Kotani [96] and Nakazawaet al. [94], for “CeO2-like”

calculations we use a parameter set of∆=1.5,U f f =10.0,U f c=13.0, andv= 1.5 eV.

For our 1D model, the transition operators of the photon absorption and emission process in the

dipole approximation are quite simplified as

Ta = ∑
l

eiq1l ∑
σ

d†
lσ clσ (2.6)

and

Te = ∑
l

e−iq2l ∑
σ

c†
lσ dlσ (2.7)

in place of Eqs. (1.22) and (1.23).q1 is the wave number of an incident photon andq2 an emitted

photon2. Since we are interested in core level spectra in the soft X-ray regime, the photon wave

numbersq1 andq2 are taken approximately as zero.

With these operators, the transition operator of RXES is given by

T(Ω) ≡ TeG0(Ω)Ta (2.8)

= ∑
lσ

c†
lσ dlσ G0(Ω)d†

lσ clσ ,

whereG0(Ω) is the resolvent operator defined byG0(Ω) = (Ω +Eg−H + iΓ)−1, Eg being the energy

of the ground state|g〉. Now the transition amplitude of the RXES process from|g〉 to a final state| f 〉
is given by

Ug→ f (Ω) = ∑
l

∑
n=0,1

〈 f |Tr(l)(Ps)nc†
0σ d0σ G0(Ω)d†

0σ c0σ |g〉×Kg(l)(Ps,g)n, (2.9)

2We have disregarded the geometrical (angular dependent) factor. In realistic three-dimensional systems, it is quite important

for understanding experimental RXES spectra. For effects of the angular dependence on RXES, see,e.g., Ref. [97]. We will

explore angular and polarization dependence of RXES in Chap. 5.
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whereKg(l) is the eigenvalue of the ground state for the translation operatorTr(l) defined in Eq. (1.40).

Ps is the spin-flip operator defined by

Psdl↑P−1
s = dl↓

etc., andPs,g is its eigenvalue of the ground state. SinceTr andPs commute withH, and moreover

they commute each other, one can always take the ground state as an eigenvector of these operators.

Tr andPs are also commute withT(Ω), so that the eigenvalue of each operators is conserved between

|g〉 and | f 〉. To evaluate the amplitude numerically, one needs to carry out the operation ofTr andPs

in Eq. (2.9). The former is associated with the wave vector conservation rule, which reflects a spatial

coherence of crystal [98], as explained in§ 1.3. The latter is associated with the well-known SU(2)

rotational symmetry inspinspace [99], the degrees of freedom to choose the quantization axis of spin.

Note that the SU(2) selection rule limits the final state more stringently than the simpleSz conservation

rule does. This fact is easily understood by considering a two-sited-p model with two electrons. Within

Sz = 0, we have a triplet state
1√
2

(
d†
↑ p†

↓+d†
↓ p†

↑
)
|0〉,

and one of singlet states
1√
2

(
d†
↑ p†

↓−d†
↓ p†

↑
)
|0〉,

as well as trivial singlet statesd†
↑d

†
↓ |0〉 andp†

↑p†
↓|0〉. The triplet state has an eigenvalue ofPs = 1, whereas

all the singlet statesPs = −1. Hence the omission ofPs in Eq. (2.9) generally leads to a breakdown of

the conservation rule as toPs, and therefore causes incorrect spectra which do not satisfy the SU(2)

selection rule.

After all, RXES spectral function is calculated with the transition amplitude Eq. (2.9) as

FRXES(Ω,ω) =
1
N ∑

f 6=g

|Ug→ f (Ω)|2δ (ω−Ω+Ef −Eg), (2.10)

whereω is the emitted photon energy and we introduce the normalization factor1/N in order to compare

systems of different cluster size.

2.3 Calculated Results

2.3.1 XPS spectra

We show XPS spectra for various cluster sizes with the TiO2-like and the CeO2-like parameters in

Fig. 2.3. The calculated line spectra are convoluted with a Lorentzian function of width 1.0 eV (HWHM)

corresponding to the lifetime broadening of the core hole, as well as experimental resolution.

The XPS spectra for the TiO2-like parameters shown in Fig. 2.3 (a) have roughly two-peak structure

with a strong main peak and a weak satellite. For larger cluster sizes, we observe that a few very

weak peaks come arise between them. In the impurity limit (d1p2), the main peak corresponds to the

bonding state betweencd0 andcd1L configurations [49], whereL andc represent core and ligand holes,

respectively. The satellite peak corresponds to the antibonding state. The small cluster-size dependence

suggests that the main and satellite peaks could be characterized by the above local charge-transfer

excitation also for larger cluster sizes.

35



On the other hand, clear three peaks are observed in the XPS spectra for the CeO2-like parameters

(Fig. 2.3 (b)), corresponding to three configurations ofcf 0, cf 1L andcf 2L2. The three-peaked structure

is experimentally observed in Ce3d-XPS [101], and well reproduced with impurity Anderson mod-

els [94, 96]. The striking difference between the TiO2-like and CeO2-like systems originates from, first,

the smaller values ofv/U f f andv/U f c, and second, the negative value of∆ +U f f −U f c [94]. As the

cluster size increases, we have slightly broader and more asymmetric shapes for the peaks in the lowest

and the second-lowest binding energies. However, the global structure is considerably well reproduced

with the single-cation clusterf1p2.

2.3.2 XAS, RXES and NXES spectra for TiO2-like parameters

Figures 2.4 (a)-(c) show XAS, NXES and RXES spectra for the TiO2-like parameters ind1p2, d3p3 and

d6p6 clusters. The value ofΓ for NXES and RXES is taken as 0.4 eV3, and the Lorentzian convolution

with width 1.0 eV (HWHM) is made for all the spectra, as in the case of XPS. To compare RXES spectra

for variousΩ’s, each of original calculated spectra is magnified by a rate indicated as “× 10” in the

figure.

In the case of thed1p2 system, we see two-inelastic peaks, each of which moves in parallel with

the incident photon energyΩ, i.e. exhibits only the Raman component. The first (higherω) peak corre-

sponds to a single-electron charge-transfer excitation, whereas the second one to a two-electron charge

transfer state with dominantd2L2 weight. It is rather appropriate to call the former the antibonding state

betweend0 andd1L configurations, because its energy separation from the elastic line is not ruled by

∆ but mainlyv. These inelastic peaks are necessarilylocal charge transfer excitations, and there is no

room for fluorescence-like components.

In going from thed1p2 to d3p3 clusters, however, we find some inelastic scattering peaks which

do not follow the change of the incident photon energyΩ. For thed6p6 cluster, the energyω of main

RXES peaks does not followΩ but is rather constant, and it oscillates around the constant energy with

the change ofΩ, exhibiting the fluorescence-like behavior.

The line shape of NXES also shows, in Fig. 2.4, considerable dependence on the cluster size: A

single peak is observed for the NXES of thed1p2 cluster, but it splits into two peaks for thed3p3 cluster,

and the relative intensity of the two peaks changes for thed6p6 cluster.

2.3.3 XAS, RXES and NXES spectra for CeO2-like parameters

Figures 2.5 (a)-(c) show XAS, RXES and NXES spectra with the CeO2-like parameters for various

sizes of the cluster. We see that the XAS spectra have two-peak structure. The main and satellite peaks

correspond to the bonding and anti-bonding states, respectively, betweencf 1 andcf 2L configurations.

The cluster size dependence of XAS is quite small, and we only recognize, with increasing cluster size,

a slight increase of the spectral intensity in the region between the main peak and the satellite.

The cluster size dependence of RXES for the CeO2-like system is much smaller than that of the

TiO2-like system, and the energy of the main inelastic scattering feature follows the change ofΩ even

in the case of large clusters. Apart from the incident photon energy 1, the single-cation model calculation

shows a strong inelastic peak, which corresponds to a single charge-transfer excitation. This peak shifts

3We have explicitly relatedΓ to the Auger decay process in Eq. (1.35). In addition, we have to consider at least two factors to

evaluateΓ: The experimental resolution of the incident X-ray, and finite energy interval of eigenstates due to finite cluster size.
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Figure 2.4: Calculated XAS and RXES spectra for the TiO2-like parameters with (a)d1p2, (b) d3p3 and

(c) d6p6 clusters. NXES spectra are also shown on the top of the RXES curves. The arrows indicate

energy positions of the incident photon.
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in parallel withΩ, exhibiting the Raman component. With increasing cluster size, the corresponding

line spectrum shows a fine spectral splitting into some line spectra, so that this inelastic structure is

broadened. Comparing the results calculated withf1p2 and f6p6 clusters, we see that the single-cation

model is a good approximation for describing the RXES except for the incident photon energy 1, for

which we will give some discussion in the next section.

The NXES spectrum withf1p2 cluster has two peaks, corresponding to the bonding and anti-bonding

states betweenf 0L and f 1L2 configurations in the final state. With increasing cluster size, the lower

energy peak is more broadened, but we observe much smaller dependence on the cluster size compared

with the TiO2-like system.

2.4 Discussion

2.4.1 Applicability of the single-cation model

According to Fig. 2.3, it is found that the cluster size dependence is extremely small for the calculated

XPS spectra of both the TiO2-like and CeO2-like systems. While the XAS spectra shown in Figs. 2.4

and 2.5 depend on the cluster size slightly more than XPS, the dependence is still extremely small. This

fact suggests that the single-cation model can well describe XPS and XAS, which are typical exam-

ples of the first-order optical process. Thereby we justify previous theoretical analyses of Ti2p-XPS

and2p-XAS of TiO2 [49], as well as Ce3d-XPS and3d-XAS of CeO2 [94, 96], with impurity mod-

els. In addition, for RXES and NXES, it is shown that the single-cation model works as a good model

for the CeO2-like system, where only the Raman component appears. However, it is demonstrated

that the cluster size dependence is greatly important for the TiO2-like system. While the experimen-

tally observed fluorescence-like spectra ind0 systems[46, 47] are by no means reproduced with the

single-cation model, we observe the fluorescence-like behavior with the large-cluster model. This re-

sult definitely means that the appearance of the fluorescence-like spectra is a direct consequence of the

translational symmetry of the system. Detailed discussion on the origin of the cluster size dependence

of RXES will be given in the next subsections.

2.4.2 Fluorescence-like spectra in large cluster models

In order to understand the cluster size effect in the TiO2-like system, it is instructive to study the situation

in the limit ofUdd =Udc = 0. In this case, the initial and final states of RXES are described exactly with

one-electron Bloch states with energy dispersion (Fig. 2.6):

ε±(k)− εp =
∆
2

(
1±

√
1+(4v/∆)2cos2(k/2)

)
. (2.11)

Figure 2.7 shows XAS and RXES spectra for thed6p6 cluster in the limit ofUdd=Udc=0. The number

of k-points in the first Brillouin zone of thed6p6 system is six, i.e.{0,±π/3,±2π/3,π}, and the number

of the excited electron energies is four. In accordance with these four points, the XAS spectrum displays

four lines.

TheΩ-dependence of RXES spectra in Fig. 2.7 (solid curves), which is unlike the Raman behavior,

is a consequence of thek-conservation rule. Close inspection shows that the inelastic spectrum for

any excitation energy consists of three lines. These correspond to states with an electron-hole pair in
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Figure 2.5: XAS and RXES spectra for the CeO2-like parameters with (a)f1p2 (upper), (b)f3p3 (lower

left) and (c) f6p6 (lower right) clusters. See the caption for Fig. 2.4.
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{0,±π/3,±2π/3}, from lower to higher energy. WhenΩ is tuned to 2, for example, a conduction

electron atk =±2π/3 is resonantly selected in the intermediate state. Then the resultant final state has

an electron-hole pair atk = ±2π/3 according to thek-conservation rule. Similarly,Ω at 3 (4) leads to

an electron-hole pair atk = ±π/3 (k = 0) in the final state. The valence (conduction) band atk = π is

of purep (d) character as suggested by Eq. (2.11). Hence the final state with an electron-hole pair inπ
has no contribution to the RXES spectra within the intra-atomic transition model as shown in Eq. (2.7),

and the inelastic scattering process is necessarily virtual one for the incident photon energy 1.

If we fix a core hole site in the intermediate state, thek-conservation rule breaks down. RXES

spectra calculated with a fixed core hole site are shown in Fig. 2.7 with dashed curves. In this case, the

spectral shape of RXES is the same as that of NXES. This is because the excited conduction electron

has no contribution to the RXES spectral shape, so that the situation is the same as NXES.

These results suggest the origin of the cluster size effect in the TiO2-like system. If the cluster size

is small, an excited conduction electron is necessarily localized and makes an active contribution to

the X-ray emission process. In this case, the emitted photon energy shifts in parallel with the incident

photon energy. However, when the cluster size is large, we have some intermediate states in which

the excited conduction electron state is extended in space as in the case ofUdd=Udc=0. Thereby the

photoexcited electron can be dissipated from the unit cluster with a core hole to the surrounding system.

If this dissipation completely occurs in the intermediate state, the X-ray emission process necessarily

resembles NXES, then the fluorescence-like spectra come arise. The dependence of the fluorescence-

like spectra onΩ is expected to come from thek-conservation rule within the present model (see§2.4.3).

Effects of finite values ofUdd andUdc are also important in the TiO2-like system. In order to see

the effect ofUdc, calculated RXES spectra withUdd=0 butUdc=6.0 eV are shown in Fig. 2.8. In the

XAS spectrum we observe a strong main peak 1, which corresponds to a bound state between the core

hole and an electron excited from the core level, i.e. the core exciton4. Comparison of Fig. 2.7 and

4See the discussion in§ 1.4.4. For an original paper, see Ref. [100].
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Figure 2.7: RXES spectra in the free electron limitUdd = Udc=0 (solid line). Parameters other thanUdd

andUdc are the same as the TiO2-like ones. The dashed curves represent core-fixed RXES spectra. See

the caption for Fig. 2.4.

Fig. 2.8 shows that the RXES spectra are more broadened and exhibit new fine structures because of

Udc, which causes excitations with more than one electron-hole pairs in the final state, although the final

state Hamiltonian is independent ofUdc. However, the RXES spectra of 2, 3 and 4 in Fig. 2.8 are found

to resemble those in Fig. 2.7, and this suggests that these intermediate states have somewhat common

characters with spatially extended conduction electron states.

It appears that a weak peak located at the highest energyω shifts in parallel withΩ, but this occurs

as a result of the finite sizeN 5.

When we introduce a finite value ofUdd, occurrence of doubly occupied orbital states is considerably

suppressed, and then the RXES in Fig. 2.8 is changed to that in Fig. 2.4 (c). The RXES spectral

broadening in Fig. 2.8 is somewhat suppressed in Fig. 2.4 (c), because of the suppression of more than

one electron hole pairs in the final state. However, the effect ofUdd is not very strong except for the case

of 1, because the occupation number ofd electrons is small in most states of the TiO2-like system.

Compared with the TiO2-like system, the cluster size dependence of RXES in CeO2-like system is

much smaller because of the smaller value of the hybridizationv.

5Although the statement that a finite cluster size is likely to excessively highlight this peak is true within the present model, it

may be questionable whether or not it holds in realistic systems having orbital degeneracy. The experimentally observed Raman

component involves nonbonding states (see§ 2.4.4) as well as the antibonding state, and the intensity ratio between the Raman

and fluorescence-like components strongly depends on how many states we have in a unit cluster, as will be discussed in the next

chapter.
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Figure 2.8: Role of the core hole potentialUdc in RXES spectra. Parameters other thanUdd are the same

as the TiO2-like ones. See the caption for Fig. 2.4.

2.4.3 Role of thek-conservation rule

To study effects of thek-conservation rule in TiO2-like and CeO2-like systems, we calculate RXES

spectra by fixing the core orbital on a single site and compare them with those including the translational

symmetry of core orbitals (denoted as “coherent spectra”). The results are shown in Fig. 2.9. The TiO2-

like spectra in Fig. 2.9 (a) show clear difference between the fixed core-site and coherent spectra. The

fixed core-site spectra are considerably broader than the coherent ones for the incident photon energy of

2, 3 and 4. This is clearly attributed to thek-nonconserving nature of the fixed core-site model. Thus,

the role of thek-conservation rule is (1) to narrow the inelastic peak width, and (2) to fluctuate their

peak position around that of NXES spectra.

Note that the RXES spectral shape depends on the incident photon energy even with the core-fixed

k-nonconserving model. This is in strong contrast to the case ofUdd=Udc=0 (Fig. 2.7). Because of finite

values ofUdd andUdc, the photo-excited conduction electron in the intermediate state cannot be a single

Bloch state, and some rearrangement between the conduction and valence electron states occurs in going

from the intermediate to the final states. Therefore, the origin of the dependence of the fluorescence-like

spectra on the incident photon energy is partly the effect of thek-conservation rule and partly the effect

of Udd andUdc
6.

According to Fig. 2.9 (b), there is little difference between the fixed core-site and coherent RXES

spectra for the CeO2-like parameters, although close inspection shows that we have slightly broader

spectral shapes with the fixed core-site model. For the CeO2-like system, the quasi-particle bandwidth

is of the same order as the lifetime in the final state. Furthermore the small value ofv/U f c makes

the intermediate state almost localized. Then clear cluster size effects are not observed. The fact that

6We discuss the contribution of crystal field splitting in the next chapter.
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the fixed core-site and coherent spectra are almost the same demonstrates the reason why the analyses

of Ce4 f -3d RXES with the impurity Anderson model have successfully reproduced the experimental

result [94].

2.4.4 Limitation of the present model

We have discussed qualitatively the cluster size effect of RXES in TiO2 and CeO2. In order to make

a quantitative study, it is necessary to improve the model. Firstly, the atomic arrangement should be

developed from the 1D chain to a 3D model that is more realistic. Secondly, the orbital degeneracies ofd

(or f ) andp states should be taken into account. As shown in Appendix, we have introduced the effective

hybridizationv, in which effects of orbital degeneracies on the hybridization betweend0 andd1L are

taken into account. With this effective hybridization, however, effects of orbital degeneracies on the

hybridization betweencd1 andcd2L configurations in the intermediate state cannot be well described.

Furthermore, the effects of orbital degeneracies are essential in the calculation of RXES for the incident

photon energy tuned to the main XAS peak. As shown by Nakazawaet al. [94], the main inelastic

RXES spectra in resonance with the XAS main peak of CeO2 originate from the nonbondingf 1L final

states, instead of the antibonding state betweenf 0 and f 1L configurations. The nonbonding final states

occur only by taking explicitly into account the orbital degeneracies. The situation is also the same for

TiO2. In this sense, the present calculation of RXES for the case 1 is not realistic. In the next chapter,

we will discuss the cluster size dependence with degenerate models to remove this limitation.

2.5 Conclusions

We have numerically studied large-cluster effects on XPS, XAS, NXES and RXES spectra. The model

we have used is a one-dimensional nondegenerate periodic Anderson model, which is a minimal model

having the explicit translational symmetry. It qualitatively describes those spectra ofd0 and f 0 com-

pounds. Following results have been obtained.

Firstly, we showed that the cluster size dependence is extremely suppressed for the first order optical

process, XPS and XAS. It suggests that an impurity model is applicable to analyses of these spectra, in

contrast to the second-order optical process, RXES and NXES.

Secondly, for TiO2-like systems, we numerically demonstrated the occurrence of fluorescence-like

spectra because of the large-cluster effect. Their behavior is qualitatively consistent with the Ti3d-

2p RXES experiment of TiO2. The origin of the fluorescence-like spectra is the existence of spatially

extended states of a conduction electron in the intermediate state.Apart from the effects due to orbital

degeneracy, the dependence of fluorescence-like spectra on the incident photon energy originates from

thek-conservation rule, as well as from the effects ofUdd andUdc.

Thirdly, for the CeO2-like system we have shown that the large-cluster effects in RXES spectra are

fairly suppressed, compared with the TiO2-like system, because of the smaller hybridization strengthv.

The effect of the translational symmetry is the broadening of inelastic peaks.

Finally we pointed out that explicit orbital degeneracies should be taken into account to describe

RXES spectra in resonance with the XAS main peak ind0 and f 0 systems. This subject will be discussed

in the next chapter.
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Figure 2.9: Comparison between fixed core-site and coherent calculations of RXES spectra for the (a)

TiO2-like and (b) CeO2-like systems with six unit clusters. The fixed core-site spectra are represented

with dashed lines, and the coherent ones with solid lines. See the caption for Fig. 2.4.
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Appendix: Effective Hybridization

In a TiO6 cluster model with local Oh symmetry and with full orbital degeneracies, the Hamiltonian of

hybridization between Ti3d orbitals and O2p ligand molecular orbitals is given by

H ′
1 = ∑

Γ,m,σ

[
V(Γ)d†

Γmσ pΓmσ +H.c.
]
, (2.12)

whereΓ runs over two irreducible representations of Oh, i.e. eg andt2g, andm distinguishes the 2- or

3-fold degeneracies of them. On the other hand, in the impurity limit (Fig. 2.2 (b)), the hopping energy

of our model satisfies2v = 〈d0|H|d1L〉, where|d0〉= L†
↑L

†
↓|0〉 and

|d1L〉=
1√
2

∑
σ

d†
σ Lσ |d0〉.

The ligand orbitalL†
σ is defined by (see Fig. 2.2 (c))

Lσ =
1√
2
(p1σ + p2σ ).

|0〉 denotes the state which has no valence electrons but has filled core levels.

Now we map the hybridization strength of TiO6 cluster onto 1Dd-p model. It is quite natural to

define ourv as

2v≡max{〈d0|H ′
1|d1L〉}, (2.13)

where|d1L〉 is a linear combination such as

|d1L〉= ∑
Γ,m,σ

αΓmσ d†
Γmσ pΓmσ |d0〉, (2.14)

and the coefficients{αΓmσ} are chosen to maximize〈d0|H ′
1|d1L〉 under the normalization condition

∑Γ,m,σ α2
Γmσ = 1.

It is easy to solve the extremum problem and show that the effective hybridization defined by

Eq. (2.13) is given by

v =
1
2

√
4V(eg)2 +6V(t2g)2 (2.15)

for

αΓmσ =
V(Γ)√

6V(t2g)2 +4V(eg)2
. (2.16)

Within so-called two-configuration approximation, bonding and antibonding states in the final state of

RXES are defined as lower and higher energy eigenstates, respectively, of the2×2 Hamiltonian spanned

by |d0〉 and|d1L〉. By definition, the bonding-antibonding separation of the present single-cation model

with the effectivev is exactly the same as that of the TiO6 cluster model.

In the case of the CeO2-like system, we can take

H ′
1 = V ∑

m,σ

[
f †
mσ pmσ +H.c.

]
(2.17)

with SO(3) symmetry and 7-fold degeneracy ofl=3 orbital. Therefore, the effective hybridizationv is

given by

v =
√

14
2

V. (2.18)
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Chapter 3

Interplay between Raman and

Fluorescence-Like Components in

Degenerated0 and d1 Systems

XAS, NXES and RXES spectra are theoretically studied with a doubly-degenerate one-dimensional

periodic Anderson model underd0 andd1 fillings. This is a simplified model of band insulators such as

TiO2, and Mott-Hubbard insulators such as Ti2O3. Comparing with nondegenerate model calculations,

we point out the important role of orbital degeneracy in reproducing experimental excitation energy

dependence of RXES. The calculated results exhibit interplay between Raman and fluorescence-like

components in both band insulator and Mott-Hubbard insulator. The former and latter components

reflect the local point symmetry and the translational symmetry of the system, respectively. Our results

qualitatively well explain Ti3d-2p RXES of TiO2 and Ti2O3. 1

3.1 Introduction

In this chapter, we discussM 3d-2p RXES (M being a transition metal ion) ford0 andd1 insulators with

multi-M cluster models includingorbital degeneracy. We have proposed a mechanism of electronic

origin in the preceding chapter for the experimentally observed fluorescence-like spectra in Ti3d-2p

RXES [46, 47] (see Fig. 1.6). The key point of our picture is the existence of extended statesagainstthe

strongUdc in the intermediate state, although such extended states may have almost negligible weight

in the XAS spectrum. WhenΩ (incident photon energy) is tuned there, an electron excited to a3d

orbital can escape to the neighboring site (Fig. 3.1 (b)) because of a finite valence band width and finite

electronic relaxation time of the core hole. Consequently, RXES spectra roughly reflect the valence

band density of states. This transition process resembles NXES, which is schematically described in

Fig. 3.1 (a), in the sense that a core electron is excited to a continuum state in the both cases. Thus, one

can call this RXES spectrum NXES-like one, which has naturally lessΩ-dependence.

For theΩ-dependence of RXES spectra, Minami and Nasu [102] stressed the role of phonon de-

grees of freedom. Using a model including the electron-phonon coupling but any Coulomb interaction,

1T. Idé and A. Kotani, submitted.
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core
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(a) normal X-ray emission

high energy continuum

Figure 3.1: Schematic diagram of (a) the normal X-ray emission process and (b) the fluorescence-like

resonant emission in3d-2p RXES of d0 compounds. In (a), a core electron is excited by an incident

X-ray with energyΩ to a high-energy continuum far from the valence level, so that the spectrum of the

emitted X-rayω is related to the density of states of the filled valence band (darkly-shaded area). In

(b), a core electron is resonantly excited to an extended valence state located between the main and CT

satellite peaks of XAS. Then the electron escapes from the core hole site, with probability involving3d-

ligand hopping integral and relaxation timeτR of the intermediate state. After that, the X-ray emission

process resembles the case (a).
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they insist that the origin of the fluorescence-like component, “luminescence” component in their ter-

minology, is attributed to the full phonon relaxation of electronic momentum in the intermediate state.

The Raman component is, on the other hand, attributed to the zero-phonon process, and thus described

with the simple band theory. Note that the Raman component in their sense comes from delocalized

Bloch states, being completely different from our theory, where local charge-transfer excitations give

rise to the Raman component. Making a comparison between the phonon relaxation timeτp and lifetime

of the core holeτR, they concluded that the “luminescence” component due to the phonon relaxation

contributes comparably to the Raman component in Ti3d-2p RXES of TiO2. No essential change in

this conclusion has been made in their sequel theory including core and valence exciton effects within

that approximation which takes only one electron-hole pair into account [103]. Experimental spectra,

however, clearly show the comparable spectral weight of the two components even in the case of late

transition metal oxides [104], which should be classified into Raman-dominant materials according to

their theory. Hence it may well be questioned whether the phonon relaxation really governs the appear-

ance of the fluorescence-like component in transition metal oxides, although the phonon coupling might

play some role in materials either with a longτR and high Debye temperature such as diamond [105].

While our model successfully explained the origin of the fluorescence-like spectra, the lack of inter-

nal structure of atoms prevents us from discussing features of local origin such as polarization depen-

dence in RXES. Very recently, Haradaet al. observed polarization dependence of Ti3d-2p RXES of

TiO2, where a drastic resonant enhancement occurs whenΩ is tuned at a satellite peak of XAS [106],

and Matsubaraet al. pointed out that it is explained in terms of the selection rule of the local point

group [107]. It is the purpose of the present chapter to extend the previous model to include orbital de-

generacies, and show that calculated spectra represent coexistence of the fluorescence-like and Raman

components, the latter being qualitatively consistent to the experimental polarization dependence.

Another purpose of this chapter is to study the RXES spectra in a Mott-Hubbard (MH) insula-

tor. If an inter-site charge-transfer process crucially contributes to RXES spectra in appearance of the

fluorescence-like component, it is interesting to study how RXES spectra are suffered from change in

character of insulating gaps upon going from a band insulator to a MH insulator. Although effective

hopping energy seems to be considerably reduced byd-d on-site Coulomb interaction, experimental

data on Ti3d-2p RXES of Ti2O3 [108], which is often referred to as a typical MH insulator, show a

clear fluorescence-like component. In the subsequent sections, we show that orbital degeneracy is es-

sential in appearance of the fluorescence-like spectra in MH systems, and we sketch interplay between

the fluorescence-like component and intra- or inter-sited-d excitations in RXES spectra.

The layout of the present chapter is as follows: In the next section, the models used are explained.

As a minimal model with both translational symmetry and orbital degeneracies, a doubly-degenerate

one-dimensional (1D) model is introduced. In§ 3.3 and§ 3.4, main features of calculated results are

discussed in detail ford0 and d1 systems, respectively, with special attention to the role of orbital

degeneracy and translational symmetry of the system. In§ 3.5, the aforementioned coexistence and

relation with experimental data are discussed. In§ 3.6, a brief summary is given.
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3.2 Formulation

We use a 1D doubly-degenerate periodic Anderson model, which is topologically equivalent to the

system schematically described in Fig. 3.2 (a). The Hamiltonian is written as follows:

H = H0 +V +Hdd +Hdc, (3.1)

where the first two terms describe one-electron part, the third one3d-3d Coulomb interaction, and the

forth one3d-core intra-atomic Coulomb interaction.

H0 andV are defined as

H0 = ∑
l ,σ

[
ε0Q†

lσ Qlσ + ε0q†
lσ qlσ + εcc†

lσ clσ

+ (∆+ ε0)D†
lσ Dlσ +(∆−10Dq+ ε0)d†

lσ dlσ

]
,

V = ∑
l ,σ

{
d†

lσ [v1(qlσ +ql+1σ )+u1(Qlσ +Ql+1σ )]

+ D†
lσ [v2(Qlσ −Ql+1σ )+u2(qlσ −ql+1σ )]

}
+H.c.

In the above equations,d†
lσ andD†

lσ represent creation operators of two3d orbitals with spinσ at l -th

unit cell, respectively.q†
lσ andQ†

lσ are creation operators of oxygen2p orbitals with one-electron energy

ε0. ∆ and10Dq are the CT energy and the crystal field splitting energy between the two3d orbitals.c†
lσ

is a creation operator of a core electron with one-electron energyεc.

The interaction terms are defined as

Hdd = Ud1 ∑
l

(
d†

l↑dl↑d†
l↓dl↓+D†

l↑Dl↑D†
l↓Dl↓

)

+ Ud2 ∑
l

(
∑
σ

d†
lσ dlσ

)(
∑
σ ′

D†
lσ ′Dlσ ′

)

and

Hdc =−Udc ∑
l ,σ ,σ ′

(
d†

lσ dlσ +D†
lσ Dlσ

)
clσ ′c

†
lσ ′ , (3.2)

whereUd1 (Ud2) is the on-sited-d or D-D (d-D) Coulomb correlation energy, andUdc is the intra-atomic

core-3d interaction. Exchange and spin-orbit couplings are omitted for simplicity.

Thed-p hopping energies are represented with{v1,v2,u1,u2}. Depending on their relative phases

and values, there are some ways to include orbital degeneracy into this model. The single-metal-ion

cluster limit of our model is described in Fig. 3.2 (b). We consider that the single-M cluster is an

effective model of anMO6 cluster. In the case of aMO6 cluster with Oh symmetry, a subsystem having

d(eg) orbitals and ligand orbitals witheg symmetry is coupled with a subsystem havingd(t2g) orbitals

and ligand orbitals witht2g symmetry throughd-d Coulomb interaction (cf. Fig. 1.9). If there were

no Coulomb interaction, the subsystems would be completely decoupled. Considering this fact, we set

v1 = u1 andv2 = u2, then the ligand orbitals are separated into two orthogonal molecular orbitals as

pσ ≡ 1
2
(q0σ +q1σ +Q0σ +Q1σ ) (3.3)
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and

Pσ ≡ 1
2
(q0σ −q1σ +Q0σ −Q1σ ). (3.4)

Consequently, the single-M cluster is reduced to that in Fig. 3.2 (c). Now we can regard thed-p unit

as an effective subsystem of thed(t2g)-L(t2g) one, and theD-P unit as an effective subsystem of the

d(eg)-L(eg) one, whereL stands for ligand molecular orbital2.

To evaluate hopping energies, we apply the effective hybridization theory separately toeg andt2g

orbitals. Fort2g (d) orbitals, the starting point is the equation

max{〈d0|H|d1p〉}= max{〈d0|H|d(t2g)1L(t2g)〉},

where|d1p〉 = 1√
2

∑σ d†
σ pσ |d0〉. As suggested by Eq. (3.3), the left hand side is given by

√
2× 2v1,

where
√

2 represents the contribution of spin degeneracy. The right hand side is given by
√

6V(t2g),
whereV(t2g) is the hybridization strength of a TiO6 cluster model. Hence we havev1=

√
3V(t2g)/2. Sim-

ilarly, v2 is estimated asv2=V(eg)/
√

2. ForV(eg)=3.0 andV(t2g)=−1.5 eV [49], we havev1=u1=1.3 and

v2=u2=2.1 eV. Other parameters are chosen to be the same as Ref. [49]:∆=4.0,10Dq=1.7,Ud1=Ud2=4.0

andUdc=6.0 [eV].

Uozumi [109] and Taguchi [110] report nearly the same value ofUdd, Udc, 10Dq, andV(eg) as

those of TiO2 in their analyses on Ti2p-XPS of Ti2O3, so that we take the same parameter also ford1

systems in this chapter3.

In addition to the doubly-degenerate models, we use also nondegenerate models shown in Fig. 2.2

to discuss the role of orbital degeneracy. The value of the parameter set includingd-p hopping energy

v, CT energy∆, on-sited-d Coulomb energyUdd, and on-site core-d attractive interactionUdc will be

explained in the subsequent subsections.

In the present model, X-ray absorption and emission processes at a metal sitel are described with

the following operators:

Ta(l) = ∑
σ

(a1d†
lσ +a2D†

lσ )clσ (3.5)

Te(l) = ∑
σ

c†
lσ (b1dlσ +b2Dlσ ), (3.6)

where{a1,a2} and{b1,b2} are numerical factors, representing polarization dependence of the RXES.

All of them are taken to be unity unless any particular mention is made. The transition operator of RXES

is defined in Eq. (2.8),

∑
l

Te(l)G0(Ω)Ta(l).

It is worth noting that the point group symmetry of operatorsdlσ G0d†
lσ and Dlσ G0D†

lσ is different

from that ofdlσ G0D†
lσ andDlσ G0d†

lσ . The latter leads to final states with a different local point group

symmetry from the ground state. As will be discussed, it brings about a class of nonbonding final states.

The spectral function of the RXES process has been defined by Eq. (2.10). In this chapter, we use the

same valueΓ=0.4 eV as that in the preceding chapter.

2The other choice thatv1 = u1 andv2 =−u2 also leads to the exactly same single-M cluster as in Fig. 3.2 (c). Since these two

choices prove to be exactly equivalent even in the double-M cluster (periodicd2p2) case, it is conceivable that the conclusions in

the present chapter do not drastically depend on the choice at all.
3Reference [110] reports a large CT energy 6.5 eV. Note that this corresponds toUdd + ∆− 3

510Dq in the notation of the

present model, giving∆=3.52 forUdd=4.0 and10Dq=1.7.
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Figure 3.2: Thedegenerated-p models used. (a) A topologically equivalent system of the doubly

degenerate periodicd4p4 model. (b) The single-M cluster model withopenboundary condition. (c) The

reduced single-M cluster model, whered-D Coulomb interaction couples the two subsystems. For the

definition of the orbitalsP andp, see the text. In these figures, the black and white circles represent Ti

3d and oxygen2p orbitals, respectively. Thed-p transfer with positive sign is described with the solid

lines, whereas transfer with negative sign is described with dashed lines. Note that local symmetries

around the nonequivalent3d orbitals (d andD) are not the same.

3.3 Calculated Results I: Band Insulators

3.3.1 Nondegenerated0 system

To elucidate role of orbital degeneracy, we first recapitulate results of nondegenerate models as shown

in Fig. 2.2, where the parameter set∆=4.0,Udd=4.0,Udc=6.0, andv=
√

(2v1)2 +(2v2)2/2=3.5 eV are

used. These are the same as those in the preceding chapter. For all XAS, RXES and NXES spectra in the

present chapter, the momentum-transferq is fixed to be zero, and calculated line spectra are convoluted

with Lorentzian 1.0 eV (HWHM). Moreover, thez-component of the total spinSz is taken to be zero

except for single-M cluster calculations withd1 filling.

Figure 3.3 (a) and (b) show the calculated spectra with nondegenerate single- and multi-M cluster

models. Detailed discussions on the spectra have been given in the preceding chapter with special

attention to the appearance of the fluorescence-like spectra in the multi-M cluster model. Let us briefly

review the bonding-antibonding separation in the XAS and RXES spectra within the single-M cluster

model. When photoexcited, there are only two states{|cd1〉, |cd2L〉} in the Hilbert space of the single-

M cluster. Diagonalizing the2×2 Hamiltonian matrix, we have the energy separationW′
0 between the

bonding and antibonding states as

W′
0 =

√
(∆+Udd−Udc)2 +8v2 ' 10.1 eV.

Similarly, in the final state of RXES, the bonding-antibonding separation is roughly estimated within

so-called two-configuration approximation,

W0 =
√

∆2 +16v2 ' 14.6 eV.

Note that matrix element〈d1L|H|d0〉 is
√

2×√2v, where the first
√

2 originates from the spin de-

generacy. These formulae will give a rough estimation on the bonding-antibonding separation in more
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elaborate models.

3.3.2 Degenerated0 system

Figure 3.4 (a) shows XAS, NXES and RXES spectra calculated with the degenerate single-M cluster

model. In the XAS spectrum, we observe two strong peaks and a number of subpeaks in their high

energy tail. Experimentally, four distinct peaks are observed in the main structure of Ti2p-3d XAS

of d0 compounds such as TiO2 and FeTiO3 [46, 47]. Since our model does not include the spin-orbit

interaction of the core level, the two experimental peaks with lower energies correspond to the calculated

main structure.

We also see that the RXES spectra depend on incident photon energyΩ rather than the simple

Raman component in the case of the nondegenerate single-M cluster. For lowerΩ’s such as 1 and 2, the

single spectrum which linearly shifts asΩ increases is observed. This inelastic spectrum highlighted

with blank bars survives for higherΩ’s, whereas another spectrum highlighted with the shaded bar

suddenly appears for 5 and 6. This kind of enhancement whenΩ is targeted at a satellite peak of XAS

is also observed in the nondegenerate case, as marked also with shaded bars in Fig. 3.3 (a). However,

the nondegenerate results have no peaks corresponding to the series of peaks marked with blank bars in

Fig. 3.4 (a). Hence, we conclude that this series of peaks originates from the orbital degeneracy. By the

reason discussed below, we call these peaks nonbonding ones hereafter.

To understand the origin of the inelastic spectra, consider the case of isotropic limit that10Dq→ 0

andv1→ v2, where the Hamiltonian recovers permutation symmetry between{d, p} and{D,P}. Within

the two-configuration approximation, the bonding and antibonding states in the final state of RXES are

described with state vectors|00〉 ≡ |d0〉 and

|10〉=
1
2 ∑

σ
(d†

σ pσ +D†
σ Pσ )|d0〉.

Note that these two states have the same permutation symmetry as well as local point group symme-

try. With a matrix elementVeff(d0) ≡ 〈10|H|00〉 =
√

2[(2v1)2 +(2v2)2], the bonding and antibonding

separation is proven to beW0, although calculated spectra exhibit somewhat smaller value thanW0
4.

Similarly to the nondegenerate case,|g〉 is the bonding state with relatively large|00〉 weight, and the

antibonding state has relatively large|10〉 weight. Since the transition operators are symmetric as to

the permutation, all allowed intermediate states have the same symmetry as|g〉 in this case. In the

two-configuration approximation, each of them is a linear combination of

|1′0〉=
1
2 ∑

σ
(d†

σ +D†
σ )cσ |00〉

and

|2′0〉 ∝ ∑
σ

(d†
σ +D†

σ )cσ |10〉,

giving bonding and antibonding intermediate states. Since∆+Udd−Udc > 0, the bonding intermediate

state has mainly|1′0〉 weight, and would have large overlap with(d†
σ + D†

σ )cσ |g〉. Similarly, the anti-

bonding intermediate state has large overlap with(d†
σ +D†

σ )cσ |AB〉, where|AB〉 is the antibonding final

4From a quantitative point of view, the two-configuration approximation is poor one in the context of the large-N expansion

theory [20, 111] because the number of degenerate orbitals is only two.
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Figure 3.3: XAS, RXES and NXES spectra calculated withnondegeneratemodels underd0 filling, (a)

the single-M and (b)d4p4 periodic clusters. For each figure, the right and left panels show XAS and

RXES spectra, respectively. There is also a NXES spectrum at the top of the array of the RXES curves

in the left panel. The arrows in each XAS spectrum indicate the position of excitation energies, and

the numbers in the XAS spectra correspond to those of RXES. The elastic scattering peaks are omitted

from the figures, and they are replaced with the arrows. Each of original calculated RXES spectra is

magnified by a rate indicated as “× 3”.
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Figure 3.4: XAS, RXES and NXES spectra calculated withdegeneratemodels underd0 filling, (a) the

single-M and (b)d4p4 periodic clusters. See the caption for Fig. 3.3.
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state. Consequently, absorption intensity strongly concentrates at the main peak, and|AB〉 is strongly

enhanced whenΩ is tuned at the satellite peak in the XAS spectra.

Note that a final state such as

|N10〉 ≡ 1
2 ∑

σ
(d†

σ Pσ +D†
σ pσ )|d0〉

can contribute to inelastic scattering. This has the same permutation symmetry as that of the ground

state, but local point group symmetry around the metal site is different. This fact encourages us to

call it a nonbonding state. By the reason explained above, it is the elastic line (ground state) that the

most strongly enhanced whenΩ is tuned at the main absorption manifold. The elastic line is, however,

omitted from the figures, so that the main inelastic spectra originate from the nonbonding states for that

Ω. By definition, the existence of the nonbonding states is direct consequence of orbital degeneracy.

The nonbonding state is energetically∆ higher than|d0〉, being nearly independent of hybridization

strength. Since the energy of the bonding state is estimated as(∆−W0)/2 within the two-configuration

approximation, the nonbonding state will be observed

W0N ≡ (∆+W0)/2

distant from the elastic line. Note that this is always smaller thanW0, and therefore the nonbonding state

is located in between the bonding and antibonding states in any case.

When a finite10Dq is introduced, we have a finite energy difference betweencd1- andcD1-dominant

intermediate states due to10Dq, so that we observe the doubly-peaked structure in the main manifold of

the XAS spectrum. Similarly, the nonbonding lines split into several ones in a RXES spectrum. Since

the Hamiltonian is not symmetric as to the permutation, an antisymmetric state

|N20〉 ≡ 1
2 ∑

σ
(d†

σ pσ −D†
σ Pσ )|d0〉

appears as a nonbonding peak in the final state. This state has the same local point group symmetry as

the ground state. Furthermore,|N10〉 split into the following two states:

|N101〉 ≡ 1√
2

∑
σ

d†
σ Pσ |d0〉

|N102〉 ≡ 1√
2

∑
σ

D†
σ pσ |d0〉,

with energy separation of order of10Dq. Thus, we observe three nonbonding lines in this case. Gen-

erally, anisotropy ofv1 andv2 gives rise to energy shift of the nonbonding peaks. As a result,N101-

andN20-dominat states are accidentally seen at nearly the same position in Fig. 3.4 (a). The transition

processes in the single-M cluster is summarized in Fig. 3.5, where these three nonbonding states are

represented with the shaded rectangle. Note that the nonbonding states are hardly perturbed with the

metal-ligand hybridization.

These features of the degenerate single-M cluster calculation are substantially conserved in the

multi-M cluster calculation. Apart from subpeaks such as 4, the main manifold of the XAS spec-

trum shown in Fig. 3.4 (b) is composed of two definite lines, and we can naturally attribute these lines

to those states which have relatively largecd1 or cD1 weight in the photoexcited cluster. For RXES

spectra, we see, firstly, that the nonbonding states give the main inelastic structure for the main peak
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resonance (spectrum 1 and 2). Secondly, the antibonding state marked with the shaded bar is strongly

enhanced whenΩ is tuned in the vicinity of the satellite peak (spectrum 7), although the satellite peak

is greatly smeared out and does not give a clear structure.

3d0 3d0

3d  L1_ 3d  L1_

_c 3d 1

_c 3d  L2_

Main

Sat.

Initial finalIntermediate
(XAS final)

Figure 3.5: The energy scheme of3d-2p RXES of d0 compounds in the standard notation. In the

initial and final states, the metal-ligand hybridization creates the bonding (represented with the lowest

horizontal bar), antibonding (the highest bar) and nonbonding states (the shaded rectangle). These

three kinds of states similarly exist in the intermediate state. While thed-p hybridization gives rise

to the bonding-antibonding separation, the energy of nonbonding states is hardly perturbed with the

hybridization.

Close inspection shows, however, certain modifications are observed in the spectra of local origin.

Firstly, while the nonbonding states keep energy separation of order of10Dq in the single-M cluster

calculation, the separation in Fig. 3.4 (b) is considerably contracted because of the finite transfer between

unit clusters. Whether or not this is the case in realistic three-dimensional systems is unclear because

whether the separation between the nonbonding states get smaller or larger would greatly depend on a

band structure. Secondly, the intensity ratio of the main XAS peaks is slightly changed. This is possibly

associated with a change in character of the main absorption peaks, i.e. from the simple bonding state

to a core-excitonic state.

The most conspicuous change in RXES spectra is occurrence of the fluorescence-like spectra. Figure

3.4 (b) exhibits the inelastic spectra whose position is almost the same as that of NXES for almost

all Ω’s higher than 3. This is sharp contrast to the nonbonding-antibonding spectra explained above,

which behave as if NXES spectrum has no relation with RXES. Similarly to the nondegenerate case, we

confirm again that the origin of such spectra is itinerancy in the targeted intermediate state. The subpeaks

in the high-energy tail of the main absorption peaks, such as 3, 4 and 5 in Fig. 3.4 (b), originate from

a finite number ofk-points, and highly itinerant according to the core exciton theory. In fact, a detailed

analysis of the present author shows that a photoexcited electron in the intermediate state 3 is delocalized

mainly through thed-p transfer path, and that a photoexcited electron in the intermediate states 4 and 5

is delocalized mainly through theD-P transfer path.
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3.4 Calculated Results II: Mott-Hubbard Insulators

3.4.1 Nondegenerated1 system

Figure 3.6 shows calculated XAS, NXES and RXES spectra with nondegenerate models withd1 fill-

ing, which simulates thet2g bands of Ti2O3. The parameters are taken asv=2.0, ∆=2.0,Udd=4.0 and

Udc=6.0 eV [109]. Because ofUdd+∆ >Udd, this system is in the MH regime in the Zaanen-Sawatzky-

Allen diagram [22]. Note that the lowest charge excitation is made by inter-sited-d excitations in this

case. Then it is interesting to study RXES spectra of MH systems in the context of the nonlocal (or

large-cluster) effects.

In the nondegenerate single-M cluster model withd1 filling, the only possible configuration in the

intermediate state iscd2, so that we have the only single peak in XAS spectra in Fig. 3.6 (a). On the

other hand, two configurations ofd1 andd2L are possible in the final state. Thus, we observe the only

inelastic peak due to charge-transfer

W1 =
√

(∆+Udd)2 +8v2 ' 8.2 eV

distant from the elastic line, and the RXES spectra exhibit necessarily only Raman component.

In the NXES spectrum in Fig. 3.6 we see a strong peak at about−2 eV and a weak structure at about

−10eV. The former corresponds to ad0-dominant state, and the latter to ad1L-dominant state.

In addition to the CT peak, the inter-sited-d excitation should take part in RXES spectra in the

multi-M cluster model. There observed an inelastic peak approximately 4.4 eV distant from the elastic

line in RXES spectra in Fig. 3.6 (b). While spectral weight of this peak is strong for lowerΩ’s up to 5,

a structure about 10 eV distant from the elastic line is enhanced forΩ’s higher than 5. To study these

structures, we calculate valence photoemission spectra (PES) and Bremsstrahlung Isochromat spectra

(BIS), whose spectral functions are written as

FPES(k,ω) = ∑
f

|〈 f |dk,↑|g〉|2δ (ω +Ef −Eg) (3.7)

FBIS(k,ω) = ∑
f

|〈 f |d†
k,↑|g〉|2δ (ω−Ef +Eg). (3.8)

Figure 3.7 shows PES and BIS spectra, where we adopt a nondegenerated8p8 cluster model with the

same parameter to take morek-points. The figure clearly shows that the upper branch of the simple

Bloch bands in theUdd → 0 limit (solid curves)

ε±(k)− ε0 =
∆
2

(
1±

√
1+(4v/∆)2cos2(k/2)

)

is substantially modified into the lower Hubbard band (LHB) and upper Hubbard band (UHB). Hence

we attribute the aforementioned lower energy structure in RXES to a CT process, and the higher energy

one to an inter-sited-d transfer, which rules the Mott-Hubbard gap. We call the former one “CT” and

the latter “MH” hereafter. Furthermore, the intense peak at−4 eV in the NXES spectrum (Fig. 3.6 (b))

is attributed to a radiative transition from LHB, whereas a bump in its low energy tail to a radiative

transition from the lowest valence band. The difference in intensity is naturally explained by difference

in d-weight of these bands.

Although the MH structure in Fig. 3.6 (b) is composed of the single line, there should be generally

energy dispersion in this structure. To confirm this, we show XAS and RXES spectra calculated with
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Figure 3.6: XAS, RXES and NXES spectra calculated withnondegeneratemodels underd1 filling, (a)

the single-M and (b)d4p4 periodic clusters. See the caption for Fig. 3.3.
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Figure 3.7: PES and BIS spectra calculated with thed8p8 nondegeneratechain. The calculated spikes

are convoluted with Lorentzian 0.2 eV (HWHM). The solid curves show the Bloch bands in theUdd→ 0

limit. The arrows show the upper and lower Hubbard bands. The Fermi level is represented with the

dotted line. We takeε0 as the origin of the energy.
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the d8p8 cluster in Fig. 3.8, where all RXES spectra are plotted as a function of Raman shift. The

MH structure is clearly seen at about−3.5 eV, and the CT structure at about−9.5 eV. We observe

energy dispersion of the MH structure for spectra 4 and 5. Corresponding to the fact that only|cd2〉
is possible in the single-M cluster limit, the XAS spectrum has the strong peak labeled with M, as in

Fig. 3.6 (b). The additional peaks are also observed in its high energy tail. Their characters are depicted

schematically in Fig. 3.9 (a), where each transition process between many-body states is mapped into

a counterpart in the one-electron picture. In the states corresponding to the main peak M and the very

weak satellite peak S, the core hole is mainly screened by the photoexcited electron itself. The peaks 4

and 5 correspond to the excitation to UHB. These are necessarily delocalized and poorly-screened. The

peaks 2 and 3 have an intermediate character of the two states, and they are irrelevant to be depicted as

a one-electron process.

Similarly, RXES final states are visualized in Fig. 3.9 (b) in terms of the one-electron density of

states. The MH structure is related to one electron-hole pair creation between UHB and LHB, whereas

the CT one between UHB and the filled ligand band. The dispersiveΩ-dependence for the spectra 4

and 5 is directly associated with energy dispersion of UHB. Although this behavior is somewhat similar

to the fluorescence-like spectra, its energy width is too narrow under the realistic parameter set for Ti

oxides5 to explain the experimental trend of, e.g., Ti2O3 [108].
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Figure 3.8: RXES and XAS spectra calculated with thed8p8 nondegeneratechain. Note that the abscissa

is defined as Raman shiftω−Ω, which is the same asEg−Ef . The elastic line, which should reside at

zero, is omitted from the figure. The excitation energies and the numbers attached to the arrows in the

XAS spectrum correspond to those in the RXES spectra.

5This is still true also for the larger value ofv=3.5 eV, which roughly simulates botheg andt2g orbitals.

61



"M" 4, 5

S

(a)

MH
gap

"CT"

UHB

LHB

ligand
band

"MH"
(b)

Figure 3.9: Schematic explanation of representative final states in XAS and RXES spectra. The shaded

and blank areas show occupied and unoccupied densities of states, respectively. The closed and open

circles represent an electron and hole, respectively. (a) In the intermediate (XAS final) state, a core

electron is photoexcited to bound states (represented with bars) or UHB. The labels M, S, 4 and 5

correspond to those in Fig. 3.8. (b) An electron-hole pair is left in the final state.

3.4.2 Degenerated1 system

Figure 3.10 shows XAS, NXES and RXES spectra calculated with degenerate single-M cluster andd4p4

models withd1 filling. We fixedSz=1/2 for the single-M cluster calculation.

Let us first consider the single-M cluster case. We see that the main manifold of XAS spectra exhibits

a doubly-peaked structure. This is consistent to thed0 calculation, but the lower energy absorption peak

is considerably suppressed because of larger occupation number in the lower energyd-orbital. We

also see that the higher branch of the main manifold in Fig. 3.10 (a) is composed of a few peaks with

extremely small energy separation. This is attributed to the contribution of spin multiplet. WhenΩ is

tuned at these peaks, the resultant final state would have largeD1 weight. Thus a strong inelastic peak

observed 2.5 eV distant from the elastic peak in RXES spectrum 2 is attributed to the intra-sited-d

excitation, which has been shown in Fig. 1.8 (left). We denote this excitation by “d-d” hereafter. Note

that the value 2.5 eV is the same order of10Dq, but from a quantitative point of view, it considerably

deviates from10Dq because of relatively large anisotropy of hybridizationv1 andv2.

In addition to thed-d peak, another structure is observed about 10 eV distant from the elastic line.

This is attributed to charge-transfer to the metal site from the neighboring ligand sites. To study the ori-

gin of inelastic peaks more clearly, we arrange the same RXES spectra with Raman shift in Fig. 3.11 (a),

where one sees that the CT structure is distributed over about 4 eV. Unlike thed0 case, the permutation

symmetry does not rule the separation between antibonding and nonbonding states when a finite10Dq

works, because the unperturbed state|11〉 ≡ d†
↑ |d0〉 is not symmetric. Within the two-configuration

approximation, there are two other state vectors, which have the same point group symmetry as|11〉,

|211〉 ≡ d†
↓ p↓|11〉

|212〉 ≡ 1√
2

∑
σ

D†
σ Pσ |11〉.
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Figure 3.10: XAS, RXES and NXES spectra calculated with thedegeneratemodels underd1 filling, (a)

the single-M and (b)d4p4 periodic clusters. See the caption for Fig. 3.3.
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Both of them have a doubly-occupied metal site. Consider a linear combination of these vectors,|21〉,
under condition such that|〈21|H|11〉| is maximized. Following the effective hybridization theory, we

have

|21〉=
2

Veff(d1)

(
v1|211〉+

√
2v2|212〉

)
,

where

Veff(d1)≡
√

(2v1)2 +2(2v2)2.

Diagonalizing2×2 Hamiltonian spanned by{|11〉, |21〉}, we have bonding-antibonding separation

W1 '
√

(∆+Udd)2 +4V2
eff,

which is the same order ofW0. A peak at−12.6 eV labeled with “AB” in Fig. 3.11 (a) originates from

this antibonding state, and it is strongly enhanced whenΩ is tuned at the satellite structures 5 and 6,

being consistent to thed0 case. This is also described in Fig. 3.10 (a) with the shaded bars.

In this context, we consider the state orthogonal to|21〉 as the nonbonding state in the truncated

Hilbert space,

|N21〉=
2

Veff(d1)

(
−
√

2v2|211〉+v1|212〉
)

.

This corresponds to a peak at−8.8 eV, which is strongly enhanced in the RXES spectrum 4. This fact

suggests that the absorption spectra in the vicinity of the arrow labeled with 4 has also nonbonding

character. In fact, it has relatively large weight in|cD1;d2p〉, which gives rise to relatively large|211〉
weight after radiative transition of theD electron.

There is another class of nonbonding states, which has different point group symmetry from|g〉.
WhenΩ is tuned at the main absorption peaks, it is this class of states that are the most strongly en-

hanced, as in thed0 case. Corresponding to|N101〉 and|N102〉, state vectors such as

|N111〉 ≡ d†
↓P↓|11〉

|N112〉 ≡ 1√
2

∑
σ

D†
σ pσ |11〉

are of this kind. The former contributes to an inelastic peak at−9.3 eV whenΩ is tuned at the peak 1,

whereas the latter contributes an inelastic peak at−11.3 eV whenΩ is tuned at the peak 2. The energy

separation between them is naturally attributed to10Dq.

Apart from thed-d structure, theΩ dependence of RXES spectra has much in common with the

d0 spectra in Fig. 3.4 (a) rather than the nondegenerate calculation in Fig. 3.6 (a). The multi-M cluster

(d4p4) results are shown in Figs. 3.10 (b) and 3.11 (b). In contrast to the single-M cluster results, we

observe fluorescence-like behavior there. Note that the nondegenerate multi-M cluster calculation in

Fig. 3.6 (b) exhibits no such behavior. Thus we conclude that it is essential for the appearance of the

fluorescence-like spectra ind1 systems to include orbital degeneracy.

The other large-cluster effect is inelastic peaks due to inter-sited-d excitations. Compare Fig. 3.11

(b) with Fig. 3.8. As explained, the latter model is regarded as a truncated model to include only thed-p

transfer path of the former. We notice that a bump at about−4 eV in Fig. 3.11 (b) for RXES spectra

1, 2, 3 and 4. This is attributed to the inter-sited-d excitation, and labeled with “MH”, as in Fig. 3.8.

Although the MH structure is separated from the CT structure in Fig. 3.8, one observes that the center
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of the spectral weight moves to lower energy roughly proportional toΩ, from MH to CT structure and

beyond, resulting in the fluorescence-like spectra in Fig. 3.11 (b).

On the other hand, we see that a structure at about−10 eV is enhanced for 1 and 2, and a structure

at about−11.9 eV is enhanced for 3. This is explained by the enhancement of the nonbonding states

which originate from|N111〉, |N112〉 and|N21〉. We also observe an isolated peak at−1.4 due to the

intra-sited-d excitation. The resonance enhancement of the antibonding peak is also observed for the

spectrum 7, as expressed with the shaded bar in Fig. 3.10 (b). Figure 3.11 (b) is very intriguing in that

these structures of local origin, which are successfully explained with single-M cluster model, coexist

with the aforementioned structures due to inter-site effects.

3.5 Discussion

3.5.1 d0 system

We defined a nonbonding state as that state which has no or little hybridization matrix element with the

ground state. Mathematically, this definition may hold in realistic three-dimensional systems. Figures

3.4 (a) and (b) show slightΩ-dependence in the nonbonding structure, where the spectral weight moves

from higher energy to lower energy branch of the nonbonding peaks in going from the spectrum 1 to

3. As discussed within the single-M cluster model, the energy separation between the two nonbonding

states, which originate from|N101〉 and |N102〉, is attributed mainly to10Dq. While this kind ofΩ-

dependence is consistent to experimental feature [106], the calculated spectra show considerable cluster

size dependence of the separation. This is an example that a feature of local origin is renormalized by

multi-M cluster effects. Apart from this kind of slight dependence, the fact thatΩ-dependence of the

nonbonding structure is not very strong in experimental Ti3d-2p RXES of TiO2 [106] suggests that

the nonbonding structure is composed of states with various symmetries, and these states are highly

smeared out by O2p band effects.

The latest experimental data on Ti 3d-2p RXES of TiO2 [106] shows a strong resonance enhance-

ment of a peak 14 eV distant from the elastic line whenΩ is tuned at the satellite structure of the XAS

spectrum under a polarized configuration. This enhancement is not observed in Fig. 1.6, where the de-

polarized configuration is adopted. This fact means that the CT excited state corresponding to the 14 eV

peak is the same symmetry as|g〉, and we naturally attribute it to the antibonding state, whose origin

is the higher energy eigenstate in the truncated Hilbert space spanned by|00〉 and|10〉. Despite of its

simplicity, our model well explains the essential physics of the experimental 14 eV enhancement. Note

that spinless exciton models [103] can not describe the CT satellite of XAS, and therefore by no means

describe the experimental polarization dependence.

There had been a controversy on the origin of the satellite structure of Ti2p-XPS or2p-XAS of

TiO2 [49, 112]. Okada and Kotani conclusively demonstrated that it is the CT satellite by their theo-

retical analysis with a TiO6 cluster model [49]. With this regard, the polarization dependence of RXES

whenΩ is tuned at the satellite structure is significant in that it dramatically proves its character as the

CT satellite. Moreover, the large bonding-antibonding separation offers evidence that TiO2 is in the

strong hybridization regime. Thus, parameter estimations based on the atomic picture would be subtle

in many cases.

Apart from the fluorescence-like behavior, the single-M cluster model well explained theΩ-
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dependence of RXES spectra calculated with the multi-M cluster model. This means that the local

transition picture as shown in Fig. 3.5 is at least partly applicable to the Raman component despite the

translational symmetry of the system. This is a consequence of the special feature of RXES that reflects

local as well as itinerant nature of the system.

We comment on the relative intensity of the structures of local origin, i.e. the antibonding and non-

bonding structures. Comparing Fig. 3.3 with Fig. 3.4, we see that they are clearer in the latter than in

the former. This suggests a trend that the more available internal degrees of freedom a unit cluster has,

the more weight of spectra of local origin is observed. The reason is naturally related to the number of

transition paths.

3.5.2 d1 system

We demonstrated the appearance of the intra-sited-d excitation in RXES spectra ford1 systems. Re-

cently Higuchiet al. reported that intensity of a peak 2.3 eV distant from the elastic line increases

with La doping for SrTiO3 [113]. Since LaxSr1−xTiO3 has nominallydx filling, their explanation that

the 2.3 eV peak is caused by the intra-sitet2g → eg transition (see Fig.1.8) seems to be natural. While

they made estimation of the value of10Dq simply as 2.3 eV, Fig. 3.11 shows considerable cluster size

dependence of its energy separation from the elastic line. We have the value of 2.5 eV with the single-M

cluster model, whereas 1.4 eV with the multi-M cluster model. Although the latter is fairly close to

the actual value10Dq=1.7 eV, whether or not this is the case in realistic three-dimensional systems is

unclear because whether it gets smaller or larger would greatly depend on a band structure. What we

can say definitely is that the anisotropy betweent2g andeg orbitals play a certain role.

Experimentally observedd-d peak in Ti3d-2p RXES of Ti2O3 [108] is much weaker than other

inelastic spectra even whenΩ is tuned at theeg peak in XAS. Figure 3.11 shows, however, a strongd-d

structure. This discrepancy is partly attributed to larger probability for electrons to occupy ad (or t2g)

orbital in |g〉 6. In the weak hybridization limit,|g〉 is trivially d†
σ |d0〉, which gives the probability of

1/2 to occupy up or downd orbital. In realistic Ti2O3, the probability is only1/6, resulting in smaller

amplitude of the transition from at2g to a core orbital. In this context, the maximum intensity of the

d-d peak would get larger with increasing the occupation number oft2g orbitals, i.e.,Ti2O3 < V2O3 <

Cr2O3, etc.

For the CT structure, Fig. 3.10 showsΩ-dependence similar to the results of thed0 systems in

Fig. 3.4. This is related to the fact that we can successfully define the antibonding state as explained in

the preceding section. The lower symmetry of the unperturbedd1 state, however, disturbs the resonance

enhancement of the antibonding peak as compared tod0. Analogous to TiO2, there is a broad satellite

structure in experimental Ti2p-XAS of Ti2O3 [108]. Our results ond1 systems predict that polarization

dependence of the antibonding peak should be observed whenΩ is tuned at the satellite structure.

For band insulators, we have confirmed that spatially extended states are in the high energy tail

of the main manifold of XAS, and that these states maintain the one-electron character to great extent

against the strongUdd andUdc. While we have some extended states also for MH insulators, they are

quite unlike the simple one-electron states, but complicated many-electron states involving excitations

in the Hubbard bands. It is not necessarily clear what kinds of extended states are created when orbital

degeneracies are introduced in. What one can definitely say is that the orbital degrees of freedom relaxes

6Polarization dependence is another possible reason.
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the reduction effect due to the Pauli principle, and therefore encourages the dissipation of a photoexcited

electron. In any case, the existence of highly delocalized states that are densely distributed over finite

width in an absorption threshold is a necessary condition to display the fluorescence-like component in

RXES spectra.

3.6 Conclusions

We have discussed the role of orbital degeneracy in metal3d-2p RXES with periodic multi-M cluster

models underd0 andd1 fillings. We first investigatedd0 systems with a single-M cluster model. Calcu-

lated RXES spectra showed only Raman component, which is composed of antibonding and nonbonding

states. The origin of the antibonding state comes from totally symmetric states as to the permutation

of degenerate orbitals, whereas that of the nonbonding state comes from those states which have dif-

ferent symmetry from the unperturbed ground state|d0〉. This mathematical definition well explains

theΩ-dependence of RXES spectra, which is quantitatively consistent to the experimentally observed

resonance enhancement of the antibonding state under a polarized configuration.

With a degenerate multi-M cluster model, we demonstrated that the above properties of local origin

are substantially conserved in RXES spectra. Large-cluster effects, however, were observed, first, in the

modulation of intensity ratio between two main absorption peaks, and second, in the reduction of the

peak separation in the nonbonding structure. Moreover, third, we again confirmed the appearance of the

fluorescence-like RXES spectra, which is completely missing in the single-M cluster results. Our result

is the first calculation that demonstrates thecoexistenceof the fluorescence-like and Raman components

with a periodic Anderson model.

Next we showed calculated results ford1 systems. RXES spectra calculated with nondegenerate

models exhibit only Raman component for both single- and even multi-M cluster models, but the latter

results show considerableΩ-dependence. While a structure due to inter-sited-d transition is enhanced

for lowerΩ, a structure due to CT is enhanced for higherΩ. Although energy dispersion of UHB slightly

reflects on theΩ-dependence, it is too small to explain the occurrence of fluorescence-like spectra in

realistic parameter set for Ti oxides.

The most remarkable effect of orbital degeneracy is the appearance of the fluorescence-like spectra

in the multi-M cluster calculation, being qualitatively consistent to experimental spectra. The naive con-

jecture that effective hopping energy reduced byd-d on-site Coulomb interaction hinders the appearance

of the fluorescence-like behavior does not hold when the orbital degeneracy is introduced. This result

demonstrates the essential importance of the orbital degeneracy as well as the translational symmetry.

The appearance of the fluorescence-like spectra seems to bea general phenomenon that is observed

wherever highly delocalized continuum states exist.

In addition to the fluorescence-like spectra, the orbital degeneracy gives rise to, first, a peak due to

the intra-sited-d excitation. The separation between this peak and the elastic line is of order of10Dq,

but it considerably depends on cluster size. Second, nonbonding states as well as the antibonding state

contribute to inelastic spectra. Despite the difference in symmetry of the ground state, the calculated re-

sults showΩ-dependence similar to thed0 case, from which resonance enhancement of the antibonding

peak is predicted whenΩ is tuned at the XAS satellite structure under polarized configurations.
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Chapter 4

Local and Nonlocal Excitations in Cu

4p-1sResonant X-Ray Emission

Spectra of Nd2CuO4

Theoretical study on Cu4p-1s RXES of Nd2CuO4 is given in the context of local and nonlocal natures

of electronic excitations. Detailed analyses with an impurity Anderson model and multi-Cu models are

presented, based on the exact diagonalization technique. By investigating partial densities of states,

substantial characters of each excited state are clarified. It is demonstrated that a disagreement with

experimental data is unavoidable with the impurity model. The key concept to solve the difficulty is

Zhang-Rice singlet formation in the intermediate state of RXES. We find that it survives in the final

state of RXES as the lowest charge-transfer excitation. The limitation of the impurity model and the

essential role of nonlocal excitations in RXES are stressed.1

4.1 Introduction

Nd2CuO4 is well known as a mother material ofn-type superconductor, Nd2−xCexCuO4−y [114], which

has attracted special attention in the context of appearance of the electron-hole symmetry [115], a char-

acter which single-band models should have. Nd2CuO4 has two-dimensional (2D) corner-shared CuO2

planes with nominallyd9 configuration, which is believed to be essential for high-Tc superconductivity.

Recently, Cu4p-1s RXES of Nd2CuO4 has been measured by Hill and coworkers [116]. The Cu4p-1s

RXES process is schematically shown in Fig. 4.1. A completely localized1score electron is resonantly

excited to an empty4p conduction band by an incident photon (∼ 9 keV), and then the excited4p

electron radiatively comes back to the1s core orbital. In the intermediate state (Fig. 4.1 (b)), a valence

hole on the core hole site is strongly scattered to move away to surrounding sites, so that the dynamics

of the “dopant” hole such as Zhang-Rice (ZR) singlet formation [43] would be strongly reflected on the

RXES spectra. It is interesting to see how the ZR singlet state decays or survives with going to the final

states, and to examine what kind of state is created above the insulating gap through varying the incident

photon energy.

1T. Idé and A. Kotani, J. Phys. Soc. Jpn.68 (1999) 3100-3109.
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Cu 4p
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Udc

U4p3d

Figure 4.1: Schematic diagram of Cu 1s-4p-1s RXES process. The blank circle and blank arrows

represent a 1s core hole and up- or down-spin valence holes, respectively. The shaded circles represent

1sor 4p electrons. (a) The ground state with antiferromagnetic order. (b) THe intermediate state, where

a photon excited a 1s-electron to an empty 4p level (the4p band width is disregarded in this figure),

creating a 1s core hole. The strong repulsive interactionUdc between3d and1s holes gives rise to a

charge-transfer (CT) excitation. There is also attractive interactionU4p3d between4p electron and3d

hole, but it can not completely compensateUdc. (c) The final state with a CT excitation. The energy

difference between the final and ground states is observed as energy loss of the X-ray.

Figure 4.2 shows the experimental data of the Cu4pπ -1s RXES of Nd2CuO4 [116]. The abscissa

is the energy loss of X-ray, which is the same as the energy difference between the initial and final

electronic states,Ef −Eg
2. The incident photon energy is taken in the region of Cu1s-4pπ XAS, which

is shown in the upper panels of Fig. 4.3 with the open circles. The first (at 8984 eV) and second (at

8990 eV) features of the Cu1s-4pπ XAS are denoted by a main peak and a satellite, respectively. It

is seen in Fig. 4.2 that an inelastic structure at about 6 eV is observed for 8987.5, 8989 and 8990 eV

in addition to the extremely strong elastic peak at zero. The incident photon energy dependence of the

6 eV excitation is shown in the lower panels of Fig. 4.3 with the open circles. We recognize that the

6 eV intensity is strongly enhanced when the incident photon energy is tuned at the satellite of the XAS

spectrum, but it indicates almostnoenhancement at the main peak position.

The aim of this chapter is to give a theoretical interpretation for these experimental data. We will

first analyze the experimental data with an impurity Anderson model. The calculated results will be in

fair agreement with the experiment, but there exists a conspicuous difference between the theoretical

and experimental results: The calculated 6 eV intensity shows a considerable enhancement at the main

peak position. In order to remove this discrepancy, we will next use a multi-Cu cluster model. It will be

shown that the 6 eV intensity is strongly suppressed at the main peak resonance because of the formation

of a ZR singlet in the intermediate state.

The layout of the present chapter is as follows: In the next section, the models used are explained.

2It equals−1×(Raman shift). Although the calculated RXES spectra will be arranged as a function of this quantity to compare

with the experimental data, we hope that the readers do not confuse them.
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Numerical analysis with the impurity Anderson model is described in§ 4.3. We discuss in§ 4.4 the role

of the nonlocal screening effects with multi-Cu cluster models. In the last section a brief summary of

the present study is given.

Figure 4.2: Cu4pπ -1s RXES of Nd2CuO4 [116] as a function of energy loss. Incident photon energies

are tuned in the range of1s-4pπ absorption. The polarization vector of the incident X-ray has an angle

60◦ to the CuO2 planes, and its momentum-transfer is perpendicular to those (see Fig. 5.2 (a)). The

excitation energies are indicated in the upper panels of Fig. 4.3 with vertical bars.

4.2 Formulation

We consider a 2D extended periodic Anderson model including Cu1s and Cu4p orbitals, as shown in

Fig. 4.4. The explicit form of the Hamiltonian is as follows:

H = Hdp+Hpp+Hcore+Hdc+H4p +H4pc+H4p3d, (4.1)

where

Hdp = −∆ ∑
R,σ

d†
σRdσR +Tpp ∑

〈r ,r ′〉,σ
(−1)α1

[
p†

σr pσr ′ +H.c.
]

+ Tpd ∑
〈R,r〉,σ

(−1)α2
[
d†

σRpσr +H.c.
]
+Udd ∑

R

d†
↑Rd↑Rd†

↓Rd↓R,

Hpp = Upp ∑
r

p†
↑r p↑r p†

↓r p↓r , (4.2)
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Figure 4.3: (a)Lower panel: The 6 eV intensity as a function of the incident photon energy in Cu4pπ -1s

RXES of Nd2CuO4. The open circles represent the experimental result by Hillet al. [116]. The solid

and dashed curves represent calculated results with a Cu1O256 cluster forRc = 0.8 and1.0, respectively.

In accordance with the experimental resolution [116], all the calculations are convoluted with Gaussian

ΓG = 0.95eV (HWHM) for the scattered photon, andΓG = 0.3 eV for the incident photon.Upper panel:

The open circles represent experimental CuK-XAS of Nd2CuO4 [117], where the polarization vector

of the X-ray is 60◦ to the CuO2 plane (see Fig. 5.2 (a)). The definition of the two curves are the same as

the lower panel, although they are convoluted with LorentzianΓL = 0.8 eV (HWHM) to take in lifetime

effects, and further withΓG = 0.8 eV to reproduce the experimental line width. (b) The same as (a), but

calculated curves are obtained with a Cu5O16 cluster. The calculated XAS spectra are broadened with

ΓL = 0.8 eV andΓG = 1.2 eV.
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Hcore= ε1s∑
R

S†
RSR, (4.3)

and

Hdc = Udc ∑
R

[
∑
σ

d†
σRdσR

]
SRS†

R. (4.4)

In these equations,d†
σR creates a Cudx2−y2 holewith σ spin atR site andp†

σr creates aσ -bonded

O 2p hole with σ spin at r site. ∆ (> 0) is the charge-transfer (CT) energy between thep and d

orbitals, and intersite hopping energyTpp andTpd are related with the Slater-Koster parameters [118]

asTpp = [(ppπ)− (ppσ)]/2 andTpd =
√

3(pdσ)/2. The signs ofTpp andTpd are described byα1

andα2, which are 0 or 1, depending on the relative position of a nearest-neighbor O-O and Cu-Cu pair,

respectively.S†
R creates a Cu1s electronat R site. Udd andUdc are on-site Cu3d-3d and Cu3d-1s

Coulomb repulsion energies, respectively.

3d b1g

TppTpd
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Figure 4.4: Geometry of the system. (a) Orbitals in the model. O2pσ and Cu{1s, 3d(b1g), 4pπ}
orbitals are taken into account. The blank (shaded) area of the ellipses represents positive (negative)

phase. (b) The Cu5O16 cluster with open boundary condition. The oxygen sites are discriminated with

{ai ,bi ,ci} to construct molecular orbitals in the next section.

Generally, Cu4p states are split off intoa2 (4pπ ) ande (4pσ ) symmetries in terms of the local D4h

irreducible representations. For4p-1s RXES of Nd2CuO4, however, both contributions are separable

because there is no overlap between the experimental4pπ and4pσ absorption threshold. We only take

into account the1s-4pπ -1s transition process. The polarization dependence of Cu4p-1s RXES will be

discussed in the next chapter. ThenH4p is given by

H4p = ε4pπ ∑
R

Q†
RQR + t0 ∑

〈R,R′〉
Q†

RQR′ , (4.5)

whereQ†
R creates a Cu4pπ electronatR site,t0 is 4pπ -4pπ nearest-neighbor hopping energy.

H4pc and H4p3d describe Cu4pπ -1s and Cu4pπ -3d intra-atomic interactions, respectively. The

explicit forms are

H4pc =−U4pc∑
R

Q†
RQRSRS†

R (4.6)
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and

H4p3d =−U4p3d ∑
R

Q†
RQR∑

σ
d†

σRdσR. (4.7)

In accordance with systematics of high-Tc compounds discussed by Ohtaet al. [119] and with anab

initio calculation [120], we set the valence electron parameters for large-cluster calculations of Nd2CuO4

as∆ = 2.5, Tpd = 1.21, Tpp = 0.55andUdd = 2Upp = 8.8 [eV]. A band calculation for Nd2CuO4 [121]

gave the4pπ band widthWπ = 2.5. Thereby we estimatet0 = 0.3 eV, along with one-electron formula

of the bandwidthWπ = 8t0. Udc, U4p3d andU4pc are set to be 7.5, 3.0 and 4.0 [eV].

In addition to the above model, we define an impurity Anderson model, which contains all O2p and

Cu 4p orbitals inH, as well as the central Cu3d and1s orbitals. Since the system we are interested in

have nominallyd9 configuration in the electron picture, the impurity problem is necessarily a one-hole

problem with one electron in the1s orbital or the4p orbitals. In order to keep the main-satellite energy

separation of XAS to be the same as that of the large cluster model, a different parameter∆ = 1.5 eV is

used for this model [86].

As far as the1s-4pπ absorption process is concerned, the absorption operatorTa is given by

Ta = ∑
R

e−iq1·RQ†
RSR, (4.8)

whereq1 is the wave vector of the incident photon. The emission operatorTe is defined as(Ta)† with the

substitution ofq1 with q2, which is the wave vector of the emitted photon. Then the transition operator

of the4pπ -1sRXES can be written as

T(Ω) = ∑
R

S†
RQRG0(Ω)Q†

RSR, (4.9)

whereG0(Ω) is the resolvent operator defined asG0(Ω) = (Ω+Eg−H + iΓ)−1. Eg andΩ are energies

of the ground state and the incident photon, respectively. We setΓ = 0.8 eV in the present calculations,

considering semi-empirical data of the Auger process [122], and another calculation of RXES for3d

systems [123]. In the above equation, we assume thatq = q2−q1 is perpendicular to the CuO2 plane

in accordance with the experiment. The polarization dependence [117] and theq dependence [152] of

RXES will be discussed in the next chapter. To make sure, the explicit forms of spectral functions of

XAS and RXES are

FXAS(Ω) = ∑
µ
|〈µ|Ta|g〉|2δ (Ω+Eµ −Eg) (4.10)

and

FRXES(ω;Ω) =
1
N ∑

f 6=g

|〈 f |T(Ω)|g〉|2δ (ω−Ω+Ef −Eg), (4.11)

whereEµ (Ef ) is a final state energy of XAS (RXES), andω denotes the emitted photon energy.N is

the number of the Cu atoms.
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4.3 Analysis with Impurity Anderson Model

4.3.1 Properties of eigenstates

It is well-known that the eigenequation of the impurity Anderson model is exactly constructed asx−
εd = Σ?(x), whereεd is unperturbed energy of thed orbital, andΣ?(x) is the self-energy function [124]:

Σ?(x) =
1
N ∑

jk

|Vjk|2
x− ε jk− i0

.

For the 2D periodic system with Cu-O distancea, there are two oxygen2p bands:

ε jk =

{
4Tppsin(kxa)sin(kya) , j = 1

−4Tppsin(kxa)sin(kya) , j = 2
.

For each band, thed-p hybridization energy is

Vjk =

{
−√2iTpd[−sinkxa+sinkya] , j = 1

−√2iTpd[sinkxa+sinkya] , j = 2
.

The graphical representation of the eigenequation is depicted in Fig. 4.5. We see that a bound state

exists at−4.3 eV. This is the ground state|g〉. The above equation still holds for the intermediate state

under substitution ofεd with εd +Udc−U4p3d, as far as the energy dispersion of the4p electron is

neglected. In this case we have two bound statesM andS, as described in the figure.

In order to study properties of the eigenstates further, we calculate partial density of states (PDOS)

which is defined as

ρφ (ε) = ∑
n
|〈φ |εn〉|2δ (ε− εn) (4.12)

for a φ orbital. |εn〉 is an eigenstate of the system.3

By constructing molecular orbitals withb1g symmetry around the impurity site, it can be easily

shown that the impurity Anderson model is equivalent to the model shown in Fig. 4.6.A is the nearest-

neighbor orbitals to the Cu site, which is defined by

A† =
1
2
(−a†

1 +a†
2 +a†

3−a†
4). (4.13)

Starting with this, we come to more accurate description of the whole system by takingB, C, ... molec-

ular orbitals, whereB andC are defined by

B† =
1√
8
(b†

1−b†
2 +b†

3 +b†
4−b†

5 +b†
6−b†

7−b†
8) (4.14)

and

C† =
1
2
(−c†

1 +c†
2 +c†

3−c†
4), (4.15)

respectively. Since they span the complete set, note that a sum rule∑φ ρφ = ρ as well as
∫

dερφ = 1

holds,ρ representing the total density of states (TDOS).

3Several authors have tried to decompose calculated spectra according todifferentpoint group symmetry, seee.g.Ref. [127].

We here define this function in order to investigate contribution of a set of state vectors with asamepoint group symmetry but

different spatial extent.
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Figure 4.5: Graphical representation of the eigenquations of the 2D impurity Anderson model with 4×4

oxygen network.

T2-T2
A B C

-2Tpd

−∆ -2Tpp -Tpp 0

Figure 4.6: A equivalent model of the 2D impurity Anderson model. The closed and open circles

represent the impurity 3d orbital and O2p molecular orbitals, respectively. The diagonal elements of

the equivalent Hamiltonian are described above each of the circles. The hybridization matrix elements

are described below each bond, whereT1 =
√

2Tpp and T2 =
√

2Tpd. Note that there happen to be

degeneracies in molecular orbitals beyondC.
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Figure 4.7 (a) shows PDOS of3d and theA, B andC orbitals as well as TDOS for RXES final

state. We see thatρd andρA have definite peaks at the ground state and at around 5.2 eV. The energy

separation is approximately equal with the value obtained from the formula of the bonding-antibonding

separation [86]

W =
√

(−∆+2Tpp)2 +16T2
pd

in the simple CuO4 cluster. This implies that the 5.2 eV peak corresponds to the antibonding state.

Since these bonding and antibonding orbitals are just two ones in the simple CuO4 cluster, the 5.2 eV

excitation is nearly local, i.e. the hole spend most of its time at the plaquette with the impurity4.

On the other hand, we notice that the state at about 2 eV has littled andA weight. This means that

it is a nearly purep state, which has little amplitude at the impurity plaquette. In other words, it is a

nonlocally excited state. This character makes a sharp contrast to the ground state and the 5.2 eV excited

state, and it is directly reflected in theΩ dependence of RXES.
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Figure 4.7: (a) Total and partial densities of states of the impurity3d orbital and O2p molecular orbitals

(A, B and C) defined in the text. TDOS and PDOS’s are calculated with the impurity Anderson model

with N = 16× 16 oxygen network, and they are convoluted with LorentzianΓL = 0.2 eV (HWHM).

All densities are normalized so that the integrated areas are to be unity. The shaded bars are guide to

eye to represent unperturbed O2p band width. (b) Total and partial densities of states (PDOS) in the

intermediatestate. The energy dispersion of the 4p electrons is disregarded for simplicity to calculate

PDOS, but it is fully included to calculate XAS. The Cu1s-4pπ XAS spectrum is convoluted with

ΓL = 0.8 eV. For both (a) and (b), the origin of the abscissa is adjusted to the lowest eigenenergy.

4More exactly, this excitation energy, which corresponds to the experimental value 6 eV, depends on the model, and takes

5.2 eV for the impurity Anderson model, 5.5 eV for Cu3O10 cluster model and 5.7 eV for Cu5O16 cluster model.
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4.3.2 XAS

Figure 4.7 (b) shows calculated Cu1s-4p XAS and PDOS for the intermediate (XAS final) state. The

energy dispersion of the4p electron is neglected in the calculation of PDOS for simplicity, but it is fully

included in that of XAS. We observe a doubly-peaked structure in the calculated XAS spectrum, which

has been plotted with the dashed curve also in Fig. 4.3 (a). The energy separation between the main and

satellite peaks is consistent to that of the experimental1s-4pπ XAS spectrum. If we subtract contribution

of a steeply increasing background spectrum due to the secondary electron emission process [125, 126]

from the experimental one, these two spectra would broadly agree.

We see that the major weight of the main peak of XAS, which is denoted by|M〉 hereafter, lies on

theA orbital. This is consistent with the standard notationcd10L in the electron picture, but there are

no little weights in bothd andC orbitals. The satellite peak of XAS, which is denoted by|S〉 hereafter,

is composed mainly of thed orbital and slightly of theA orbital, being consistent with the standard

notationcd9.

As seen from Fig. 4.7 (a),|g〉 as the initial state of XAS consists ofd andA orbitals approximately

in the ratio of5 : 5. Large weight in these orbitals is a necessary condition to have a strong intensity in

XAS. Although|M〉 and|S〉 similarly fulfill the condition, Fig. 4.7 (b) shows that their XAS intensities

are quite different. The reason comes from a phase cancellation mechanism. Both|g〉 and|M〉 are split-

off states at lower energy side of the continuum, whereas|S〉 is the split-off one at the opposite side.

Thus we have considerable phase cancellation in the process|g〉 → |S〉.

4.3.3 RXES

Calculated results of the Cu4pπ -1sRXES are shown in Fig. 4.8, where CT excitations appear as inelas-

tic spectra. The elastic peak is omitted from each spectrum.

Roughly speaking, we have broader spectra whenΩ is tuned atM, whereas a single feature at

around 5.2 eV appears for otherΩ. As discussed in the preceding subsection, the value 5.2 eV is nearly

the same as the bonding-antibonding separation in CuO4 cluster. Within the present parameters, it is

approximately given byW ' 4Tpd. The lowest position of the inelastic peak is estimated as the energy

difference between the bottom of thep band and the bonding state in CuO4 cluster:

−4Tpp− 1
2
(−∆−2Tpp−W)' ∆

2
+2Tpd−3Tpp.

This formula gives a rough estimation of the CT gap from the viewpoint of the impurity Anderson

model. Since it is believed that(∆−2Tpp) is the same order ofTpd for high-Tc compounds, note that a

naive estimationεgap' ∆ which comes from the simple limit of weakd-p hybridization does not hold.

We now discuss theΩ dependence of RXES. First we consider the case whenΩ is at |S〉. This

intermediate state is strongly localized in the impurity plaquette, as shown in Fig. 4.7 (b). Moreover,

the phase of it matches the 5.2 eV excitation well by the aforementioned reason. Thus the main peak of

RXES appears around 5.2 eV.

Second,|M〉 has not a little weight in extended orbitals such asB. Since|M〉 is much closer to

the continuum than|g〉 in Fig. 4.5, it well hybridizes withp orbitals. The limitUdc→ ∞ is helpful to

illustrate the situation. Thed hole is completely pushed out to thep bands in this case, naturally getting

over the nearest-neighbor ligand orbital. In this sense,|M〉 as well as the 2 eV excitation has a nonlocal

character, through which the transition from|M〉 to the states around 2 eV is caused.|M〉 has also large
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Figure 4.8: Calculated Cu4pπ -1s RXES and XAS spectra for the Cu1O256 cluster (impurity Anderson

model). The arrows indicate the incident photon energies, and their numbers correspond to those in

RXES.

weight inA, so that the overlap with the 5.2 eV excitation is large, although there is no reason for the

intensity enhancement by the phase matching in this case. This brings about the emission intensity

around 5.2 eV, resulting in the broader spectra.

Finally, since the absorption intensity in the region between|M〉 and|S〉 is extremely small, spectral

shapes of 2, 3 and 4 in Fig. 4.8 are substantially determined by virtual transition process, although the

2 eV excitation is slightly favorable for these intermediate states which have large extendedp weight.

4.3.4 Excitation energy dependence of the 5.2 eV intensity

Let us consider the mechanism of theΩ-dependence of the inelastic peak intensity around 5.2 eV. For

the CuO4 cluster, there are only two states in the final states of RXES. The intermediate states are also

spanned in two-dimensional Hilbert space as far as the energy dispersion of4p electron is disregarded,

so that|M〉〈M|+ |S〉〈S| = 1 holds. Since the line widthΓ is much smaller than the energy separation

betweenSandM, we have the following identity between transition amplitudes|g〉 → |5.2〉 throughM

andS intermediate states:

〈5.2|Te|M〉 1
iΓ
〈M|Ta|g〉+ 〈5.2|Te|S〉 1

iΓ
〈S|Ta|g〉

=
1
iΓ
〈5.2|TeTa|g〉=

1
iΓ
〈5.2|g〉= 0,

which demonstrates that the two amplitudes are the same except for their signs, and thus theΩ-scan of

the 5.2 eV intensity takes a symmetric “U-shape”. We then take its asymmetry as a measure of nonlocal

nature of excitations.
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TheΩ-scan is plotted in Fig. 4.3 (a) with the dashed curve5. It shows that the scan takes almost the

U-shape, and that the large-cluster effect with respect to O2p band plays a minor role. It suggests that

the transition process which gives the 5.2 eV excitation as a final state of RXES is mainly ruled by local

orbitals such asd andA.

Recently Nakazawaet al. [94] pointed out the importance of configuration dependence [128] of

cation-ligand hybridization in Ce4 f -3d RXES of CeO2. In order to see the effect, we here introduce a

parameterRc, which renormalizesTpd of the plaquette with the core hole asRc×Tpd in theintermediate

(XAS final) states.

The calculated results withRc = 0.8 are also given in Fig. 4.3 (a) (solid curve). All calculated scans

are normalized so that each height of the maximum peak is the same. We see thatRc 6= 1 suppresses the

5.2 eV intensity (although the suppression is too small to reproduce the experimental result) whenΩ is

tuned around|M〉, and strengthens its asymmetry. The limit ofRc→ 0 helps to make the situation clear.

Since the main peak of XAS has nod weight in this case, and moreover the orbitalA is not stabilized

throughd-p hybridization, the extrap weight contained in the extendedB, C, ... orbitals necessarily

comes into the state to reduce the largeA weight. Also for a finiteRc, it must work to increase the

extended weight in|M〉. Thus overlap between|M〉 and the 5.2 eV excitation tends to be decreased by

Rc in comparison with that of|S〉. This is the explanation of the asymmetric shape of theΩ-scan of the

5.2 eV intensity.

Although the calculated XAS with the impurity Anderson model well reproduces the experimental

main-satellite separation, there are considerable discrepancies with experimental data in theΩ-scan of

the 5.2 eV intensity. WhenΩ is tuned at the main peak of XAS, the 5.2 eV intensity always exhibits

one of the two peaks of the U-shape as far as the impurity Anderson model is used. The observed

suppression effect can not be reproduced at all. This is nothing but an indication of a nonlocal effect

(which is brought about by Zhang-Rice singlet formation) in the intermediate states of multi-Cu clusters,

beyond the simple O2p band effects. It will be discussed in the next section in detail.

4.4 Analysis with Multi-Cu Models

4.4.1 Properties of eigenstates

Considering the results with the impurity Anderson model and the experimental fact that an antiferro-

magnetic order ofd holes is realized in|g〉, we are led to an idea that eigenstates of a multi-Cu cluster

model are described as some superposition of those of each plaquette [129]. We expect that there are

relatively local excitations around 5.2 eV, but somewhat new states should be created around 2 eV above

|g〉 upon going from the impurity to the multi-Cu model.

In order to see the point in detail, we again calculate PDOS and TDOS for a Cu3O10 cluster with

Householder method [79], based on the fact that spectra of Cu3O10 are essentially the same as that of

Cu5O16. We choose

|AF〉= d†
1↑d

†
2↑d

†
0↓|vacuum〉,

as a counterpart of|d〉 in the impurity model, and

|A′〉= L†
0↓d0↓|AF〉,

5The present result is essentially the same as that given in Ref. [116] with an impurity Anderson model, but quantitatively they

are slightly different because of a slightly different O2p band model and slightly different parameter values.

80



as a counterpart of|A〉, where the suffix 0 means the central site, andL†
0↓ is the creation operator of its

nearest-neighbor ligand orbital with localb1g symmetry of the local D4h group, just as eq. (4.13). The

numbering rule is given in the inset of Fig. 4.9 (a).

In addition to these, we define also|B′〉 = B†
0↓d0↓|AF〉 and|C′〉 = C†

0↓d0↓|AF〉, whereB†
0σ andC†

0σ
are defined by

B†
0σ =

1
2
(b†

1σ −b†
2σ +b†

3σ −b†
4σ ), (4.16)

and

C†
0σ =

1√
2
(c†

1σ −c†
2σ ), (4.17)

respectively. The orbitalsL†
0σ , B†

0σ andC†
0σ haveag symmetry in terms of the D2h irreducible represen-

tation of the Cu3O10 cluster, so that all the above states have the same symmetry (B3u) as the ground

state.

The result of the final state is shown in Fig. 4.9 (a) within the energy range corresponding to the

one-hole CT excitation (E−Eg less than about 7 eV). We see thatρAF andρA′ have definite structures

at the ground state and at 5.5 eV. These features are similarly observed in Fig. 4.7. We thus conclude

that the 5.5 eV excitation is nearly localized in each plaquette, i.e. “intra-plaquette” excitation.

There are also some structures in the energy region between|g〉 and the 5.5 eV excitation, which

are not observed in Fig. 4.7. A detailed calculation shows that the peakg1 has large overlap with states

which have frustratedd-spin arrangements such as

1√
Nu

Nu

∑
i=1

(−1)αi d†
i↓di↑d†

0↑d0↓|AF〉,

whereNu is the number of up-spin hole, andαi is determined so that the state is theB3u representation

of the overall symmetry group D2h. Thus we conclude that the peak is due to spin excitations.

Figure 4.9 (a) also shows PDOS’s and TDOS ofTpp = 0 with the dashed curves. It is observed that

a few peaks between 2 and 3 eV survive with slight energy shifts. Since the impurity Anderson model

is reduced to the CuO4 cluster in this limit, we conclude that the existence ofd-p network particular to

multi-Cu models is their origin. In order to study the properties of these peaks we here define a new

PDOS for

|Z±〉=
1√
2
(z†

1±d1↑+z†
2±d2↑)d0↓|AF〉, (4.18)

where the operatorz†
i± is defined by

z†
i± =

1√
2
(d†

i↑L
†
i↓±d†

i↓L
†
i↑). (4.19)

|Z−〉 (|Z+〉) describes a state where a hole pushed out from the central plaquette forms a local singlet

(triplet) at the nearest-neighboring plaquettes. The phase factor in eq. (4.18) was determined so that its

global symmetry is in agreement with that of the ground state (B3u).

According to the calculated result,ρZ− has clear structure (Z1) between 2 and 3 eV, but little

weight in ρZ+. Although the impurity Anderson model contains the nearly purep states in this en-

ergy range, this result suggests thatthe CT excitation in this energy range has ZR singlet like character.

Hence the CT gap may be defined by the energy to move a hole from the bonding orbital at a pla-

quette to the surroundings, where the local singlet is formed. If2Tpd ¿ ∆ held as Zhang and Rice

originally discussed [43], the binding energy of the local singlet would be estimated by their formula
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−8T2
pd[1/∆2 + 1/(Udd−∆)2]. However, our parameter gives2Tpd ' ∆. We hence obtain the conclu-

sion again that the simple estimation thatεgap' ∆ doesnot hold. This point is made still clearer by

studying Cu4p-1s RXES of CuGeO3, which has relatively larger∆ [130, 131]. In fact, our recent cal-

culation shows that the charge gap is approximately half of∆ in CuGeO3. The detailed discussion will

be published elsewhere.

Except for this fact, PDOS’s in Fig. 4.7 and 4.9 have much in common. For example, the 2 eV

excitation has hardly AF weight, but has relatively large weight inρB′ andρC′ .
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Figure 4.9: (a) Total and partial densities of states in RXES final state for Cu3O10 cluster, whose struc-

tures are shown in the panel. The definition of the state|AF〉 and so on is given in the text. The solid

and dashed curves represent the results withTpp = 0.55 and 0, respectively. (b) TDOS and PDOS in

the intermediate (XAS final) state, and Cu1s-4pπ XAS spectrum. The energy dispersion of the4p

electron is disregarded to calculate PDOS, but fully included to calculate XAS. The solid and dashed

curves are obtained withRc = 1.0 and 0.8, respectively. For both (a) and (b), the origin of the abscissa

is adjusted to be the lowest eigenenergy, and all spectra are broadened with Lorentzian (ΓL = 0.2 eV),

whose integrated areas are normalized to be unity.

Similar arguments are applicable to the intermediate state. The calculated results are given in Fig. 4.9

(b) for the system with a core hole at the central site. The energy dispersion of4p electron is neglected

to calculate PDOS. It is clearly shown that AF weight is transferred to about 6.6 eV higher than the

lowest energy state, being denoted by “S”. Naturally, the main structure inρAF corresponds tocd9 in

the standard notation of the impurity Anderson model.

In addition, first, we can assign the lowest energy feature “Z” to the state with the local singlet (not

triplet). This is the direct evidence of appearance of the ZR singlet in the intermediate state, also in

the final state of2p-XPS first discussed by van Veenendaalet al. [41], i.e. a hole pushed out by the

corehole potential moves to the neighboring plaquettes to form the local singlet. Second, structures
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about 1.5 eV above the ZR state is attributed to a charge-transferred state having a considerable weight

in the nearest-neighbor orbital of the core hole site, corresponding to|M〉 of the impurity Anderson

model.

Figure 4.9 (b) also shows Cu1s-4pπ XAS. In contrast to the impurity Anderson model, there are

three structures in XAS, which are the above discussed Z, M and S. This interpretation has close rela-

tionship with that of2p-XPS [86, 88].

4.4.2 RXES

Figure 4.10 shows XAS and RXES spectra with the Cu5O16 cluster with open boundary condition.

Calculated spike spectra of RXES are convoluted with GaussianΓG = 0.95eV (HWHM) in accordance

with the experimental resolution [116]. XAS is also broadened with LorentzianΓL = 0.8 to consider

the lifetime effect andΓG = 0.8 eV to reproduce the experimental peak width. To avoid boundary

effects, the core hole is fixed to the central site for both RXES and XAS. Effects of spatial coherence

are discussed separately in the next chapter in the context of momentum-transfer dependence [152].
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Figure 4.10: Calculated Cu 4pπ -1s RXES and XAS spectra with the Cu5O16 cluster model. The core

hole is fixed to the central site in order to avoid boundary effects. The arrows marked with numbers in

XAS indicate incident photon energies, and the numbers in RXES represent the corresponding excitation

energies.

As is the case of the impurity Anderson model, RXES in Fig. 4.10 have two structures around 2

and 5.7 eV, which are hereafter symbolically denoted by|2〉 and|5.7〉, respectively. The latter value is

somewhat larger than that of the impurity and Cu3O10 models, but closer to the experimental value.

The 2 eV intensity is considerably enhanced when the incident photon energyΩ is tuned at the

main peak “1” of XAS. This is observed in common with the case of the impurity Anderson model,

but the enhancement is extremely intense in this case. The reason is that both 2 eV excitation and
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the main absorption peak have a ZR singlet, so that their overlap is very large. Because of the ex-

tremely strong elastic scattering, the 2 eV peak is hardly observed in Fig. 4.2. It is established from

experimental [132] and theoretical results [133, 134] in the optical conductivity that the charge gap of

undoped high-Tc cuprates is of order of 2 eV. A recent high-resolution experiment in Cu4p-1s RXES

of Sr2CuO2Cl2 [135] successfully observes the 2 eV peak. For the relative intensity of the 2 eV peak as

compared to the 5.7 eV one, the spatial coherence of the core orbitals seems to play some role. We have

fixed the core hole to the central Cu site in the present calculation. Roughly speaking, this corresponds

to that situation, where RXES spectra with all kinds of the momentum transferq are mixed up. As will

be suggested by aq-dependent calculation in the next chapter6, the 2 eV peak might be excessively

highlighted under this situation, as compared to the experimental data, whereq is perpendicular to the

CuO2 plane. At any rate, one needs experimental studies with higher resolution and theoretical studies

with larger clusters for detailed discussion on the 2 eV peak.

On the other hand, since|5.7〉 is the intra-plaquette excitation, corresponding to the 5.5 eV excitation

of Cu3O10 cluster discussed in the preceding subsection, the overlap with the ZR state is expected to be

quite small. The ZR state contains a plaquette with almost no hole. As a result, the 5.7 eV intensity is

suppressed whenΩ is tuned at the XAS main peak. We believe that this is the fundamental mechanism of

the experimental suppression effect. Note that this conclusion is hardly affected by the above-mentioned

spatial coherence of the core orbitals, because of the intra-plaquette nature of|5.7〉.
Since the satellite peak “5” has the dominant weight in AF as shown in Fig.4.9 (b), it is likely for

this state to have large overlap with|5.7〉, the state almost localized at each plaquette. This coupling

would be preferred also from the phase matching point of view. In addition, it is expected to have little

overlap with the 2 eV excitation containing the ZR singlet like state. Thus the RXES spectrum has an

only structure around the 5.7 eV excitation.

WhenΩ is tuned at the shoulder “2”, which was denoted by M in the preceding subsection, the situ-

ation is halfway. The dominant weight of M lies on|A′〉, but more extended orbitals have no negligible

weight as shown in Fig.4.9 (b), so that the former gives rise to the intensity of the 5.7 eV excitation, and

the latter causes the transition to the 2 eV excitation, resulting somewhat broader spectra.

4.4.3 Excitation energy dependence of the 5.7 eV intensity

The disagreement with the experimental data in theΩ-scan of the 5.2 eV intensity with the impurity

Anderson model is essentially cleared up by considering the above multi-Cu effects. CalculatedΩ-scans

of the 6 eV (actually 5.7 eV) intensity in4pπ -1sRXES of Nd2CuO4 are given in Fig. 4.3 (b), where the

results withRc = 1 and0.8 are represented with the dashed and thick solid curves, respectively.

In contrast to the doubly-peaked shape of the impurity model calculation, the multi-Cu one gives a

triply-peaked structure. Because of the suppression effect forΩ tuned at around−3 eV, it reproduces

the experimental data much better than the impurity one.

IntroducingRc, we see that the 5.7 eV intensity is more suppressed whenΩ is tuned at the main peak

(Z), but enhanced whenΩ is tuned at the shoulder (M), improving the agreement with the experiment.

TDOS and PDOS’s withRc = 0.8 for Cu3O10 cluster is shown in Fig. 4.9 (b) with the dashed curve. We

see that, first,ρZ− is enhanced byRc 6= 1 at the lowest state “Z”. This means that the hole is pushed

out from the core hole plaquette more strongly, so that the overlap with the intra-plaquette excitation

6See Fig. 5.9.
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tends to be decreased. On the other hand,ρA′ is increased around the energy of the shoulder “M”,

being consistent with the discussion in the subsection 4.3.4. HoweverρB′ andρC′ are decreased at this

energy, so that the overlap with the intra-plaquette excitation tends to be increased. This means that the

existence of the ZR singlet state reduces extended nature of the state M.

We finally give a few comments on the present study. There is slight discrepancy with the ex-

perimental data mainly due to the incompleteness of the suppression effect. We have performed the

calculations with relatively small clusters such as Cu3O10 or Cu5O16. All excitations necessarily have

more or less local character as far as the system is finite. Moreover, it is impossible to avoid bound-

ary effects perfectly. In order to make the point clear, detailed experimental and theoretical analysis

is needed for one-dimensional systems [136], where one can extend the cluster size without facing the

limitation of the memory size of computers.

4.5 Conclusions

We theoretically investigated the Cu4pπ -1s RXES of Nd2CuO4 firstly with the impurity Anderson

model. Utilizing PDOS functions, we found that excitations about 5.2 eV above the ground state have

considerably localized character, and that excitations about 2 eV above the ground state are nearly pure

p states, having less amplitude at the plaquette with the impurity.

In the large cluster calculations, however, the low energy excitations created by CT processes have

ZR singlet like character in contrast to the result with the impurity Anderson model, although excitations

about 5.7 eV above the ground state is similarly local (“intra-plaquette”). This difference is clearly

reflected in the RXES spectra when the main absorption peak is resonated.

A conspicuous disagreement with the experimental 6 eV intensity as a function of the incident

photon energy could not be removed with the impurity Anderson model. It was demonstrated that the

difficulty is solved by considering Zhang-Rice singlet formation, using the multi-Cu model.

We finally discussed the role of the configuration dependence of thed-p transfer. The satisfactory

agreement with the experimental data is obtained with the large cluster calculation withRc.
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Chapter 5

Polarization and Momentum

Dependence of Charge Transfer

Excitations in Nd2CuO4

Polarization and momentum-transfer dependence in Cu4pσ -1sresonant X-ray emission spectra (RXES)

of Nd2CuO4 is theoretically studied. We explain the experimental polarization and angular dependence

of the 5.7 eV excitation. Comparing results calculated with single- and multi-Cu models, we confirm

again the essential contribution of the nonlocal screening effect in Cu4pσ -1s. We predict considerable

dependence of a CT excitation at about 2 eV on momentum transfer along the CuO2 planes, and the

5.7 eV excitation has less dependence.1

5.1 Introduction

As explained in§ 1.1, RXES occupies a unique position in that it offers rich information on electronic

structures in terms of both local and translational selection rules. With well-polarized X-rays created by

synchrotron light sources, several groups have reported angular and polarization dependence of RXES

in these days [71, 97, 106, 137, 138], and derived significant information on electronic structures. Since

specific resonance enhancement occurs at the corresponding absorption peak in general, it is of great

use also in that it may give clear explanation on the origin of somewhat complicated structure of XAS

spectra such as CuK-XAS of La2CuO4 [139].

Most of theoretical studies on polarization dependence of RXES ind and f electron systems within

the framework of the second-order optical process have been based on impurity Anderson models so far.

As well as the dipole transition, more complicated angular and polarization dependence of quadrupolar

transition is recently discussed within an impurity Anderson model [140]. The applicability of im-

purity Anderson models to angle or polarization resolved RXES is mathematically understood from

Eq. (1.37), where the scattering amplitude of whole crystal is expressed as Fourier transformation of

the local scattering amplitudeMε ′ε (R;Ω) of angular and polarization dependence. Here we explicitly

write Ω-dependence of this amplitude defined in Eq. (1.39). As far as Cu4p-1s RXES of Nd2CuO4 is

1T. Idé and A. Kotani, submitted. A part of this chapter will be published also in Ref. [117].
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concerned, however, it is also apparent from these equations that the impurity limit disregards, first, the

nonlocal screening effect due to the Zhang-Rice singlet formation, and second, the momentum transfer

(q) dependence of RXES.

In this chapter, we discuss the polarization dependence in Cu4p-1sRXES of Nd2CuO4 together with

the latest experimental data. While definite polarization dependence of CuK-XAS in this material has

been already reported by a number of authors [141, 142, 143], little has been known about polarization

dependence of RXES. Since a1s orbital has no orbital degeneracy, theoretical analysis on polarization

dependence is much simpler than that of,e.g., 3d-2p transition [107]. Furthermore, the absence of apex

oxygen in Nd2CuO4 and no overlap between4pπ and4pσ absorption edges make the situation clearer.

Thus, comparison with experimental data offers us a plain confirmation on the theoretical framework of

RXES.

In the preceding chapter, we considered the nonlocal screening mechanism for the absence of res-

onance enhancement when the main CuK-absorption peak is targeted by an incident X-ray. Detailed

character on spatial direction of4p orbitals was not used to interpret the Cu4p-1sRXES spectra. Hence

what the experimental data with differently polarized photon are successfully interpreted with the same

theory is the ideal justification of the theory. At the same time, it is interesting to investigate whether

the anisotropy in4p orbitals affects the screening process in the valence electronic state. We will show

that the polarization dependence in RXES can be clearly understood in terms of the framework of the

second-order optical process. We will also show that Cu4pσ -1s spectra essentially follows4pπ -1s

spectra discussed in the preceding chapter.

The other point that the impurity limit disregards is theq-dependence of RXES. Momentum re-

solved RXES with hard X-rays is a complement to angle-resolved PES to examine entire Brillouin

zone. Recently, theq-dependence of RXES is measured for Mott-Hubbard systems [144, 145] and in-

sulating cuprates [135]. Despite of their significance, there have been few theoretical studies on the

q-dependence so far. Very recently, Tsutsuiet al. reported a numerical calculation on theq-dependence

of Cu4p-1sRXES for the fist time [82]. Based on an effective 4×4 Hubbard model, they discussed the

energy dispersion of the CuO2 planes of insulating cuprates. Within one-dimensional (1D) systems, we

will show a model calculation on theq-dependence of Cu4p-1sRXES of cuprates, and derive valuable

information in the context of local and nonlocal excitations in Nd2CuO4.

The layout of this chapter is as follows. In the next section formulae for angular dependent transition

operators are given. In§ 5.3 we explain experimental polarization dependence with those formulae. In

§ 5.4 the role of the nonlocal screening effect is briefly described. In§ 5.5 we discuss intra- and inter-

plaquette natures of CT excitations from a viewpoint ofq-dependence of RXES. In the final section a

brief summary is given.

5.2 Formulation

5.2.1 Hamiltonian

The model adopted in this chapter is the same as that of the preceding chapter except for terms describ-

ing 4p electrons. Calculated results are obtained with the multi-Cu (Cu5O16) model or the single-Cu

(Cu1O256) model (impurity Anderson model). To discuss the polarization dependence, we introduce
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4pσ Hamiltonians,H4pσ , H4pc andH4p3d. The one-electron partH4pσ is defined by

H4pσ = ε4pσ ∑
R

∑
η=x,y

Q†
ηRQηR + t1∑

R

[
Q†

xRQx,R+ax̂ +Q†
yRQy,R+aŷ +H.c.

]

+ t2∑
R

[
Q†

xRQx,R+aŷ +Q†
yRQy,R+ax̂ +H.c.

]
,

whereQ†
ηR creates a Cu4pη (η = x,y) electronat R site, x̂ and ŷ are two unit vectors along Cu-O

direction in the CuO2 plane.a is the Cu-O distance.t1 andt2 are respectively(ppσ) and(ppπ) of the

4pσ orbitals in terms of the Slater-Koster parameters [118].

H4pc andH4p3d describe Cu4p-1sand Cu4p-3d intra-atomic interactions, respectively. The explicit

forms are

H4pc =−∑
R

[
∑
η

U4pcQ
†
ηRQηR

]
SRS†

R (5.1)

and

H4p3d =−∑
R

[
∑
η

U4p3dQ†
ηRQηR∑

σ
d†

σRdσR

]
. (5.2)

These are the same as those of in the preceding chapter except forη 6= z and the numerical value of

U4p3d. Now total Hamiltonian is written as

H = Hdp+Hpp+Hcore+Hdc+H4pσ +H4pc+H4p3d,

where the first four terms have been defined in the preceding chapter. All parameters are the same as

those of the preceding chapter except fort1 = 0.24 and t2 = −0.8, andU4p3d=3.3 eV. For the4p-4p

transfer energy parameterst1 andt2, we consider a first principle band calculation [121]. The difference

betweenU4p3d(σ) andU4p3d(π) due to multipole contribution of the Slater integrals is estimated as

0.34 eV with Cowan’s numerical program [146] and the empirical reduction factor 0.85 [26], from

which we take the value 3.3 forU4p3d(σ).

5.2.2 Angular-dependent transition operators

The general form of the X-ray absorption and emission operators has been given in Eq. (1.22). For

1s excitation, it is appropriate for4p operators to be expressed under the Cartesian coordinates,

(4px,4py,4pz). The definition of the coordinates, whose origin is fixed to a Cu site, is described in

Fig. 5.1. We set unit vectors along thex, y andz axes to bêex, êy andêz. In the atomic approximation,

we immediately have the1s-4p absorption operator as

Ta
ε (R) = ε · ∑

ζ=x,y,z

êζ Q†
ζR

SR,

where we dropped a trivial prefactor.

Let us define another set of unit vectors,x̂1 and ŷ1, which are parallel and perpendicular to the

scattering plane, respectively. Both are perpendicular to the incident wave vectorq1. Experimentally, it

is convenient to express the polarization vector in terms of these unit vectors,

ε = ∑
α=x̂1,ŷ1

εα α̂.
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Table 5.1: Angular dependent functionDζ
β̂ α̂

(θ ,θi ,φi).

(β̂ , α̂) x y z

(x̂2, x̂1) cos(θi+θ)cosθicos2φi cos(θi+θ)cosθisin2φi sin(θi+θ)sinθi

(ŷ2, x̂1) −cosθisinφicosφi cosθisinφicosφi 0

(x̂2, ŷ1) −cos(θi+θ)cosφisinφi cos(θi+θ)cosφisinφi 0

(ŷ2, ŷ1) sin2φi cos2φi 0

Hence we obtain

Ta
ε (R) = ∑

ζ ,α
εα(α̂ · êζ )Q†

ζR
SR. (5.3)

While this formula explicitly assigns the1s→ 4p transition path, one can easily generalizeTa
ε (R)

for a (lc,mc)→ (l ,m) transition under the atomic dipole approximation. Rewriting(nlm|ε ·p|nclcmc) in

terms of spherical tensor operators, we have

Ta
ε (R) = ∑

m,q,α̂,σ
(lm|C(1)

q |lcmc)A
(α̂)
q (θi ,φi)l†

Rmσ cRmcσ εα , (5.4)

where dipole geometrical functionA(α̂)
q (θi ,φi) is defined by

A(x̂1)
q (θi ,φi) =

{
− 1√

2
qcosθi e−iqφi ,q =±1

−sinθi ,q = 0
(5.5)

A(ŷ1)
q (θi ,φi) =

i√
2
|q|e−iqφi ,q = 0,±1. (5.6)

θi andφi designates the direction ofq1 (see Fig. 5.1) [110]. It is straightforward to derive the general

formula for the X-ray emission due to the dipole transition, and therefore that for RXES. This matter is,

however, beyond the scope of this chapter.

On the analogy ofTa
ε (R), the4p-1sX-ray emission operator is given by

Te
ε ′(R) = ∑

ζ
∑

β=x̂2,ŷ2

ε ′β (β̂ · êζ )S†
RQζR, (5.7)

wherex̂2 andŷ2 are unit vectors parallel and perpendicular to the scattering plane, respectively, defined

for the emitted wave vectorq2 (see Fig. 5.1). Hence we obtain the transition operator of RXES atR,

Tε ′ε (R;Ω) = ∑
α,β ,ζ

ε ′β Dζ
β̂ α̂

(θ ,θi ,φi)εαS†
RQζRG0(Ω)Q†

ζR
SR, (5.8)

whereDζ
β̂ α̂

(θ ,θi ,φi)≡ (β̂ · êζ )(êζ · α̂) is tabulated in table 5.1.G0(Ω) is the resolvent operator defined

by (Ω+Eg−H + iΓ)−1. We takeΓ=0.8 eV as in the preceding chapter. Eventually, the overall operator

of RXES is given by

Tε ′ε (Ω) = ∑
R

eiq·RTε ′ε (R;Ω),

whereq = q2−q1 is the momentum-transfer of the X-ray.
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Figure 5.1: Geometrical configuration of RXES. The semicircle represents the scattering plane. The

solid and open circles are Cu and O atoms, respectively.x andy axes are taken along two Cu-O direc-

tions. φi andθi designate the direction of the wave vector of the incident photon,q1. q2 is the wave

vector of the emitted photon with a scattering angleθ . The polarization vector of the incident photon

is described in terms of unit vectorsx̂1 andŷ1. The former is parallel to the scattering plane, whereas

the latter (not shown in the figure) is perpendicular to the scattering plane. These agree with each of

the unit vectors of thex andy axes, respectively, in the limitφi , θi → 0. The polarization vector of the

emitted photon is described witĥx2 andŷ2, which agree witĥx1 andŷ1, respectively, in the limitφi , θi

andθ → 0.

5.3 Polarization Dependence

5.3.1 Experimental data

Experimental data were measured for a single crystal of Nd2CuO4 under two geometries depicted in

Fig. 5.2. In the geometry (a), both polarization vectors,ε andε ′, are parallel to the scattering plane,

and they take 30◦ to thez-axis (so-calledc-axis). In the geometry (b), both polarization vectors are

perpendicular to the scattering plane, being parallel to theab-plane. Note that momentum transfer

vector is common to both geometries.

(a) 

120
o qq 12

εε' '

(b) 

120
o qq 12

εε'
'

ab-plane ab-plane

ε ∼|| ε ||c ab

Figure 5.2: The experimental geometries. (a) Polarization vectors of the incident and emitted photons

are parallel to the scattering plane (“ε ∼ ‖c”). (b) Polarization vectors of the incident and emitted

photons are perpendicular to the scattering plane (“ε‖ab”). For both (a) and (b), the scattering angle is

θ = 60◦, and the momentum transfer vector is perpendicular to the CuO2 plane (so-calledab-plane).
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The upper panel of Fig. 5.3 shows CuK-XAS spectra for both geometries. We observe four distinct

bumps from A to D for the geometry (a), which is denoted by “ε ∼ ‖c” in the figure, whereas only two

structure C and D are observed for the geometry (b), which is denoted by “ε‖ab”. The first question to

be answered is this polarization dependence.

Analogous to Cu4pπ -1s RXES shown in Fig. 4.2, where the geometry (a) is adopted, a charge-

transfer (CT) excitation is observed at about 5.7 eV energy loss also under the geometry (b). The

Ω-dependence of the 5.7 eV intensity is plotted in the lower panel of Fig. 5.3 for both geometries. The

experimentalΩ-scan represented with the open circles is just the same data as in the lower panels in

Fig. 4.3. As seen in the figure, strong resonance enhancement is observed only whenΩ passes by the

absorption peak B in the case of the geometry (a). On the other hand, strong enhancement occurs only

whenΩ passes by the absorption peak D in the case of the geometry (b). To confirm this, RXES spectra

under the two geometries withΩ=ΩB≡8990 eV (peak B) andΩD≡8999.5 eV (peak D) are shown in

the lower and upper panels in Fig. 5.4, respectively. We see that an inelastic peak is observed at about

5.7 eV in both geometries. However, no enhancement occurs in the geometry (b) whenΩ is tuned at

B (lower panel). This is thesecondquestion. Conversely, no enhancement occurs in the geometry (a)

whenΩ is tuned at D (upper panel). This is thethird question. Moreover, the maximum intensity of the

5.7 eV peak is considerably different in both cases. This is thefourthquestion.

5.3.2 Theoretical explanation

For theoretical description, we put an assumption, as the lowest nontrivial approximation, that difference

betweenσ andπ in U4pd, U4pc and4p-4p transfers do not substantially change the valence states in the

intermediate state. Let us first consider the angular dependence ofK-XAS. We easily see from Eq. (5.3)

that only4pσ absorption, i.e. excitation to a4px or a4py orbital, occurs whenε = ŷ1 (the geometry (b)).

This is the reason of the double-peak structure in the XAS spectrum in Fig. 5.3 (closed circles), and this

fact certifies these peaks as a result of1s-4pσ transition. Whenε = x̂1, the formula immediately give

the ratio of the absorption intensity as approximately

σ : π = cos2θi : sin2θi .

This result roughly explains the intensity ratio between the first and third features of the experimental

XAS described in Fig. 5.3, where the ratio is found to be broadly consistent to sin260◦ : cos260◦ = 3 : 1

by considering a steeply increasing background spectrum. Now the first question has been answered.

The functionDζ
β̂ α̂

rules angular dependence of RXES. When(ε ′,ε) = (ŷ2, ŷ1) we see that there is

no contribution of4pz (4pπ ) orbitals because ofDz
ŷ2,ŷ1

= 0. This fact explains no enhancement over the

4pπ absorption threshold under the geometry (b). This is the answer to the second question.

Next we notice that̂x1 → ŷ2 andŷ1 → x̂2 transitions are not allowed if the ground state|g〉 is notE

representation of theD4h group2. If it is the case,

〈 f |Tx(Ω)|g〉= 〈 f |Ty(Ω)|g〉

follows for a final state| f 〉with the same symmetry as|g〉 becauseTx =C4Ty(C4)3, C4 being the rotation

operator ofπ/4 around thez-axis at a Cu siteR. Here we definedTζ (Ω) by

Tζ (Ω) = ∑
R

eiq·RS†
RQζRG0(Ω)Q†

ζR
SR

2This assumption is numerically justified for undoped two-dimentional clusters, Cu5O16 and Cu4O12.
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Figure 5.3:Upper panel: Cu K-XAS of Nd2CuO4 [117]. The open and closed circles represent ex-

perimental data under the geometries (a) and (b), respectively. The solid and dotted curves represent

calculated Cu1s→ 4pσ absorption spectra under the geometry (b) with the multi-Cu and single-Cu

models, respectively. Both curves are convoluted with LorentzianΓL = 0.8 eV (HWHM) to consider

lifetime of a 1s hole, and further convoluted with GaussianΓG = 0.8 eV (HWHM) for the multi-Cu

model, and withΓG = 1.2 eV (HWHM) for the single-Cu model to reproduce the experimental line

width. Lower panel: the Ω-dependence of the 5.7 eV intensity [117]. The definition of the open and

closed circles is the same as the upper panel. The solid and dotted curves represent theΩ-dependence

of intensity of the 5.7 eV peak in Cu4pσ -1sRXES calculated under the geometry (b) with the multi-Cu

and single-Cu models, respectively. Both curves are convoluted withΓG = 1.10 eV (HWHM) for the

incident X-ray and withΓG = 1.15eV (HWHM) for the emitted X-ray.
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Figure 5.4: Experimental polarization dependence of Cu4p-1sRXES [117]. The open and closed circles

correspond to the geometries (a) and (b), respectively. In the upper panelΩ is tuned at the absorption

peak D, and in the lower panelΩ is tuned at B. The definition of D and B are given in Fig. 5.3.
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for ζ = x,y andz, with q⊥ R in this case. ThusDx
ŷ2x̂1

= −Dy
ŷ2x̂1

or Dx
x̂2ŷ1

= −Dy
x̂2ŷ1

leads to the zero

transition amplitude. Note that one can not suppress the elastic line by choosingε ·ε ′ = 0 as far asq⊥R

holds, because elastic as well as inelastic scattering is not allowed in this case (see§ 1.3.2).

Under the same assumption on the ground state, emission intensity under the geometry (b) is given

asI2(Ω) = |〈 f |Tx(Ω)|g〉|2, and emission intensity under the geometry (a) as

I1(Ω) = |〈 f |Tx(Ω)cos(θi +θ)cosθi +Tz(Ω)sin(θi +θ)sinθi |g〉|2 . (5.9)

Thus we can estimate the intensity ratio betweenπ- andσ -resonances under this geometry as

σ : π = cos2(θi +θ)cos2θi : sin2(θi +θ)sin2θi ,

giving σ : π = 1 : 9for θi = θ = 60◦. This ratio partly answers the third question, i.e. the little resonance

enhancement whenΩ passes by the4pσ threshold under the geometry (a), although the relatively large

error bars prevent us from further quantitative statement.

One can also roughly estimate the ratio of maximum intensity of the 5.7 eV peak for the two geome-

tries. Since the maximum peak is realized at the4pπ absorption threshold in the case of the geometry

(a), we haveI1 ∼ sin2(θi + θ)sin2θi |〈 f |Tz(ΩB)|g〉|2. If |〈 f |Tz(ΩB)|g〉| can be regarded to be the same

order as|〈 f |Tx(ΩD)|g〉|, the assumption that is exactly justified in the isotropic limit of4p orbitals, we

have the ratio as

I1/I2 ∼ sin2(θi +θ)sin2θi .

For θi = θ = 60◦, this is approximately 0.56, which broadly explains the ratio of the 5.7 eV intensity in

Fig. 5.4 (the answer to the fourth question).

We have studied Cu4p-1s RXES under only the two geometries. Although the present calculation

and experiment show no clear evidence that the assumption we put at the beginning of this subsection

breaks down, it may be interesting to watch the angular and polarization dependence of RXES spec-

tra in a class of materials. Ishihara and Maekawa recently emphasize the role of anisotropy between

U4p3d(π) andU4p3d(σ) to explain anomalous elastic scattering in orbital ordered Mn compounds [147].

Analyzing angular and polarization dependence of also inelastic scattering, it is expected to obtain more

detailed information on spatial direction of orbitals. This subject is left for the future study.

5.4 Incident Energy Dependence

5.4.1 Calculated results

We carried out numerical calculations for the geometry (b) again with the multi-Cu (Cu5O16) cluster and

the single-Cu (Cu1O256) cluster models. Part of the results are shown in Fig. 5.3 with solid (multi-Cu)

and dotted (single-Cu) curves for both panels. Corresponding to the experimental structures C and D

in the XAS spectra, a doubly-peaked structure in the calculated absorption spectra is observed in the

upper panel. For convolution width of the calculated spectra, see the figure caption. We hardly find

discrepancy between the multi-Cu and single-Cu results, except for slight difference in the width of the

main structure. The resonant behavior of the 5.7 eV peak shown in the lower panel is, however, quite

different. The multi-Cu model presents a singly-peakedΩ-dependence, whereas the single-Cu model

presents a doubly-peakedΩ-dependence. Note that somewhat larger convolution width of Gaussian

ΓG = 1.1 eV for the incident X-ray is used to reproduce the experimental resolution, as compared to
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Fig. 4.3. While theΩ-scan of the multi-Cu calculation reproduces much better than the single-Cu one,

the experimentalΩ-scan exhibits more definite suppression effect whenΩ is tuned at the peak C.

To remove this discrepancy, we performed calculations including the reduction factor of thed-p

transfer,Rc, whose definition has been given in the preceding chapter. Calculated XAS and RXES

spectra withRc = 0.8 are shown in Fig. 5.5. Despite the difference in the transition process, these

figures are very similar to Figs. 4.8 and 4.10, whereRc = 1 calculations are given. The only remarkable

difference is that the main absorption structure is more broadened than in Fig. 4.10. This result is

consistent to the experimental difference in line width between the peak A (B) and C (D).

The Ω-scan of the 5.7 eV peak based on these improved calculations is plotted in the lower panel

of Fig. 5.6. We see that agreement with the experimental data (closed circles) is considerably improved

in the multi-Cu result (solid curve). Specifically, the suppression effect whenΩ is tuned at the main

absorption peak is more clearly reproduced. While includingRc=0.8 also in the single-cluster case

seems to give rise to more suppression as compared to that in Fig. 5.3, the overall line shape is still

doubly-peaked, being utterly different from the experimental data.
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Figure 5.5: CuK-XAS and4pσ -1s RXES withRc = 0.8. (a) The impurity Anderson model (Cu1O256

cluster). The XAS spectrum shown in the right panel is convoluted with LorentzianΓL = 0.8 eV

(HWHM) to consider lifetime of a1s core hole, and further convoluted with GaussianΓG = 1.2 eV

(HWHM) to reproduce the experimental line width. The RXES spectrum shown in the left panel is

also convoluted withΓG = 1.15 (HWHM) to reproduce the experimental resolution. (b) The multi-Cu

model (Cu5O16 cluster). The XAS spectrum shown in the right panel is convoluted with Lorentzian

ΓL = 0.8 eV (HWHM) to consider lifetime of a1s core hole, and further convoluted with Gaussian

ΓG = 0.8 eV (HWHM) to reproduce the experimental line width. The RXES spectrum shown in the left

panel is also convoluted withΓG = 1.15(HWHM) to reproduce the experimental resolution. For (a) and

(b), the elastic line, which should be located at zero, is omitted from the figure. The numbers attached

to arrows in each XAS spectrum corresponds to those in RXES, representing the excitation energy.
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Figure 5.6: The improved calculations of CuK-XAS and theΩ-scan of the 5.7 eV inelastic peak with

Rc = 0.8. The closed circles represent again the experimental results measured under the geometry (b)

for both panels. See the caption in Fig. 5.3.
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5.4.2 Discussion

Because of the similarity between4pπ and4pσ spectra, we naturally assign the main absorption peak

calculated with the multi-Cu cluster to that state which has a Zhang-Rice (ZR) singlet at plaquettes

neighboring to the photoexcited one. The shoulder (3 in Fig. 5.5 (b)) of the main structure is attributed

to a well-screenedcd10L-like state, and the satellite peak (7 in Fig. 5.5 (b)) is attributed to a poorly-

screenedcd9-like state, wherec and L represent core and ligand holes, respectively. The main and

satellite absorption peaks in the single-Cu model are, on the other hand, mainlycd10L andcd9 states,

respectively.

ZR
singlet

(Large  overlap) (small  overlap)

core hole

ω

Ω

ω
inter-plaquette
CT excitation

intra-plaquette
CT excitation

(= 5.7eV peak)(= 2eV peak)

Figure 5.7: The essential contribution of the nonlocal screening effect in Cu 1s-4p-1s RXES when the

incident photon energyΩ is tuned at the main peak of XAS.

Whichever model is used, there is a certain difference in spatial extent among these states, and

this difference gives rise to theΩ-dependence of RXES spectra. As demonstrated in the preceding

chapter, the ZR state has the most nonlocal character because a3d hole is pushed out by the strong

1s-3d repulsive Coulomb interaction into neighboring plaquette, so that it has little overlap with intra-

plaquette CT states. Although the4p-3d correlationU4p3d should more or less disturb the motion of the

ZR singlet, it seems to act as only small perturbation. The final states are the same as those of4pπ -1s

RXES because of the absence of4p electron. As discussed, the 5.7 eV inelastic peak is ad10L-dominant

anti-bonding state, and the 2 eV peak is attributed to an excitation of a3d hole from the upper Hubbard

band to the ZR singlet band.

The mechanism of the suppression effect of the 5.7 eV inelastic peak is summarized in Fig. 5.7.

WhenΩ is tuned at the ZR intermediate state, the 5.7 eV final state is unfavorable because it is an intra-

plaquette excitation. To the contrary, the 2 eV final state has large overlap with this intermediate state as

suggested in the figure. The effect ofRc or detailed discussion on theΩ-dependence of RXES spectra

substantially follows those in the preceding chapter, and we do not repeat it here.
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5.5 Momentum Transfer Dependence

In the context of local and nonlocal excitations, it is interesting to measure the energy dispersion overk-

space, because an excited state completely localized in a unit cluster should exhibit no energy dispersion.

Figure 5.8 shows the experimentalq-dependence of RXES spectra [117], whereq is taken perpendicular

to theab-planes. We find that there is no shift in the peak position. This result clearly suggests weak

coupling between the CuO2 layers.

The energy dispersion in a CuO2 plane can be measured by sweeping the in-plane component of

q. We carried out numerical calculation on Cu4p-1s RXES for a 1D periodic Cu4O12 cluster for

q=0, π/2 andπ in the unit of (2a)−1. The results are shown in Fig. 5.9, where we adopt the same

parameter set as that in Fig. 5.5 (b) except forUdc=8.0 3. Note that all core orbitals are taken into

account here, whereas we have fixed a core hole to the central Cu site so far. Analogous to Figs.4.10

and 5.5 (b), the main absorption structure is composed of two peaks, and a satellite structure is observed

about 7 eV distant from the main peak. Recent experimental and theoretical studies on high-resolution

Cu 2p-XPS of various cuprates show that the nonlocally screening path gives rise to the main peak

of Cu 2p-XPS in one-dimensional as well as two-dimensional cuprates, as far as the corner-shared

structure is conserned [136, 148, 149, 150]. Although close inspection shows that each spectrum has

slight difference according to difference in physical parameters and dimensionality, the character of the

shoulder of the main peak or the satellite structure is also broadly common to both dimensions [151].

Hence we can utilize the calculated results to inferq-dependence of the CT excitations in Nd2CuO4.

For theq-dependence of the RXES spectra, we find in Fig. 5.9 that the 2 eV peak exhibits consider-

ableq-dependence in its intensity and position. Recently, Abbamonteet al. [135] successfully observed

q-dependence of the 2 eV peak, which was hidden in the tale of the elastic line in Figs. 4.2, 5.4 and 5.8,

in Cu4p-1sRXES of a two-dimensional insulating cuprate, Sr2CuO2Cl2. Moreover, their experimental

data show that the CT structure at about 5 eV displays littleq-dependence in its peak position4. This is

qualitatively consistent to Fig. 5.9, and suggests the intra-plaquette nature of the 5.7 eV CT excited state

in Nd2CuO4. On the contrary, the strongq-dependence of the 2 eV peak confirms the inter-plaquette

(nonlocal) nature of the 2 eV CT excited state.

It is interesting to regard Fig. 5.9 as representing energy dispersion of a 1D system itself. Recently,

angle-resolved PES measurements have been performed on (quasi) 1D cuprates, SrCuO2 [153] and

Sr2CuO3 [154], in the context of spin-charge separation [155, 156] due to photodoping. These exper-

iments report that energy dispersion of a holon band, which is symmetric in each of halves of the first

Brillouin zone (k≥ 0 or k < 0) with respect to the maximum at|k|=π/2, is much larger than that of

Sr2CuO2Cl2 [157]. Furthermore, they report that there is a spinon band over−π/2 < k≤ π/2 with

smaller band width. While it has been established that the ZR singlet formation due to the “potential

doping” (see§ 1.4) in the intermediate state strongly contributes to Cu4p-1sRXES spectra, the relation

with these phenomena unique to 1D systems is unclear. This is a subject left in the future.

3This value ofUdc is taken in order to keep the main-satellite separation in XAS spectrum the same as that in Fig. 5.5 (b).
4They assign the 5 eV structure to a “shakeup” scattering. However, it has been established from the analysis in the preceding

chapter that this is thed10L-dominant anti-bonding state.
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Figure 5.8: The experimental momentum transfer dependence whenq is perpendicular to the CuO2
planes [117]. The incident energyΩ is tuned at theD peak in the XAS spectrum.
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Figure 5.9: Theq-dependence of Cu4pσ -1s REXS for a one-dimensional cluster as shown in the in-

set [152]. We see that the 2 eV CT excitation is stronglyq-dependent, whereas the 5.7 eV peak has little

q-dependence.
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5.6 Conclusions

We have studied the polarization dependence of charge transfer excitations in Cu4p-1s RXES of

Nd2CuO4. Starting from the general formula introduced in Chap. 1, we derived a closed expression on

angular and polarization dependence of RXES. The experimental polarization dependence is success-

fully explained with the formula, and the fact that the incident polarization dependence of the excitation

process may be exploited to select the intermediate state of the resonance is shown.

Next, we confirmed the mechanism of the suppression of resonant inelastic scattering for nonlocally

screened intermediate states. The difference between4pπ and4pσ gave no drastic change in XAS and

RXES spectra. Finally, we examined theq-dependence of the CT excitations in RXES spectra. The

calculated spectra showed, first, that the 5.7 eV peak displays littleq-dependence, and second, that the

2 eV peak considerably depends onq. These are interpreted in terms of intra- and inter-plaquette natures

of the excitations, and are regarded as further support of the explanation of the suppression effect.
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Chapter 6

Concluding Remarks

We have studied nonlocal effects in RXES with periodic Anderson models. The principal conclusions

are twofold. First, the origin of the interplay between fluorescence-like and Raman components has

been clarified. Second, the essential contribution of the nonlocal screening effect on Cu4p-1s RXES

spectra has been demonstrated. We recapitulate the conclusions of this thesis in what follows.

In Chap. 2, we studied the role of the translational symmetry on metal3d-2p RXES ofd0 systems.

The model used is a one-dimensional nondegenerate periodic Anderson model, which is a minimal

model having explicit translational symmetry. It was shown that RXES depends more sensitively on

the cluster size than XAS and XPS, so that RXES is a useful probe in studying the duality between

itinerant and localized characters of3d electrons. From results calculated by changing the cluster size,

we proposed the NXES-like mechanism for the appearance of the fluorescence-like RXES spectra. It is

summarized in Fig. 3.1. The essential point of our picture is the existence of extended states against the

strong core hole potential in the intermediate state, although such extended states may have negligible

weight in the XAS spectrum.

Regarding the3d orbitals as Ce4 f ones, it was also explained why the experimental Ce4 f -3d

RXES of CeO2 is well reproduced by calculations with a single-cation impurity Anderson model.

In Chap. 3, the theory in the preceding chapter was extended to include explicit orbital degeneracy.

We devised a doubly-degenerate one-dimensional model which contains two kinds of local point group

symmetry, and associated them witheg andt2g orbitals in a crystal of Oh symmetry. First we study3d-2p

RXES spectra ford0 systems. Within the single-metal-ion model, we mathematically defined antibond-

ing and nonbonding states by utilizing the local point group symmetry or the permutation symmetry

between the degenerate orbitals, and successfully explained the experimental polarization dependence

of Ti 3d-2p RXES of TiO2. In going from the single-metal-ion model to multi-metal-ion model, the

fluorescence-like component comes arise, and the calculated spectra clearly exhibit the interplay be-

tween the fluorescence-like and Raman components.

Next we showed calculated results ford1 systems. The calculated RXES spectra displayed inelastic

structures due to inter- or intra-sited-d excitation as well as nonbonding, antibonding and fluorescence-

like structures. We found that the energy separation of the inelastic peaks due to the intra-sited-d

excitation from the inelastic line considerably depends on cluster size. The polarization dependence

similar to thed0 system was predicted. The orbital degeneracy as well as the translational symmetry is

essential to the appearance of the fluorescence-like spectra.
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In Chap. 4, we theoretically investigated the Cu4pπ -1sRXES of Nd2CuO4 with impurity Anderson

and large-cluster models. While the former model failed to reproduce the experimentally observed

suppression effect of resonance enhancement of the 5.7 eV inelastic peak, we obtained satisfactory

agreement with the experimental data by using the large-cluster model. Utilizing PDOS functions, we

found that the 2 eV structure is interpreted as an “inter-plaquette” excitation of a hole from a Cu site to

other plaquettes to form a Zhang-Rice singlet, whereas the 5.7 eV excitation is attributed to the “intra-

plaquette” CT excitation. This difference is clearly reflected on the excitation dependence of RXES

spectra. The physical picture of the suppression effect is summarized in Fig. 5.7, which elucidates the

essential contribution of the nonlocal screening effect on RXES.

In Chap. 5, first we studied the polarization dependence of charge transfer excitations in Cu4p-1s

RXES of Nd2CuO4. With a closed expression on angular and polarization dependence of RXES, the

experimental polarization dependence is successfully explained. The calculated XAS and RXES spectra

involving 4pσ orbitals substantially followed those of the4pπ . We next examine theq-dependence

of 4pσ -1s RXES spectra. The calculated spectra show, first, that the 5.7 eV peak displays littleq-

dependence, and second, that the 2 eV peak considerably depends onq. These are interpreted in terms

of intra- and inter-plaquette natures of the excitations, and are consistent to the interpretation in the

preceding chapter.

To complete the investigation, some problems are left for us. First, for the NXES-like mechanism,

we need to extend more the cluster size to obtain results that are more conclusive, and need to clarify the

limitation and applicability of the present effective one-dimensional model. This is interesting also as a

subject to examine new numerical algorithms such as DMRG. Within the exact diagonalization method,

it is extremely difficult to demonstrate the NXES-like mechanism for realistic three-dimensional, pos-

sibly degenerate, models. However, one-dimensional systems themselves have attracted much attention

in the context of spin-charge separation [153, 158]. It interesting to study what kind of role RXES plays

in such systems.

For cuprates, RXES would give significant information also in doped systems because RXES sensi-

tively reflects electron dynamics associated with relaxation process due to a core hole creation. In fact,

our (unpublished) calculation predicts considerable doping dependence of Cu4p-1s RXES. Together

with angle- or momentum-resolved RXES, detailed experimental and theoretical studies are left for the

future problem. In this regard, one may investigate the network dependence in various cuprates.

We have obtained in Chap. 5 a negative answer to whether the anisotropy of4p orbitals gives observ-

able effects on the valence electronic system. It is of considerable interest to examine orbital ordering

with angular- and polarization-resolved RXES.
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