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Chapter 1

General Introduction

In this chapter, a brief survey is given of the ideas that lie at the basis of the other chapters in this thesis.
We first explain the historical background of this study. Next we derive formulae for scattering cross
section of the second order optical process, and explain its general properties. Model Hamiltonians, the
Zhang-Rice singlet, core excitons and numerical techniques are sketched in the rest of this chapter. We
finally summarize our motivation of this thesis.

1.1 Historical Survey on High-Energy Spectroscopies

1.1.1 Core-level spectroscopies

Since before the advent of quantum mechanics, light rays have been used as a tool to investigate the
microscopic world. In fact, it is since the success in explaining the experimentally observed optical
spectra such as the Balmer series of hydrogen [1] that thé8iciger and the Heisenberg equations
have been acknowledged as the fundamental equations. The discovery of the spin degrees of freedom
is also associated with spectroscopic experimental facts such as the Zeeman effect or the Pashen-Back
effect [2]. In this sense, spectroscopies had played a role of a cradle of quantum mechanics. The atomic
theory of spectroscopy had been completed before the end of the World War Il by the famous papers by
Slater [3], and by Racah [4], all of which were accidentally titled “theory of complex spectra”. It was
Racah who introduced the notion of spherical tensors. In these papers, they classified the eigenstates of
atoms containing many electrons according to SO(3) group, and clarified selection rules in an optical
transition. Since sufficiently deep core orbitals in solids nearly exactly maintain the SO(3) symmetry,
their theories often appear as a leitmotiv in core-level spectroscopy (CLS) studies on solids at present.
The development of many-body physics has promoted the application of CLSs to the solid state. Let
us concentrate our attention to CLSs in the X-ray regime. Apart from the academic trend of research
on the Fermi edge singularity, it was Siegbahn and co-workers who stated the significance of CLS
in material science of solid states. They named X-ray photoemission spectroscopy ESCA (Electron
Spectroscopy for Chemical Analysis), and had carried out extensive studies. Their first review article
was issued in 1967 [5]. The systematic analysis let Siegbahn have won the Nobel Prize in 1981. Because
of the recent development of synchrotron light sources, and the establishment of modern theory of CLS
as will be explained in the next subsection, CLS occupies a huge research area in material science today.
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Figure 1.1: Schematic explanation of various core-level spectroscopies in an insulator. The horizontal
and vertical axes schematically represent the energy and density of states of one-electron state, respec-
tively. There are an empty upper band and a filled valence band in the system. The core level is
represented with the horizontal bar. XAS and XPS are classified into the first-order optical process,
whereas RXES and RXES are into the second-order optical process. See the explanation in the text.

Figure 1.1 shows several modes of CLS for insulators. In X-ray absorption spectroscopy (XAS), a
core electron is photoexcited by incident X-rays with enefginto an empty valence state. Roughly
speaking, the density of states (DOS) of the unoccupied band would reflect on the XAS spectrum. In
the case of X-ray photoemission spectroscopy (XPS), a core electron is photoexcited into the high-
energy continuum. The energy of the photoelectron is simply that of the core level if there were no
core-valence Coulomb interaction. However, the existence of valence fluctuation in a class of materials
and strong Coulomb interaction gives rise to complicated spectra. XAS and XPS are classified into
first-order optical processes, where “first-order” means that they can be described within the first-order
perturbation theory of electron-photon interaction.

Resonant X-ray emission spectroscopy (RXES) is one of the second-order optical processes, where
a core electron is resonantly photoexcited to an empty valence level, then a valence electron makes a
radiative transition to emit an X-ray with energy In contrast to XAS and XPS, there is no deep core
hole in the final state, and the number of electrons in the final state is the same as that of the ground
state. Thus, its spectra can be directly compared to those of valence level experergentgtical
conductivity. RXES, however, has several advantages over other spectroséigigst is a site- and
shell-selective experiment. For example, one can separately excit@p @hital or an Ols orbital in
a CuQ plane of highT; cuprates, by tuning incident photon enefgt an appropriate range. Thisis a
common feature of CLS, and it makes CLS free from overlapping effects betegephe Cu3d and
O 2p orbitals in the Cu@ plane in valence spectroscopies.

Thesecondadvantage of RXES as a photon-in and photon-out experiment is bulk-sensitivity, which
owes the long escape depth of X-rays. Generally, the escape depth of X-rays is hundreds of times longer



than that of a photoelectron, which is of order of at most a fewﬁte{ﬁ, 7]. Thethird advantage of

RXES is due to its resonance behavior. By tunfd@t a specific structure of XAS, one can choose

the corresponding excited state “by hand” in the final state. This freedom is quite useful to study gap
structures. In addition, RXES can sensitively reflect the electron dynamics associated with variety of
relaxation processes after the creation of a core hole, through the resonant selection of an intermediate
state. Thefourth advantage of RXES is due to its selection rule. As will be explained using explicit
expressions of the spectral functiongii.2, RXES obeys selection rules of the local point group such

as the dipole selection rule, as well as of the translational group of a whole crystal. This duality is
extremely suitable for studying strongly correlated systems, where local as well as itinerant natures of
electrons appear often at once.
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Figure 1.2: Schematic explanation of valence spectroscopies and Auger electron emission process in an
insulator. See the caption in Fig. 1.1 and the explanation in the text.

Let us turn our eyes to other spectroscopies again. Figure 1.1 (d) shows the “normal” X-ray emis-
sion spectroscopy (NXES), where a core electron is photoexcited into a high-energy continuum, not
into valence states. Evidently, its intermediate state is the same as the final state of XPS, whereas the
intermediate state of RXES is the same as that of XAS. Despite the apparent resemblance, NXES is
quite different from RXES in at least two respects. First, the emitted photon easgyndependent of
the incident photon enerd® in principle; w roughly reflects DOS of the filled valence band. Second,
apart from the photoelectron, the number of electrons in the final state decreases by one from that of the
initial state. Accordingly, one has to use a spectral function considerably different from that of RXES
in order to calculate NXES spectra.

Figure 1.2 (a) shows valence photoemission spectroscopy (v-PES or simply PES), where a valence
electron is photoexcited into the high energy continuum, so that the valence band information is directly
obtained. Figure 1.2 (b) shows a radiative process caused by a fast electron beam. As expected from
the figure, it roughly reflects DOS of the unoccupied band. This type of spectroscopy is called inverse
photoemission spectroscopy (IPES) or Bremsstrahlung Isocromat Spectroscopy (BIS). Although these
valence spectroscopies have subtle things such as surface-sensitivity and charging effects for insulators,



the experimental resolution in the latest PES technique is still higher than that of RXES at present, where
the resolution of order of a few hundred meV is reported at best. Recent improvements in experimental
apparatus [8], however, would make possible higher resolution for RXES in the near future.

Figure 1.2 (c) shows the Auger decay process. After a core hole is photocreated, electronic correla-
tion between electrons can cause a nonradiative decay involving a simultaneous creation of an unbound
electron. Mathematically, this is due to a term such as

UACITﬁgarlal’Z (1-1)

in the Hamiltonian, wherbla represents Coulomb interaction energy, a}w’is a creation operator of a
core electron at a given sitear; anday, are annihilation operators of different kind of valence orbitals,
respectively,G';r is a creation operator of an unbound state with energife discuss a role of the Auger
effect in RXES in the next section.

1.1.2 Origin of impurity models

The effects of impurity atoms on the properties of a metal is of considerable physical interest, because
of its singular behavior beyond uniform Fermi liquid theory [9]. A typical example is the resistance
minimum, which is observed in such metals as Cu and Al doped with a small amount of Fe or Ni.
In 1961, Anderson proposed the following model [10], the Anderson model, to discuss the magnetic
moment of the impurities,

1
Hand = 3 &8l o0+ &adfdo + — 5 (vka;(,da + H.c.) +Ugedldidld),  (12)
k;0 o \/N k,O

wherea, , is a creation operator of a conduction electron of the host metal with wave nunaiet
a spin component. Similarly, d; is a creation operator of the impuri8d orbital. g andgy are
one-electron energies of the conduction band and the impurity orbital, respedtiyglg.the Coulomb
interaction of the impurity orbitaly, is the hybridization energy between conduction electron and the
impurity orbital. N is the number of atoms of the host metal. In the limif\gf/Uqq| < 1, Hang is trans-
formed into thesd model through Schrieffer-Wolff transformation [11], the model with which Kondo
gives a clear-cut explanation for the long-standing challenge of the resistance minimum in 1964 [12].
Since the middle of the 1960s, the impurity model had been applied to the Fermi edge problem of X-
ray spectra. To discuss XAS or XPS spectra of simple métaldocalized core orbital was introduced
in place ofdy in Hang, and the Coulomb interactidd. between conduction and core orbitals were
added,

Hvnp = Z Eka;gak,o*Uczag,gao,anchgc(l*nc); (1.3)
KO c

wheren. is the number of core holes at a given site, say, the ofigin. is O for the initial state, 1

for the final state.ag,g is a creation operator of the conduction electron at theGit@his is often
called Mahan-Nozres-DeDominicis (MND) model [13]. Based on this Hamiltonian, Mozs and

De Dominicis (ND) completely disclosed the origin of the Fermi edge singurarity [14], with elaborate
techniques in those days [15].

Iwhile X-ray emission spectra had been also discussed in those days, it was regarded as a first order optical process, i.e. neither
resonant nor normal X-ray emission processes.



Subsequently to their celebrated work, Kotani and Toyozawa (KT) dealt with core level spectra of
metals with incomplete shells [16]. They added a localized orlbitalthe MHD model,

V
Hkt = zgka;akJref s +&(1—ng) —UscfTfne+ \ﬁ Z (alf +H.c.) , (1.4)
K K

with which they explained a satellite structure of 3k XPS of La metal [17]. Figure 1.3 schematically
shows their theory. In the ground (initial) state, La metal také$ eonfiguration because the energy of
La4f level & is high enough from the Fermi energy. In the final state, however, the strong core hole
potentialUs pulls down the4f level, so that “well-screenedtf! and “poorly-screeneds {0 states are
realized. The former involves the infinite number of electron-hole pairs near the Fermi level to exhibit a
divergent line shape at the threshold. Tiestate can be regarded as a virtual bound state occupied by
a conduction electron, with a Lorentzian-broadened line shape. The KT theory is the first recognition
that dynamicscreeningprocesses due to the local perturbation give rise to the variety of line shapes of
core-level spectra, and in this sense it opened a door to the modern theory of CLS.

£4f— — — La4f —
€

e o o lalde
(@) (b)

Figure 1.3: Schematic explanation of Kotani-Toyozawa theory, reprinted from Ref. [17] with unessential
modifications. (a) In the ground state, 4& orbitals are above the Fermi leve!, and3d core orbitals

are far belower and filled. (b) A final state of L&8d-XPS, where a core electron is photoexcited
into high-energy continuum. The strong core hole potefdigl pulls down the4f level beloweg.

A conduction electron screens the core hole through a finite value of hybridization bet#eerd
conduction electrons.

From a viewpoint of theoretical physics, the KT theory can be regarded as an epitaph on the ND
theory, one of the most brilliant theories in the 1960s. Their framework has provided some topics ever
since, such as a renormalization group study on the KT model [18] and a revisit of the ND theory in the
context of Tomonaga-Luttinger theory [19].

The next remarkable development in CLS was done by Gunnarson aricht&chmer (GS) in
1983 [20]. They applied the KT model to valence-fluctuated systems. For;CaR0eQ, the 4f
occupation number in the ground state takes a given value from 0 to 1 in contrast to the La metal, where
the 410 weight is predominant in the ground state. If one goes along the KT theory, it is expected that
three peaks with mainl¢f®, 4f1 and4f2 configurations are observed in Ce 3d-XPS spectra. As will



be explained ir§ 1.4.1, GS extended the KT model to include the degeneradf arbital and the
Coulomb interaction betweefif electrons, and showed a systematic way to calculate XAS, XPS and
BIS. One can say that GS led the KT theory to its complete form within the impurity problem. The GS
model is now referred to also as impurity Anderson model. We will use the word “impurity model” for
the GS-type model hereafter.

1.1.3 Mott-Hubbard vs charge-transfer insulator

It is not surprising that the direction of studies on CLS turned toward application to material science

after the establishment of the basic concept. This trend was motivated by successful works on the clas-

sification of insulators such as NiO by Fujimori-Minami [21] and Zaanen-Sawatzky-Allen (ZSA) [22].
Ti»03, V203, NiO, etc. have been well-known insulators, where the Coulomb interddgigplays

an essential role [23]. In fact, they would be metals according to the simple band th&gyifere

missing. Prior to the works by Fujimori-Minami and ZSA, the lowest charge excitation in these com-

pounds were believed to be made by an intergitecharge transfer:

(di(d")j — (d"Hi(d™);,

wheren is the nominal occupation number of a material considdradd j label transition metal sites.
This process gives a charge gap of ordebgf, and this type of insulators have been called a Mott-
Hubbard (MH) insulator after pioneer works by Mott [24] and their mathematical sophistication by
Hubbard [25].

Using a NnglO octahedral cluster model, Fujimori-Minami discussed photoemission spectra of
NiO, and they concluded from their calculation that the charge gap is realized by a transition to a metal
3d site from its surrounding oxyge2p orbitals. They estimated the value &f=4.0 andUqq=7.5 for
NiO, where charge-transfer (CT) enerfyyis defined by the energy difference

A = E(d™IL) — E(dM), (1.5)

whereL stands for a ligand hole ZSA, on the other hand, performed systematic estimation of charge
gaps in transition metal compounds with the GS theory. They classified the insulators into three groups
according to relative value betweAnandUyq: MH type, CT type and their intermediate type. Standing
on their classification, one can regard NiO as a CT insulator becalig of 4.

In this connection, a while after their works, Uozumi performed extensive calculationp-¥®P3
of M>Os-type transition metal oxides withMOg cluster model foM=Ti, V, Cr, Mn and Fe including
full multiplet [26, 27]. While he obtained parameter values that- Ugq for Ti and V, andA; < Ugqg
for others, he concluded that Ti, V, Cr and Mn sesquioxides should be classified into the intermedi-
ate type insulator because of large values of metal-ligand hybridization. His results are summarized
in Fig. 1.4. This conclusion was supported by Bocaetetl., who also discussedp-XPS for various
transition metal oxides [28]. These studies are representative of application of CLS to investigation of
electronic structure for strongly-correlated insulators. The site-selectivity encourages us to use the im-
purity models for a quantitative analysis of core-level spectra. While CLS’s need additional parameters
such as core-valence interaction, it is possible to estimate them to satisfactory accuracy with the stan-
dard atomic Hartree-Fock procedure [26, 27]. With contemporary humerical diagonalization techniques

20ne should average over all irreducible representations to evaluate the energy.



and new generation synchrotron radiation sources, a comparative study of this kind between theory
and experiment in CLS has established reputation of being one of the most reliable tools to investigate
correlated systems.
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Figure 1.4: The ZSA diagram by Uozumii al.[27]. TioO3, V203, CrrO3 and MnO3 are located in the
intermediate region between CT- and MH-insulators, whereg®4$is classified as a CT-type insulator.

1.1.4 Nonlocal screening

As is the case of the theories of Fujimori-Minami or Uozuetial,, theoretical studies with impu-

rity models are based on an assumption that a broken translational symmetry calculation is, as far as
transition metal ions are considered, a good approximation for transition metal compounds. An exact
calculation in principle should include also the translational symmetry of the transition metal ions. Since
d-band dispersion width have been believed to be usually very small compddggdod,, it has been
expected that neglect of this would only cause small errors in calculated insulating gaps, and would not
change the physics unless perhaps if the gaps also turn out to be very small [22].

The discovery of highk. compounds [29], however, provided a new viewpoint on this assumption,
and thus on interpretation of core-level spectra. The traditional BCS theory states that Cooper pair
creation at the Fermi surface gives rise to superconductivity [30]. The Rigiperconductivity is,
however, caused by carrier doping into an insulating phase. In the insulating parent compounds such
as LaCuQy, the stoichiometry leads tod? configuration for Cét ions. Since these compounds with
such incomplete filledl band would be metals if stroridyy were absent, it is clear that the Coulomb
correlation prevents the motion of electrons. There is a consensus that the parent compounds are located
in the CT regime. Upon doping, by replacing a few percent of La with Sr in the case,GUICy for
instance, a dopant hole mainly goes into thegrbitals, keeping away from energetically unfavorable
d® configuration. Experimental evidence of this negligibfeweight was given by valence PES results
by Fujimoriet al.[31] and other groups [32]. Subsequently, experimental studiesIs@AS [33] and
Cu 2p-XAS [34, 35] conclusively demonstrated their conclusion, making full use of the advantages of



CLS such as the site-selectivity and dipole-selectivity. These are also worth referring to as an example
for application of CLS to material science.

The highT, systems were impressive for the fresh interplay between localized (insulating) and itin-
erant (superconducting) natures. Analogous to these systems, it was natural for van Veenendaal and co-
workers to anticipate doping dependence o2 pHXPS of MyNi;_xO (M=Li, Na). Extending the Ni@
cluster model of Fujimori-Minami to include a “reservoir” Ni, they showed that a description beyond an
atomic multiplet calculation is required [36]. Subsequently, they discussed influence of superexchange
interaction [37, 38] on isotropic N2p-XAS in NiO [39] with the reservoir model, and reported that
spin-spin correlation has a direct effect on the spectra [40]. Encouraged by these results, they performed
a calculation on N2p-XPS of NiO with a Ni¢Oss cluster model, where onlgd g orbitals and the
o-bonding O2p orbitals are taken into account [41]. Thereby they pointed out that an experimentally
observed shoulder structure in the main manifol®pfXPS originates from a CT screening process
from a neighboring Ni@ unit, not only from the oxygen orbitals adjacent to the photoexcited Ni site.
This is the first discovery of nonlocal screening effects.

Their results are shown in Fig. 1.5 in comparison with a result withg\tilOster, where three peaks
mainly due toc3d°L, c3d® andc3d'®L? weight are observed (left figureg.andL represent a hole at a
core orbital and a ligand orbital, respectively. In the right figure, the curve (b) exhibits a clear shoulder
structure beside the main peak at zero. This is the contribution of the nonlocal screening.

More surprisingly, they disclosed that theain peak of Cu2p-XPS of CuO and highk, cuprates
also originates from a nonlocal screening process, where a hole is pushed out by a strong intra-atomic
Cu2p-3d interaction into the neighboring Cu@nits to form a Zhang-Rice singlet [43]. The calculated
curve in Fig. 1.5 (c) shows their result, where the main peak at zero is the Zhang-Rice singlet peak. The
shoulder at about 2 eV and the satellite at about 9 eV are attributed to contributions majﬁdﬂ%j
andc3d?, respectively. These two peaks have been known from analysis based on impurity models.

Do these striking results mean that all theoretical studies on CLS to date based on the impurity
models should be thrown away? The clear answer has not been known so far. Although a systematic
study on CLS of transition metal compounds with such “large”-cluster models beyond the impurity limit
is clearly desirable, the limitation of memory size of computers prevents us from investigation with
realistic models. In fact, the inclusion of orbital degeneracy in a multi-metal-ion cluster is extremely
difficult within exact diagonalization methods. To the author’'s knowledge, the only attempt is a full-
multiplet calculation of valence spectra with a{Q4g cluster by Tanaka and Jo [44]. This kind of
calculation ford" materials with2 < n < 8 is far from the ability of the present supercomputers. Now
clear that a model study to grasp the essential physics is needed.

At least for metaRp-XPS of NiO and high¥. cuprates, the reason why the nonlocal screening effect
plays the severe role is that each material has a specific stabilization mechanism such as the Zhang-Rice
singlet formation in cuprates. In this respect, van Veenenglaall demonstrated in their analysis on
Ni 2p-XPS [41] that the doubly-peaked structure disappears when raisimpatstal energies on sites
other than the photoexcited Ni atom, because of the absent®udifitals in the valence band region.

The strong nonlocal contribution @p-XPS in NiO and CuO or higfiz cuprates may be related to their
character as a typical CT-type insulator [45].
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Figure 1.5: The discovery of nonlocal screening effect irR2HXPS of NiO and cuprates [41]. Left:
Calculated N2p-XPS spectrum with a Ni@cluster model as described in the inset. Right: (a) Experi-
mental spectrum of N2p-XPS [42]. (b) Calculated N2p-XPS spectrum with a NDsg cluster model

as described in the inset. (c) Calculated ZpdXPS spectrum of a G cluster model as described
in the inset.



1.1.5 A new aspect of nonlocal effects

Recent development of synchrotron radiation sources shed a light on nonlocal effects of CLS from
another side. As explained, RXES, whose experimental resolution was drastically improved with such
high-brilliance light sources, has the remarkable feature that it reflects local as well as itinerant natures
of electronic systems. Thus, it is expected that nonlocal effects emerge in a specific manner different
from XAS or XPS. Recent experiments on me&adi2p RXES of transition metal oxides clearly suggest

this sign. Tezukaet al. first reported strange excitation enerd@y) (dependence of RXES spectra in a

d® compound TiQ [46]. Figure 1.6 shows T8d-2p RXES of ad® compound FeTi@ measured by
Butorin et al. [47], exhibiting a similar feature to that of T§O We see that there is a broad spectrum

at about 450 eV for nearly af® as if emitted photon energyd) had little dependence dia. We call

these spectra fluorescence-like component hereafter. On the other hand, there are Gbdepattient
spectra which move nearly in parallel®@ keeping their energy distance from the elastic line constant.

If we arrange the same spectra with Raman shift, which is defined by2, they will stand in a line

at a value of Raman shift. Hence, we call them simply Raman component hereafter. This double-
component feature in metatl-2p RXES is observed in various transition metal oxides [48] in addition

to these compounds.
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Figure 1.6: Experimental XAS, NXES and RXES spectra of FeTi{T]. The arrows attached to the

XAS spectrum indicate the excitation energy. The NXES spectrum is at the top of the array of RXES
spectra for excitation energy well above the absorption threshold (490.0 eV). A small but relatively
sharp peak at the highest emitted photon energy in each of excitation energy is the elastic line. The
fluorescence-like spectra are clearly observed.
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The fluorescence-like spectra are not understandable from a viewpoint of impurity models. XAS
and XPS spectra of Tipare extremely well reproduced with a T§@luster model [49]. Thus it is
expected that a dominant class of intermediate state @hisnuned at the absorption threshold is fairly
localized in a photoexcited Ti®unit, and that final states left after an X-ray emission process from
these intermediate states should be described within local CT excitations, being strongly dependent
on the well- or poorly-screened natures of the intermediate states. In other words, the intermediate
state keeps full memory of the incident X-ray, and the corresponding final state should dep@nd on
accordingly. Since energy scale of local CT excitations is determinet] loy Ve (see§ 1.4), which
has the value of order of at most 10 eV, the energy conservation rule

never predicts the fluorescence-like spectra over whole range of the absorption thrEghwid Es
being electronic energies of the ground state and a final state, respectively. It rather predicts only the
existence of the Raman component.

The fluorescence-like spectra suggest a dynandisalpationprocess of the photoexcited electron,
which results in loss of the memory of the photoexcited site. If the dissipation from the photoexcited
site to the surrounding reservoir system completely occurs in the intermediate state, an X-ray emission
process necessarily resembles NXES, resulting in the fluorescence-like spectra. Hence, we consider the
double-component spectra to be a direct consequence of interplay between local and itinerant excitations
of an electronic system. This is a new kind of nonlocal effect in CLS, which might bring about a new
understanding as to the local-itinerant duality3dfsystems. Together with the “traditional” nonlocal
effect van Veenendaat al. have demonstrated, the main theme of this thesis is to study how the
nonlocal effects appear in RXES spectra.

1.2 Resonant Scattering

1.2.1 Quantum theory of radiation

The classical radiation field is governed by the following reduced Maxwell equations for the vector
potentialA under the radiation (Coulomb) gauge [50]:

1 92
0-A=0. (1.7)

We adopt the MKSA rationalized unit throughout this section. The magneticBiatt electronic field
E are derived fronA :

B=0OxA (1.8)
aA
E=— (1.9)

Multiplying Eq. (1.6) bydA/dt, we have

2
R R

ot
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where the transversality condition Eq. (1.7) and mathematical identities that
Ox(OxA) =0(0-A) — (O-O)A

and

0. DxAxaA JA oA
om<5]

1= o [Ox(OxA)] — (OxA)- (Dxdt)
have been used. The right side of Eq. (1.10) vanishes according to the Gauss’ divergence theorem when
integrated over the total volume, so that

A = }/d?’x <£0E2+ 132) (1.11)
2 Ho

is a time-independent constanty and &y are the magnetic permeability and dielectric constant of the
vacuum, respectively. The integrand of the above equation has the unit of energy density, because the
units of E and &y are [NC 1] and [C?Nm~2], respectively. Hence, one can interps#f as the total
energy function of the radiation field.

The quadratic form in Eq. (1.11) suggests Fourier decomposition as

A(x,t) = W% 8 e (V%X + age(t)e 4] (1.12)

from which we have
E(xt) ng (P +ag(t)e 10| (1.13)
B(x,t) \/vge|s><q t)edd* - aq,g(t)e“q'x} . (1.14)

The polarization vectag is restricted within the plane perpendiculagtaccording to the transversality
condition. Each Fourier component satisfies the condiﬁ’g&_g:aqﬁg. By substituting with them,
Eqg. (1.11) reads

& .
= EO g;: (a_qeaqe +c°0*a_qgeage) (1.15)

after some algebra. In the free radiation field, this function is regarded as the Langafifpaicanoni-
cal coordinategag,¢ }. Following the standard procedure in classical mechanics [51], we define canon-

ical momentunpg e as

/oy 1
Poe=5——= §£o&q,s-

aq7£

Now we introduce quantized canonical variables by postulating quantization conditions
[a-g.e, Poy.e7] = IRdgq O &

[ag.e.ag.e'] = [Pg.e, Py.e'] =0,
where square brackets represent the commutator, and the deltas represent the Kronecker’s delta func-
tions. Additional conditionaaf: a ge and pagz p_qe are naturally assumed. In addition, we
introduce the Bose operators as

+ _ [€wxy : 2
b e=\ o 6Lq,e+lwlﬁgompq,s,
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so that the classical Hamiltonia#? ({ag.e, Pa.e }) is associated with quantum mechanical Hamiltonian
Hr

Hr = %mqba?gbq?g, (1.16)

where we denote|q| by wy. Equation (1.16) encourages us to interpret the Bose opeb&goas the
creation operator of a photon with the polarization veetand wave number vectayr. After all, A is
guantized in terms of the boson operators as

X i0X
‘/250 ;2 b 84X by e ) (1.17)

1.2.2 Electron-photon interaction

The electron-photon interaction is given by [52]
Hep = / Pxwx)t {nfeA-(—iﬁD)} W(x), (1.18)

whereW(x)" represents the creation operator of the electron fietd @he charge and mass of an elec-
tron are represented aandme, respectively. We postulate tH#tx)" and¥(x) obey the anticomutation
relations (quantization condition)

{W0), W)} = 8%(x—x)
(W), W)} = (YW =0,

whered3(x— x') is the three-dimensional version of Dirac’s delta function. Since we are only interested

in physics near absorption edges, the Thomson teW7 /2me is omitted from Eq. (1.18). In XAS and
RXES, one can usually assign principal and angular quantum numbers of core and valence orbitals by
tuning the excitation energ® at the appropriate absorption edgéNow W(x)’r is expanded as

Y(x)" Z zqqnx R)* o+ZLﬂch R)*clneo | » (1.19)

where @, and Y, are Wannier functions with atomic quantum numbergrof,m) and (ne,l¢, me),
respectiverJ;ma creates a valence electron withcomponent of spin &R site, ancb;;mca is the same
operator for the core electrons. Substituting the above equation and Eq. (1.17) into Eq.H&,18),
expressed as the summation of the following operators

-1 Ze‘m‘RTg(R) (1.20)
To= fze—'qZ RTS(R), (1.21)
whereN is the number of the unit cell of the electronic system, and
TER =5 L(nlmm’iqrxapm leme)It o oC (1.22)
| 280Vomgeay TO T RMOTRIE '
TR =Y L(nclcmc\éqz'xe -pintm)ch ol rmo- (1.23)
e 2£0Vomg0.)q2 RMe

3We can easily extend the theory when a few orbitals with different angular momentum participate in the transition.
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Here we dropped the photon operators, assuming that a photorfowj#h) is absorbed into the elec-
tronic system, and a photon with, ') is emitted from the electronic systeip=V /N is the volume

of the unit cell. ObviouslyT2 andT€ describes X-ray absorption and emission processes, respectively.
The factor before the Fermi operators is defined as

(nimje % Xe. plnleme) — / X m(x)* €0 Xe . (iR i (). (1.24)

In the hard X-ray regime, the wavelength of photon is of order &, &nd is comparable to lattice
constants of a crystal in consideration. Hence one must not neglect the exponential factor in Egs. (1.20)
and (1.21). The spatial extent of the core orbital, however, is expected to be much smaller than the
lattice constants, so that we approximate the above equation as

(nlmle- p|ncleme) :/.d3x @n(X)*€ - (—IA0) Y (X). (1.25)

This is the nontrivial lowest approximation of the integral, and we refer to #amnicdipole approx-
mation*. Note thatT, and T in Egs. (1.20) and (1.21) become the form of Fourier summation of the
atomic operators.

1.2.3 Perturbation Theory

Consider a direct product of the electronic ground sigteby a one-photon state€), and Hilbert
space spanned by such statggy€). The transition amplitude fromi) = |g;q.€) to a final state
[F) = |f;02€’) is given by theSmatrix [56] as

Sr1 = (F|Ui(0, —0)]I),

whereU;(t,t’) is the time-evolution operator of the whole electron-photon system fromttitogt in
the interaction representation [57]. The total Hamiltonian is given by

Hiot = H+Hr+(Hep+ HA)7 (126)

whereHa represents an electronic Hamiltonian of the Auger process containing the terms like Eq. (1.1).
H is the Hamiltonian of the electronic system other titgn We denoteHep+ Ha by H' for a while.
Apart from the case df =I, the Smatrix is directly reduced to [58]

S = —2m(F|H'U;(0,—) 1) 3(EF — ),
from which the transition probability per time is obtained,
2
Wit = = (FIH'U: (0, =) 1)|* 8(E — Ey). (1.27)
We here introduce th&-matrix as

(FIH'Ui(0,—eo)[1) = (F|T]I).

4The quadrupole transition is experimentally observed, for example, as a prepeadis of transition metal oxides [53, 54,
55], where the intensity ratio of dipole and quadrupole transition is of order of 100.
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The standard Lippman-Schwinger theory shows thaTtluperator obeys equations such that [58]

T=H'+H'GH’ (1.28)
G = Go+ GoH'G, (1.29)

whereG and Gy are resolvent operators which are definedBs— Hiot + iO)‘1 and(E —H + iO)—l
respectively. Counting the number of states within a rediup, and dividing Eq. (1.27) by the incident
flux c/V, we have differential cross section as

2
o(F;l) = (;’n‘fﬁ) |(FIT|1 2 (1.30)

for a transition from to F such thaEg = E;.
Now we proceed to a perturbation theory with respectttoln general, electron-photon interaction
is much weaker than interaction among electrons. Hence we are allowed to evalUatmdbex within
the second order dfle, for RXES, whereas electron-electron interaction should be taken to the infinite
order. Let us consider the contribution of the Auger effect in the context of perturbation theory. To the
second order Offep, we have
(FIT[1) = (F|HepGHegll), (1.31)

whereG satisfies
G = Gg + GoHa Go + GoHa GoHAG. (1.32)

This is nothing but Eq. (1.29) in thée, — 0 limit. Note that the first term of Eq. (1.28) is not contribute
to theT-matrix, and thaHa |F)=Ha|l)=0, because both andl have no core hole to decay.

Exact evaluation of Eq. (1.31) is generally a tough task. To avoid mathematical complications, we
introduce Feynman diagrams to represent the series df-tiatrix in Fig. 1.7. If we project out high
energy transient states that have Auger electrons more than one, only diagrams (b), (c), ... contribute to
give a renormalized intermediate state. Assuming

(r|[HAGoHA[r") = (r|[HAGoHA[r) &

for simplicity, where|r) and|r’) are some states with a core hole and no photon, we have

1

[1+ (r[HAGoHA|r) (r|GJr)] (1.33)

from Eq. (1.32), resulting in
1

E| —Er < ‘HAGQHA|I’>.
Corresponding to the “open oyster” diagram [59] in Fig. 1.7 (b) or (c), we have “proper” self-energy [60]
due to the Auger effect as

{riGIr) =

(1.34)

) = (r|HAG0HA|r>
_ < (mHar)?
z E| Em+|0

|(m[Halr)|2
DZ \ A|r|

as depicted in Fig. 1.7 (d)J denotes Cauchy’s principal value.

—imy [(mHa[r)[?3(E — Em) (1.35)
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A + /\4?\ + A + ... = A
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Figure 1.7: Feynman diagrams of tiiematrix expansion. The solid and wavy lines represent the
propagation of electronic and photon states, respectively. (a) The grounthstabsorbs a photon with

a wave vector, then the intermediate state emits a photon with a wave vegtaesulting in a final
state|f). (b) The same as (a), but an Auger electron “A” is created once in the intermediate state. (c)
The same as (a), but an Auger electron is created twice in the intermediate state. The transient states

with two Auger electrons are out of the summation. (d) The Auger effect renormalizes the intermediate
state.
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Although the energy and-dependence of the imaginary partXf(r) considerably contributes to
relatively shallow core level photoemission spectra, for examplegNXBS of NiCh [61] or 4d-XPS
of heavy rare-earth elements [62], we take it as a given conBtfotteach system in consideration in
this thesis. The real part & (r) is regarded to have been included in observed energies. Together with

Eqg. (1.30), we have
o (Ve )
o(F;l)= (2ncﬁ)

where we have dropped a nonresonant term, which brings about two-photon intermediate states [50].
Substituting the explicit representationstt, into Eq. (1.36), we reach the final form of the differ-
ential cross section of RXES,

1 2

<F\HepmHep“> ; (1.36)

2

S Mg e (R)| (1.37)

R

o(fape’;gone) =13 <$Z)

1

whereq = ¢z — g1, andrg is the classical radius of electron

€

N=-———~28x10 1°m|.
0~ Amgomec? % [m

We assume that the electronic Hamiltontrns diagonal with respect to the core orbital, i.e.,

Hcore: z SCCLEUCREU7 (138)
RSO

and that all the core orbitals are filled|g). £ stands for a quantum number of the core orbital. Equation
(1.38) means that the core orbitals are localized at each lattice site with no transfer to the neighboring
sites, the assumption that would be justified in the soft and hard X-ray excitations. As a result, the
nondimensional facta¥lg/ ¢ (R) is represented as

1
Mgg(R) = e W; (nclemg| €~ plnin) (nim|e- p|nglcme) x
mm’,me,0

<f|CTR%UIRm'UGO(Q)IFTgmaCRmCU|g>7 (1.39)

whereGo(Q) is re-defined agE, —H +il")~1 with E; = Eg+ Q. We write hereafter the incident and
emitted photon energies & and w, respectively. The local transition amplitud, ¢ (R) obviously
depends o2, although we did not write it explicitly.

1.3 Some Aspects on Spectral Functions

1.3.1 Momentum conservation law in RXES

Consider an electronic Hamiltonian with the translational symmetry, i.e.,
T(RHT(R) ' =H

for any Bravais vectoR, whereT, (R) is the translation operator of the electronic system. Its definition
is given by
T, (R) = exp(P-R/ih), (1.40)
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whereP is the momentum operator
Pz/d3xw(x)T(_iﬁD)w(x).

For the translational Hamiltoniafg) and| f) can be simultaneous eigenstates of ddétandT,, so that,
for VR, real vectorsg andK¢ exist such that

Tr(R)|g) = exp(Kq-R/iR)|g) (1.41)
T (R)|f) = exp(Ks-R/ih)|f). (1.42)
With these equations we have
<f |CTRmco|Rn'{UGO(Q)|;moCR%0 |g>

= <f|Tr(R)anbolon’{aGO(Q)lgmacoﬂ‘cUTr(R)il‘g>
= <f|Cgrn;o|on‘(oG0(Q)lgmoconho‘g> X EXp[i(Kf - Kg)'R] )

resulting in
Mg (R) = Mgrg (0)exp[i(Ks —Kg)-R] . (1.43)

We have just used the falgo, T;] = 0. Now Eq. (1.37) reads

o(fae’;gone) = N%rg (qu> |M£’€(0)|25Q+Kf-,Kg’ (1.44)
il
where a well-known relation 1
ik R
N %e‘ = %0 (1.45)

is used. Equation (1.44) states that the cross section is zero gnigss = Ky is satisfied. This is the

wave vector conservation rule of RXES [63]Equation (1.44) shows an essential aspect of RXES. The
origin of this conservation rule is the summation in Eq. (1.37), where the cross section is proportional
to a factor quite similar to the definition of the structure factor [64, 65]. If we fixed a core hole to a
particular site, the wave vector conservation rule does not hold. This means that the all core orbitals
in the system participate in one scattering process, and we can say that the wave vector conservation
rule is a result of spatial coherence of the crystal. Intuitively speaking, the electron wave created by
a phtoexcitation survives without phase cancellation only when it “fits” to the lattice. In the case of
first order optical processes such as XAS or XPS, however, we can calculate spectra by fixing the core
hole site, as shown later. This feature makes impurity models, which breaks the translational invariance,
appropriate to study the first-order spectra, but not the case in RXES.

On the other handVig/¢ (0) reflects an internal symmetry of an atom at the origin. In fact, first, it
strictly obeys the dipole selection rule for both X-ray absorption and emission processes, as seen from
Eq. (1.39). Second, it reflects a spatial direction of orbitasthtough thee’- ande-dependence. With
these features, RXES should be one of the most useful tools to investigate strongly correlated systems,
where interplay between itinerant and localized nature of electrons is realized.

SWe will briefly discuss an additional SU(2) selection rule in spin space in the next chapter.
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1.3.2 Elastic-inelastic intensity ratio
We first prove a theorem on the elastic scattering.

Theorem 1 If £-¢’' = 0, then intensity of the elastic scattering such thatr is zero within the atomic
dipole approximation.

Note that the elastic scattering of a system with no electron ih-geell always satisfies the condition
m=mf. For example, any elastic scattering3uf-2p RXES of d° compounds or Cép-1s RXES of
cuprates is forbidden whemn €’ = 0 according to this theorem. For proof, we define a quantity

lg ¢ (M, m) = (nclemele’- p|nint) (nIm|e- pncleme). (1.46)

Note thatl €/7g(nY, m) strictly obeys Wigner-Eckart's theorem [66] of SO(3). We take, for simplic-
ity, wheree; is the unit vector along-axis fixed to the electronic system. Sinpes,=p; is the zero
component of spherical tensor operators of rank one, the Wigner-Eckart theoremmitaits.. How-
ever, this condition is never satisfied where’ = 0, because’- p in this case is 1 o1 component of
the spherical tensor operator. Herigeg=0 follows in the case that=m'. The conditione-&¢’ = 0'is
experimentally calleddepolarized configuration.

We see from Eq. (1.44) that the cross sectio? {i?) (order ofN?) as far adg/ ¢ andMgi¢(0) is
0(1). Let us define a nondimensional quantity

Jnm(0) = (f |C$mca|om’JGO(Q)lgmacorTbU|g> xT

and assume thag ¢ is 0(1). We first consider a local transition process, which will be realized when
Q is tuned at a state bound to the core hol@.athis contains two cases. One is the elastic scattering
process withm=n7, and the other is (inelastic) scattering involving an intra-site excitation such as intra-
sitetyg — €y excitation depicted in Fig. 1.8. Since the selected intermediate state should have the hole
occupation number of order 1 in thg orbital, and moreover the electron occupation number of order 1
in thely orbital, |Jym(0)| ~ €(1) obviously holds. We have’(N?) scattering intensity in these cases
thereby.

As will be explained irf 1.4.4, there are unbound states in the intermediate state even under a strong
core hole potentidl.. Utilizing Fourier transformation

N ZelleRmoa (1.47)

kmo —

we have another expression&fn,(0) as

Jnfm(o) = % kzk <f|Cllr’rbalkanUGO(Q)IEZmUCklm:O|g> x T
1K2
where the wave vector conservation and Eq. (1.38) are implicitly assumed. Since the photoexcited
electron is considerably delocalized, we are allowed to negleirt the intermediate state, so that wave
number is good quantum number also in the intermediate state. Let us consider an insulator having
nearly independent electrons. When the incident photon energy is assigned to make resonance at its
absorption edgd,Gp(Q) ~ —i follows, so that

Jnvm(0 Z f|IkMG kmo|9
k
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Figure 1.8: Left: Schematic picture of the intra-site excitation. Zhe3d-2p RXES process is shown

for instance. Right: RXES process in a band insulator. There are an empty conduction band, a filled
valence band, and a filled core band in the ground state. For both diagpeanslc represent incident

and emitted photon energies, respectively.

where we used the fact that both initial and final states have a filled core band, and we implicitly assume
a condition
r<w, (1.48)

whereW is a band width of an empty conduction band. For the elastic scattering such=thand

m = ", the matrix element equals the hole occupation numbéy, @frbital in the ground state. Al-
though other orbitals, especially ligand orbitals, strongly contribute to an upper band of the insulator in
consideration, the matrix element is still expected t@hi¢), resulting in|Jym(0)| ~ (1).

For an inelastic scattering, there is one electron in a conduction band and one hole in a valence
band in a typical final state, as shown in Fig. 1.8 (right), so that a final |dtatgives a nonzero matrix
element for a few oik,ﬂalgmo\g). Consequently|Jym(0)| ~ ﬁ(%) for a specific final state of this
kind. While this result leads to a cross sectionzifl), theN dependence of density of states recovers
spectral intensity of7(N). This is because final states of this kind are densely distributed in general
in a region®. Hence we havél? intensity for the elastic scattering, wherédintensity for nonlocally
excited inelastic scattering in this case. The ratio of them diverges in the thermodynamic limit [67, 92].

Experimentally, never is observed the divergence. A part of the reason possibly comes from a
finite coherent length of X-rays. If an incident photon is incomplete plain waveNthe c limit is
not realistic, and interference between “fragments” of plain wave may occur, resulting in finite elastic
intensity. Another possible reason is associated with Eq (1.48). It is evident that the above estimation is
forced to make maodifications If ~ W or I has term-dependence. At any rate, quantitative estimation
of the ratio is extremely difficulf. We will not discuss the elastic scattering hereafter.

6Because of the assumption of insulator, the elastic line is isolated alone.

"Recently, Jirenez-Mieret al. reported an estimation of the ratio within a specific model3d2p RXES of Ti com-
pounds [68]. However, the estimated value sensitively depends in principle on what number of transition paths is taken into
consideration. Since they made a drastic approximation that, e.g., the effect of core hole potential is completely disregarded, their
statement on the ratio makes little sense.
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1.3.3 Other spectral functions

Apart from a prefactor, the spectral function of RXES is now written as
Frxes(@; Q) Z |o(fape’;gone)|?0(Ef + w—Eg— Q). (1.49)
Similarly, the spectral function of XAS is written as

Fxas(Q Nz| R)[TE(R)[g)|*5(Q — Em+ Ey), (1.50)

where|m(R)) is a final state with a core hole Bt Note the assumption Eq. (1.38). Under this assump-
tion, we can delete the position degrees of freedom of a core holeFgag Since the core hole site is
a good quantum number in the final state of XAS,

(MR)TER)G = (m(0)
= (MmO

T (R (RTEO) T (R)"|g)
TEO)gle R
leading the XAS spectral function to

Fras(@) = 3 (M(O)TE(0)]g) *8(Q ~ En+ Ey). (1.51)

Let us consider spectral functions of XPS, where a core hole is photoexcited to a high-energy con-
tinuum, as explained i§ 1.1. Since interaction between the photoelectron and valence electrons is
negligible, and the continuum states have nearly all kinds of symmetry, one does not need to handle the
photoelectron degrees of freedom explicitly. Apart from a prefactor, we set the transition operator of
XPS simply to be

To=>T(R = 3 Crmo;
R R,Mc,0

leading to the XPS spectral function

Fxps(Es) = 5 [(1(0)[TP(0)|g)|*5(Es — Ey + Ey), (1.52)
]
whereEg represents the binding energy, and Thenanipulation as explained above has been used.

NXES is the second-order optical process where a core electron is excited by the incident photon to
high-energy continuum well above the absorption edge. An energy interval of the continuum levels is
so close that the momentum information of the system is hardly maintained through the NXES process.
Therefore, final states with any wave number are allowed. This situation is mathematically realized by
fixing the core hole site. The spectral function of NXES is then given by

Fces(o) = [9eD(e) S (TITH01Go(Q ~€)T7(0) g
><5(o.)+Ef+’S—Q—Eg), (1.53)

whereD(¢) is the density of states of the continuum legeandGo(Q —€) = (Eg+ Q—& —H +il) !
We will take D(¢g) as a given constant. Because of the integration eyére spectral shape of NXES
does not depend dn.
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1.4 Model Hamiltonians and Their Implications

1.4.1 Impurity Anderson model

The impurity Anderson model which GS proposed for a degendfagystem is written as

Hav = Y l(sf—Ufch)f$0fmg+%(Vk f,TqaaKGJrH.c.)]
mo
+ Uy r; frl,ofmof:m,fmw—s—Zskalaakg+ec(l—nc), (1.54)
m>m',o,0’ k:0

where frﬁg creates alf electron with an orbital index and spin componentr, and alc, creates a
conduction electron with wave numbeand spin componert. &¢, § ande. are one-electron energies
for 4f, conduction electron, and core orbitals, respectivalyis the number of core holed/, is the
hybridization strength betweerf and conduction electrons. Note that this model exhibits a permutation
symmetry such than < m'. Making full use of this fact implicitly, GS introduced a set of states which
have the same permutation symmetry4d§ state, and successfully discussed core-level spectra of
valence-fluctuated systems, as explained before.

To apply this model to transition metal compounds, one should include the anisotropy of orbitals,
which breaks the permutation symmetry. A simplified model in which only the nearest-neighbor ligand
orbitals are taken into account is often used. We refer to this model as impurity cluster model,

Hcv = z [ded;adyg + (Vyd;o Pyo + H.C.)} + & Z C}UCEG
y,0 &0
+ Ugg d;adygdj;a,dya, ~Use 3 dJUdWcI,G,cw, (1.55)
y>y,0,0' y.§,0,0’

wherey runs over irreducible representations around the impurity atdx}(}. and p}a are creation
operators of a orbital and a ligand molecular orbital, respectived:)}.a is a creation operator of the
core orbital with a quantum numbér One-electron energies ef, andée. are measured with respect
to the one-electron energy of tipeorbitals. In general, multipole part of Coulomb interaction and spin-
orbit interaction are added técp or Hiam . Figure 1.9 shows a schematic picturetHygyn. We note
that there is no transfer between differgist, and onlyUgyq couples them.

This model describes at least two excitation modes in RXES spectra:

1. intra-sited-d excitations {0Dq),

2. CT excitationsA4 or Veg),
where we write representative energy scales for each excitation in the brat@Big.is crystal field
splitting, which is the energy difference typically betweSeliey) and3d(tyg) orbitals in a crystal of @
symmetry. Vegr is the effective hybridization energy between metal and ligand molecular orbitals, and
generally has a value of order gfNyV,, whereNy is the number of unoccupied metal orbitals.

An example of intra-site-d excitations has been shown in Fig. 1.8. Historically, the first theoretical
prediction on the observation of intra-sided excitation with RXES was given by Tanaka and Kotani
in 1993 ford® systems [69], which is also nominalty* configuration in the hole picture. It was the
first theoretical study of RXES as a second-order optical process in the framework of many-body prob-
lem [70]. Very recently, Kuipeet al. measured Ci8d-3p RXES of SpCuQ,Cl,, and observed the
intra-site transition of a hole frorﬁdxz,yz to 3dyy, and to3dy, and3dy, [71]. To distinguish between
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Figure 1.9: Schematic diagram of an impurity cluster model for transition metal insulators. The metal
3d orbital and oxygen 2p molecular orbitals are represented with closed and open circles, respectively.
The darkly-shaded smaller circle at the center stands for the core orbital. The Coulomb interactions
which correlate different symmetny each other are represented with the shaded area.

3dyy and3dy; (or 3dy,), they made use of the angular dependence of Eq. (1.46). This measurement is
regarded as a quantitative experimental confirmation of the Tanaka-Kotani theory.

1.4.2 Periodic Anderson model

For systems in which nonlocal screening effects are expected, the relevant start point is the periodic
Anderson model

Hpam = Heore+ Hap+ Hde.

This is the Hamiltonian with which we will investigate core level spectra in this thesis. The first term
has already defined in Eq. (1.38). Corresponding to Eq. (1.55), the second and third terms are defined
as

Hop = z gdvd\thVR + 'Z Epv p&r Pvr + ; (Tpp er Purr + H-C-)
RV H <r‘rrl 7IJ$IJ/
+ ; (TpadigPur +H.c) +Uda 3 dfdud] dvg (1.56)
(RI),v.p R,V>V/
Hie = —Uge ¥ d\’ERdVRc}chR, (1.57)
RV,§

WheredfﬁR represents a creation operator ad aarrier with a quantum number at R site. Similarly,

P\tr creates @ carrier with(r, v), andcgR a creation operator of a core hole w{iR, & ). We denote spin
and orbital quantum numbers together by Greek indicgs andé. Ugg andUq4. are on-site Coulomb
interaction ford-d andd-core, respectively. Notice thi%R pur term, where orbitals with different local
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point group symmetry are no longer decoupled as the case in Eq. (1.55). It makes hard to calculate
spectra for systems with an intermediate filling.

This model describes at least four excitation modes. In addition to those of the impurity model,

3. inter-site spin excitationg),

4. inter-sited-d excitations (qq),
whereJ represents the superexchange interaction.

These modes appear in CLS in various phases, depending on filling and excitation process. Let
us consider relatively simple casa¥® andd? fillings. For the former, valence excitations are mainly
dominated by only CT excitations. Recall the fact RXES can strongly reflect charge dynamics due to
core hole creation, and that its description would be hard within the impurity models. The relatively
simple electronic structure @ systems will be rather helpful to elucidate this side of spectra. This is
the theme of Chap. 2.

Ford! systems, all the modes are concerned in principle. In fact, we will show that intra- and inter-
sited-d excitations as well as CT excitations are observed in calculated spectra with specific excitation
energy dependence. It is interesting to reproduce interplay between intra- and inter-site effects. This
subject will be discussed in Chap. 3. For the dependence of inter-site spin excitations in RXES, few
studies have been done so far, and it is left for the future problem.

1.4.3 Zhang-Rice singlet

Soon after the spectroscopic methods revealed that dopant holes are primarily on oxygen sitein high-
cuprates, Zhang and Rice proposed a picture on the conductivity in the doped cuprates: A dopant hole
forms a local singlet on a Cu@quare, then it moves over the whole Guilane [43].

To elucidate their idea, consider a two-hole singlet state, where one hole is localizadj @@ay?)
orbital (i labels a Cu site), and the other is contained in th&p®nolecular orbital around thed; site.
These orbitals are described in the left figure in Fig. 1.10. The molecular orbital which coupl&siwith
orbital is 1

Lo =5 (PPl gl

with which we can construct a singlet state

+p > : (1.58)

s) = é (a1, —dfLiy) (0)
where|0) is the vacuum of holes. Operation of the two-hole spin opesdter (sy + 5. )? directly leads

to &|s) = 0|s)). With rearrangement of a set of Wannier functions, Zhang and Rice derived an effective
Hamiltonian, which describes the motion of this kind of singlet state, the Zhang-Rice singlet. Their
Hamiltonian is now called thieJ model.

Itis amusing that the motion of the Zhang-Rice singlet is directly observed #p(PS ofundoped
cuprates. When an incident X-ray photon comes into the system, the Zhang-Rice singlet is formed with
the following procedure: The photo-created core hole acts as a strong repulsive potentidlhola 3
at the same plaquette, then tBethole escapes from the singular plaquette. The slipped hole goes into
another plaquette to form the Zhang-Rice singlet there. In contrast to the photo-doping in the case of
valence photoemission, we can call this procgssténtial doping. This subject will be explored in
Chap. 4.
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Figure 1.10: Left: Explanation of relative phases betwee2p@nd Cu3d,._,» orbitals [43]. Right:
Schematic picture of the hole-doped Cu@ane, where a dopant hole forms the Zhang-Rice singlet at
the central plaquette. The open and closed circles repres2pte@d Cu3d,._» orbitals, respectively.
The arrows represent holes.

1.4.4 Core exciton

In this section, we sketch the core exciton theory with an exactly solvable model. The aim is twofold.
First, to supply a basis for the estimationMfdependence of the RXES cross section under the core
hole potentiale. Second, to give an insight into the core hole effect especiallly Bystems.

Let us consider a one-dimensional nondegenerate periodic Anderson modetiifidierg in the
limit of Ugq/|€dv — Epu| — % andUqq/|Tpd| — . In this limit, the system is described with a spinless
Fermion model withoutyq. As far as periodic systems are concerned, the Hamiltonian is decomposed
according to wave numbdrvia Fourier transform (Eq. (1.47)H = S hx. By diagonalizing eacl,
we have a band structure of the system. There are an empty conduction band and a filled valence band
in the ground state undeP filling, as well as the filled core band with no energy dispersion, as shown
in Fig. 1.8 (right). As a model of the conduction band, we assume a cosine-type one-dimensional band

& = No+4ysin’(k/2)

for the first Brillouin zone—r1t < k < 11 with given energy constantg andy. Our spinless Fermion
model is now written as

H= ZskalakJrvaUCZa,Talcrq,

wherea/ creates a conduction electron with wave vegta andc] create a conduction electron and a
core hole at site. H, describes the filled valence band. The energy origin is defined with respect to the
core level.

Let us consider the X-ray absorption process in this model. As shown in Eg. (1.51), the only core
orbital at a site, say, the origin 0 is sufficient to calculate XAS spectrum. Accordingly, the above
Hamiltonian is reduced to a MHD type model,

H= Z &kay a + Hy — Ucadaonco, (1.59)
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whereng is the number of core hole at the origin. Although the transition operator can not be generally
written in terms of onlyai’s, we treat a simplified operator

Ta= ZaiTCI = Zale

in place of Eg. (1.20) under the assumption that the polarization vector of the incident photon is parallel
to the chain. The second equal sign is due to Fourier transformation. This transition operator creates
only one conduction electron in XAS final statg£1). Hence we can setjath eigenstate as

aj) = ;Ajkal|g>

without loss of generality. Operatirig) to this state, we have the Séldinger equation to determine the
coefficientsAj as

)
(Sj — Sk)Ajk = —WC gAjk/7

whereN is the number of sites. Dividing the both sides(lsy— &), and summing ovek, we have the

eigenequation
1

1 1
-y ——=—— 1.60
Ngej—ek Ue’ ( )

Tk 11
_n2mej—&  Uc

which is transformed into

in the thermodynamic limit. Fog; < o, an analytic solution is obtained by using the residue theorem,

g0=No+2y—1/(2y)?+ U,

where we labeled this solution with= 0. Substitutinge; with &, we have an eigenstate as

g b U U
TNV A\ X —2ycok )’
whereA = \/(2y)2+UC2. Note thatAgx — ﬁ in the limit of 2y/U; < 1, so that Fourier transformation
in Eq. (1.47) shows

|ao0) — ag|g), (1.61)

i.e. a state bound to the core hole. The bound stafeis calledcore exciton

A graphical representation of Eq. (1.60) shows that other eigenvalues which do not satisf
are nearly the same as the unperturbed vadueso that an eigenstate with ~ & has large amplitude
only for thek.

In summary, the XAS final states are classified into two types. One is the core exciton state, which
is fairly localized around the core hole. The others are itinerant states, whose wave functions are quite
similar to those of the unperturbed states. As suggested by the formula of Fourier transformation

t 1 kit
ak_mZe' , (1.62)

Each of these states has amplitude of orde&;ﬁfat the core hole site.
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Since the X-ray absorption process is the intra-site excitation, the more probability to find a conduc-
tion electron at th® site we have, the more absorption intensity we observe. Comparing Eq. (1.61) with
Eq. (1.62), we can roughly estimate the intensity ratio between the above two stﬁteé ,aadicating
the concentration of intensity at the exciton state. Figure 1.11 schematically shows the XAS spectrum.
The same would be true for a more realistic model, although such analytic solution is possibly hard to
obtain. This is the basis of the discussion onlthéependence of the RXES cross sectiofj in3.

A
> O(1)
‘n
[
9 .
c exciton
peak O(/N)
energy -

Figure 1.11: Schematic shape of the XAS spectrum. Generally, the continuum has a few sharp peaks
due to the van Hove singularity.

1.5 Exact Diagonalization Techniques

1.5.1 Lanczos method

Throughout this thesis, the exact diagonalization method is used to calculate the optical spectral func-
tions. As explained, we are interested in dynamical properties in large-cluster models. Other “less
exact” numerical approaches such as Quantum Monte Carlo methods [72] are not suitable for extracting
dynamical information.

The newly developed technique, the density matrix renormalization group (DMRG) approach [73],
is a renormalization-group-like diagonalization method where the basis set is optimized to well repro-
duce lower excited states as the cluster size is extended. DMRG is now accepted as a standard method
to calculate static quantities of one-dimensional systems. Although a few attempts have done to extend
DMRG to obtain dynamical correlation functions [74, 75], the exact approach based on Lanczos algo-
rithm is currently the only reliable technique for evaluating the second-order spectral functions in higher
dimensional systems involving charge excitatiéns

The Lanczos algorithm is a procedure to transform a Hermite midtinto a tridiagonalized matrix
T via a unitary transformation

T=U"HU.
8Very recently, Tanaka developed a DMRG-like approach in a cell-perturbative manner to calculate electron removal spectra

of one- or two-dimensional cuprates [76]. It would be possible in principle to extend his method to evaluate spectral functions of
the second order processes.
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We regardH as the Hamiltonian of a given system, and set the ordét tif beNy (~ a few million).
Since the number of nonzero elementdbfs much smaller thahly2 in many cases, we can make a
subroutine in advance that returdsi for a column vectou, using,e.g, JDS method [77].

The Lanczos iterative procedure is as follows: Prepare an arbitrary column ugetodv; = Hu;.
Repeat

a=uv

Wi = Vi —al;

b Jwiw
i+1 = \/ W Wi
Uir1=Wi/bi1
Vi1 = Huiqa,

then we have
a] bz 0

b2 ap b3

0 b3 as

T =

andU = (up,up,us,---) [78]. By diagonalizingT to give an eigenvectof, we have an eigenvector of
H asUx. The eigenvalues of andH are exactly the same becali$eas unitary. Note that the number
of iterationN; is often of order of only 100, much smaller thilp, to obtain the lowest eigenvalue to a
given accuracy, say, 0.0001%.
Generally, the limitation of memory size of computers forces us to repeat the whole Lanczos process
twice to get the ground state vectgr In the first Lanczos process, all af andb;’s but none ofu;’s
are memorized. Then the tridiagonalized maTris diagonalized with the Householder method [79] to
give the ground state energy and the corresponding eigenvecter= (o1, X%, %%, -+ -, , XoM) T, where
T represents transposition. Then the second Lanczos process is started again with the same initial vector
u;. With u; in each step, we have the ground state as

g=Xolup +Xo2Up + -+ oMUy .

The Lanczos method is easily extended to obtain a spectral function. Consider to calculate the
XPS spectral function. We prepare the ground state vegter g with the eigenenergi,. The Lanc-
Zos procedure is carried out withfiaal state Hamiltonian for a given iteration numbsérto give the
tridiagonalized matrixt. ThenT is diagonalized with the Householder method, resulting in a set of
eigenvalues and eigenvectors
{E,fili=12---,N}.
To obtain transition amplitudEiTg for one of the final sateB;, we do not need to explicitly handle
the vectory;. Since the transformation unitary matkiis written asJ = (ug,Up, us, - - -, Uy; ), theF; is
expressed as
Fi=Uf, = Zujfij,
]

wheref;l is the j-th element off;. Hence the transition amplitude now redelg = Ffu; = (f;%)*, so
that

Fxps(Es) = 3 | fi|?8(Es — Ei + Eg). (1.63)
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By choosing the initial vecton; asT?|g) or TGoT?|g), the spectral functions of other spectroscopies
are numerically obtained in the same manner.

1.5.2 Conjugate gradient method

The other important algorithm to evaluate the spectral function of RXES and NXES is the BiCG (bi-
conjugate gradient) algorithm [77, 80]. This is a procedure to evaluate a column xecich that

x=A"1b

for a given column vectob. The matrixA we are interested in is the type= (Eg+Q+ilN)1—H,
which is not Hermite but transposed symme#ic= A. The unit matrix is written a$.

Now the BiCG procedure is as follows: For a given column vebtand an arbitrary column vector
Xo, Setrg =b— Axg andf_1 = 0. Repeat

Pn= rn+Bn—1pn71
rirn

PRAR,

Xn+1 = Xn+ OnPp
M+1="In—anApP,

T
Bn — r‘I"I-FlrnJrl
rrrn

an =

forn=0,1,2,--- until r;rprlrnﬂ < eb'b, wheree is a given small real number (usually of orderl6f ©),
then the resultant vectay, ; is an approximate solution of the equatidx= b. Note the discrimination
between” and™. The latter means Hermite conjugate such tﬁgg = (r},1)*, where the star means
complex conjugate. It is said that mathematically little has been known about convergence behavior of
the BiCG algorithm [77]. To the author’s experience, the iteration number gets much smalleAwghen
arranged so that all eigenvalues are positive definite.

To apply these iterative methods to large-clusters, it is essential to reduce the dimension of Hilbert
space in advance by making full use of the space group of the whole system, as proposed by Fano,
Ortolani and Parola [81]. The largest RXES calculation ever known was done by Teueduifor a

4x4 Hubbard model [82].

1.6 Scope

The motivation of this thesis is to clarify the role of nonlocal effects in RXES. It is roughly divided into
two parts. The first part is associated with theoretical explanation of the appearance of the fluorescence-
like component irM 3d-2p RXES of transition metal\]) oxides, which is one of the most important
problem in the theoretical study on RXES. This subject is explored in Chaps. 2 and 3. The other part
(Chaps. 4 and 5) describes some theoretical aspects4p-@sRXES of cuprates with special attention
to the nonlocal screening effect due to the Zhang-Rice singlet formation. The content of each chapter is
described somewhat in detail below.

With the aid of numerical calculations with a simplified periodic Anderson model, we discuss the
origin of the fluorescence-like componentdf systems in Chap. 2. A crucial role of the translational
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symmetry of the system, the momentum conservation law and electronic correlation is demonstrated.
The reason why an analysis with an impurity Anderson model successfully explains the experimental
spectra of arf® system is qualitatively clarified. This chapter is based on the first proposal of ours on
the electronic-origin mechanism of the appearance of the fluorescence-like component [83].

The nondegenerate model calculations in Chap. 2 exhibit relatively weak Raman component for a
TiO,-like system. We demonstrate in Chap. 3 thatdbexistencéetween fluorescence-like and Raman
components is clearly shown by including orbital degeneracy into the model. The calculated results
well explain the latest experimental data on polarization-resolvedti-dp RXES of TiO; in spite of
the simplicity of the model. Experimentally, the coexistence is observed also in MH systems. We also
show in this chapter that the fluorescence-like component appears in the MH systems, and that orbital
degeneracy is essential for it. The author believes that the electronic-origin mechanism of the interplay
between fluorescence-like and Raman components is established by the investigation in Chaps. 2 and 3.

Chapter 4 is devoted to studying @p-1s RXES of NaCuOy. While the nonlocal screening effect
due to the Zhang-Rice singlet formation is knowr2imXPS, no one has demonstrated its contribution
to RXES so far. We quantitatively prove its essential role iMdpils RXES in this chapter for the first
time, and give a clear explanation in terms of spatial extent of CT excitations [84].

Theoretical study on newly-developed experimental techniques such as momentum- or angle-
resolved RXES is another interesting theme. This point is discussed in Chap. 5 together with the latest
experimental data on Cips-1s RXES of NoCuO,. We will show that a local transition operator is
sufficient to describe the polarization and angular dependence of the “6 eV” CT excitation, and there-
fore impurity models would work well. We will also point out that RXES with hard X-rays provides
momentum-resolved information on electronic structurk-gpace.

In the final chapter, a brief summary of conclusions in this thesis is given, and future problems are
presented.
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Chapter 2

A Model Study on Cluster Size Effects
of Resonant X-Ray Emission Spectra

Cluster size dependence of XAS, XPS, and RXES are theoretically studied with a one-dimensional peri-
odic Anderson model, which qualitatively describes effects of the translational symmetry for nominally
d® (or f% compounds such as TigCeQ). It is shown that RXES depends more sensitively on the
cluster size than XAS and XPS, so that RXES is a useful probe in studying the duality between itinerant
and localized characters 8l or 4f electrons. From results calculated by changing the cluster size
and parameter values suchdp hybridization strengthg-d Coulomb interaction etc., it is explained

why the experimental Céf-3d RXES of CeQ is well reproduced by calculations with a single-cation
impurity Anderson model, but the Bd-2p RXES of TiQ, is not well reproduced:

2.1 Introduction

It has been accepted that one of the key concepts to understand electronic properties of strongly cor-
related systems involvingd3or 4f orbitals is the duality between localized and itinerant natures of
electrons. High-energy spectroscopies have played vital roles to investigate these systems. It is reason-
able that XPS and XAS of these systems are considerably well described with the impurity Anderson
model including a single cation [6, 85], because a completely localized core electron is involved in these
spectroscopies and the core hole acts as a localized attractive potentiaBorothéf electrons. How-
ever, since van Veenendagtlal. demonstrated importance of nonlocal screening effects in analyses of
metal2p XPS for NiO [41] and highf; compounds [86, 87, 88], those phenomena in which the itinerant
property of3d electrons plays an essential role have attracted much attention in this field. As explained
in the preceding chapter, it is likely that their itinerancy and their dynamics are well expressed with
RXES. The main motivation of this chapter is to investigate how their itinerancy appears in the spectra.
It necessarily needs an extended cluster model beyond the single-cation impurity limit.

Experimental data of RXES for graphite [89], Si [90] and diamond [91] have shown that the wave
vector conservation rule, which is a mathematical consequence of the itinerancy of valence electrons,
plays an important role in RXES spectra. Note that the wave vector conservation rule holds even when

1T. Idé and A. Kotani, J. Phys. Soc. J@B (1998) 3621-3629.

31



core hole effects exist [92]. As explained in the preceding chapter, for transition metal compounds such
as TiQ, [46] and FeTiQ [47] remarkable spectral features have been observed (Fig. 1.6): in addition
to inelastic X-ray scattering peaks whose emitted photon energy moves in parallel with the incident
photon energy, giant inelastic spectra are observed at nearly the same energy position for any incident
photon energy, and they are connected smoothly to the line shape of NXES as the incident photon energy
increases far above the absorption threshold. We named the former the Raman component, and the latter
the fluorescence-like component.

A recent experimental and theoretical study on3@i2p RXES of gas-phase Tigl[93] clearly
suggest that the fluorescence-like feature, which is hard to understand with the single-cation impurity
model, originates from the solid state effect. We would like to study how the translational symmetry of
crystals modifies RXES spectra for tBé system, and to give a physical picture of the X-ray emission
process. On the other hand, Nakazawal. showed that Cdf-3d RXES of CeQ, which have a4 f°
configuration, is well reproduced with an impurity Anderson model [94] despite the apparent similarity
in electronic configuration betweet? and f° systems. Their results is shown in Fig. 2.1 for readers’
convenience. Now questions come arise: What systems do impurity models cover? Does the transla-
tional symmetry give a negligible effect for a system corresponding,Cel® study these questions,
we adopt a one-dimensional periodic Anderson model without orbital degeneracies as a minimal model
having explicit translational symmetry.

T T T T
| Ce0 B (@ |
3d-XAS |
L A i
- |
= | exp. |
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Figure 2.1: Theoretical and experimental XAS and RXES spectra ob C&Re thin solid curves and
dotted thick curves represent calculated and experimental results, respectively [94]. The calculation was
based on an impurity Anderson model. The experimental spectra were measured by &w@dbfBb].

The agreement between calculated and experimental results is good.

The structure of this chapter is as follows: §r2.2 we explain the model used. §n2.3 we give
results of numerical calculations on XAS, XPS, RXES and NXES forlike and CeQ-like systems.
In § 2.4 physical interpretations for these spectra are presented with special attention to role of the wave
vector conservation rule. In the last section, we will give a brief summary of the present study.
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2.2 Formulation

We consider a one-dimensional (1D) version of the periodic Anderson model:

H = Hap+ Hdc+ Heore, (2.1)
where
Hap = A d’ d y
dp Z (A+&p)d/,0ig+&p Py Pio]
Ne)
+ 35 [vch,p,-a+H.c.] +Ugq Zdﬁd”dﬂdu, (2.2)
Ly 9
T T
Hac = —Uch (dedm> (;Clalcm/) , (2.3)
and
Hcore = Zsc C|T0'C|O" (2.4)
g

)

In the above equationd;rg (plTa) is a creation operator of an electrona{1 or |) spin on thed (p) site

in I-th unit cell,A is the charge-transfer energy betweksmdp orbitals,Uqyq is the on-sital-d Coulomb
correlation energy, andy. is the intra-atomic core hole potential. One-electron energy op ibrbitals

is represented withy,. clTa (c¢) is a creation (annihilation) operator of a core electron with one-electron
energye.. Geometry of the system is shown in Fig. 2.2. We set the number of valence electrons in the
ground state a8N for dy pn System, and assume tk&omponent of the total spi§, to be zero. Note

that our model explicitly comprises botfyg andUqc, which are essential to have realistic discussion
onboth XAS and RXES [49].

Thed; py cluster withopenboundary condition (Fig. 2.2 (b)) is used as a reference system represent-
ing the smallest cluster with a single cation (or the impurity Anderson model), and large-cluster effects
are studied usingy pn clusters with theperiodic boundary condition (Fig. 2.2 (a)) by comparing the
results calculated with differem (also with thed; p, system).

The second term in Eq. (2.2) describes nearest-neigqmhopping processes. Although the
present model does not explicitly include orbital degeneracies, we take them into account by estimating
thed-p hopping energy as

V=2V ()2 + 6V ()2 (2.5)

whereV (gg) andV (tog) are hybridization strengths of the Té@luster model [49], so that we have the
same bonding-antibonding separation in the final state of RXES as that of thellisder model. We
explain the derivation in Appendix.

Okada and Kotani [49] used parameter val\ésy)=3.0 andV (tog)=—1.5, from which we have
v=3.5 (in units of eV). Other parameters are chosen to be the same as their estidvatidhlUqyq=4.0
andU4c=6.0 (in eV). These will be referred to as “Ticlike” parameters.

We have regarded th& p and core orbitals as Td, O 2p and Ti2p orbitals. The Hamiltonian
described above can also be used forAZe3d RXES spectra of a “Ceflike” system by regarding
d, p andc as Ce4f, O 2p and Ce3d orbitals, respectively. Since the impurity Anderson model with
local SO(3) symmetry has well reproduced &EXAS spectra [94, 96], thé-p hybridization strength
mapped onto 1D Hamiltonian should be simply givenwby /14V /2, where 14 is the degeneracy
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Figure 2.2: Geometry of the system. The closed circles represant core orbitals, and the open
circles represenp orbitals. (a) The multi-catiody py System with periodic boundary condition. The
rectangle indicates a unit cluster of the system. (b) The single-catjpa)(model withopenboundary
condition. This is used as a reference system representing the smallest cluster with a single cation. (c)
The reduced single-cation model, whérés a linear combination of the twp orbitals in (b) such as

LY = (pl, + ph,)/ V2, resulting in the value/2v of d-L transfer energy.

of 4f state. Considering the results by Jo and Kotani [96] and Nakaetak[94], for “CeO,-like”
calculations we use a parameter sefofl.5,U¢;=10.0,U:.=13.0, and/i= 1.5 eV.

For our 1D model, the transition operators of the photon absorption and emission process in the
dipole approximation are quite simplified as

Ta= Ze'qﬂ S d' cio (2.6)
g

and _
Te= Ze*'qﬂ S clpdio (2.7)
[

in place of Eqgs. (1.22) and (1.23)y; is the wave number of an incident photon agdan emitted
photon?. Since we are interested in core level spectra in the soft X-ray regime, the photon wave
numbersy; andqp are taken approximately as zero.

With these operators, the transition operator of RXES is given by

T(Q) TeGo(Q)Ta (2.8)

_ Zcfadmeo(g)dfacm,

ag

whereGo(Q) is the resolvent operator defined 8%(Q) = (Q + Eg—H +i) 1, Eg being the energy
of the ground statgg). Now the transition amplitude of the RXES process friginto a final statgf)
is given by

Ug.1(Q) = Z ;1<f\Tr<l><Ps>”c$adoJGo<Q>d&,Coa\g> x Kg(1) (Psg)", (2.9)

2We have disregarded the geometrical (angular dependent) factor. In realistic three-dimensional systems, it is quite important
for understanding experimental RXES spectra. For effects of the angular dependence on RXES, &, [97]. We will
explore angular and polarization dependence of RXES in Chap. 5.
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whereKq(1) is the eigenvalue of the ground state for the translation opefatigrdefined in Eq. (1.40).
Ps is the spin-flip operator defined by
Psd”P;l = du

etc., andPsq is its eigenvalue of the ground state. Singeand Ps commute withH, and moreover

they commute each other, one can always take the ground state as an eigenvector of these operators.
T, andPs are also commute witfi (Q), so that the eigenvalue of each operators is conserved between

|g) and|f). To evaluate the amplitude numerically, one needs to carry out the operatiprant Ps

in Eq. (2.9). The former is associated with the wave vector conservation rule, which reflects a spatial
coherence of crystal [98], as explainedsiri.3. The latter is associated with the well-known SU(2)
rotational symmetry irspinspace [99], the degrees of freedom to choose the quantization axis of spin.
Note that the SU(2) selection rule limits the final state more stringently than the stg@servation

rule does. This fact is easily understood by considering a twadstenodel with two electrons. Within

S, =0, we have a triplet state

1
NG (dfpl+dfpl) 10),

and one of singlet states
1 /4 tt
Nz (dT p,—d, pT) 0),
as well as trivial singlet stateﬁdf\O) and p}r p1r|0>. The triplet state has an eigenvaluéPpf= 1, whereas
all the singlet stateB; = —1. Hence the omission d% in Eq. (2.9) generally leads to a breakdown of
the conservation rule as &, and therefore causes incorrect spectra which do not satisfy the SU(2)
selection rule.
After all, RXES spectral function is calculated with the transition amplitude Eq. (2.9) as

1
Frxes(Q, ) = N ; Ug—1(Q)[28(w— Q+Ef — Eg), (2.10)
g

wherew is the emitted photon energy and we introduce the normalization fadibin order to compare
systems of different cluster size.

2.3 Calculated Results

2.3.1 XPS spectra

We show XPS spectra for various cluster sizes with the,Tlike and the Ce@like parameters in
Fig. 2.3. The calculated line spectra are convoluted with a Lorentzian function of width 1.0 eV (HWHM)
corresponding to the lifetime broadening of the core hole, as well as experimental resolution.

The XPS spectra for the Tidike parameters shown in Fig. 2.3 (&) have roughly two-peak structure
with a strong main peak and a weak satellite. For larger cluster sizes, we observe that a few very
weak peaks come arise between them. In the impurity lichip£), the main peak corresponds to the
bonding state betweamnl® andcdL configurations [49], wherk andc represent core and ligand holes,
respectively. The satellite peak corresponds to the antibonding state. The small cluster-size dependence
suggests that the main and satellite peaks could be characterized by the above local charge-transfer
excitation also for larger cluster sizes.
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On the other hand, clear three peaks are observed in the XPS spectra for thék€glarameters
(Fig. 2.3 (b)), corresponding to three configurations @, cf1L andcf2L2. The three-peaked structure
is experimentally observed in G3l-XPS [101], and well reproduced with impurity Anderson mod-
els [94, 96]. The striking difference between the Filixe and CeQ-like systems originates from, first,
the smaller values of/U;; andv/U;c, and second, the negative value/od U — Usc [94]. As the
cluster size increases, we have slightly broader and more asymmetric shapes for the peaks in the lowest
and the second-lowest binding energies. However, the global structure is considerably well reproduced
with the single-cation clustefiy ps.

2.3.2 XAS, RXES and NXES spectra for TiQ-like parameters

Figures 2.4 (a)-(c) show XAS, NXES and RXES spectra for theTike parameters iy p2, d3ps and

ds ps clusters. The value df for NXES and RXES is taken as 0.4 €yand the Lorentzian convolution

with width 1.0 eV (HWHM) is made for all the spectra, as in the case of XPS. To compare RXES spectra
for variousQ’s, each of original calculated spectra is magnified by a rate indicatedxa0” in the

figure.

In the case of thé;p, system, we see two-inelastic peaks, each of which moves in parallel with
the incident photon enerdy, i.e. exhibits only the Raman component. The first (highepeak corre-
sponds to a single-electron charge-transfer excitation, whereas the second one to a two-electron charge
transfer state with dominad€L? weight. It is rather appropriate to call the former the antibonding state
betweend® andd!L configurations, because its energy separation from the elastic line is not ruled by
A but mainlyv. These inelastic peaks are necessdabal charge transfer excitations, and there is no
room for fluorescence-like components.

In going from thed; p, to d3ps clusters, however, we find some inelastic scattering peaks which
do not follow the change of the incident photon enefyyFor thedgpg cluster, the energw of main
RXES peaks does not follo® but is rather constant, and it oscillates around the constant energy with
the change o2, exhibiting the fluorescence-like behavior.

The line shape of NXES also shows, in Fig. 2.4, considerable dependence on the cluster size: A
single peak is observed for the NXES of thgo, cluster, but it splits into two peaks for tlogps cluster,
and the relative intensity of the two peaks changes fodglpg cluster.

2.3.3 XAS, RXES and NXES spectra for Ce@-like parameters

Figures 2.5 (a)-(c) show XAS, RXES and NXES spectra with the £é@ parameters for various
sizes of the cluster. We see that the XAS spectra have two-peak structure. The main and satellite peaks
correspond to the bonding and anti-bonding states, respectively, betfiandcf?L configurations.
The cluster size dependence of XAS is quite small, and we only recognize, with increasing cluster size,
a slight increase of the spectral intensity in the region between the main peak and the satellite.

The cluster size dependence of RXES for the g8ke system is much smaller than that of the
TiO»-like system, and the energy of the main inelastic scattering feature follows the chafge/eh
in the case of large clusters. Apart from the incident photon energy 1, the single-cation model calculation
shows a strong inelastic peak, which corresponds to a single charge-transfer excitation. This peak shifts

SWe have explicitly relatedl to the Auger decay process in Eq. (1.35). In addition, we have to consider at least two factors to
evaluatd : The experimental resolution of the incident X-ray, and finite energy interval of eigenstates due to finite cluster size.
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in parallel withQ, exhibiting the Raman component. With increasing cluster size, the corresponding
line spectrum shows a fine spectral splitting into some line spectra, so that this inelastic structure is
broadened. Comparing the results calculated \if» and fgpg clusters, we see that the single-cation
model is a good approximation for describing the RXES except for the incident photon energy 1, for
which we will give some discussion in the next section.

The NXES spectrum witti; p2 cluster has two peaks, corresponding to the bonding and anti-bonding
states betweem®L and f1L? configurations in the final state. With increasing cluster size, the lower
energy peak is more broadened, but we observe much smaller dependence on the cluster size compared
with the TiO,-like system.

2.4 Discussion

2.4.1 Applicability of the single-cation model

According to Fig. 2.3, it is found that the cluster size dependence is extremely small for the calculated
XPS spectra of both the Tiike and CeQ@-like systems. While the XAS spectra shown in Figs. 2.4

and 2.5 depend on the cluster size slightly more than XPS, the dependence is still extremely small. This
fact suggests that the single-cation model can well describe XPS and XAS, which are typical exam-
ples of the first-order optical process. Thereby we justify previous theoretical analyse2mXHS
and2p-XAS of TiO; [49], as well as C8d-XPS and3d-XAS of CeQ, [94, 96], with impurity mod-

els. In addition, for RXES and NXES, it is shown that the single-cation model works as a good model
for the CeQ-like system, where only the Raman component appears. However, it is demonstrated
that the cluster size dependence is greatly important for the-lk@ system. While the experimen-

tally observed fluorescence-like spectradfhsystems[46, 47] are by no means reproduced with the
single-cation model, we observe the fluorescence-like behavior with the large-cluster model. This re-
sult definitely means that the appearance of the fluorescence-like spectra is a direct consequence of the
translational symmetry of the system. Detailed discussion on the origin of the cluster size dependence
of RXES will be given in the next subsections.

2.4.2 Fluorescence-like spectra in large cluster models

In order to understand the cluster size effect in the Tlie system, it is instructive to study the situation
in the limit of Ugg = U4 = 0. In this case, the initial and final states of RXES are described exactly with
one-electron Bloch states with energy dispersion (Fig. 2.6):

e5(K) —gp = % (u \/1+ (4v/A)2cos2(k/2)) . (2.11)

Figure 2.7 shows XAS and RXES spectra for thpg cluster in the limit olJgg=Ugc=0. The number
of k-points in the first Brillouin zone of thes ps system is six, i.e{0, +-11/3, +2m1/3, 1}, and the number
of the excited electron energies is four. In accordance with these four points, the XAS spectrum displays
four lines.

The Q-dependence of RXES spectra in Fig. 2.7 (solid curves), which is unlike the Raman behavior,
is a consequence of theconservation rule. Close inspection shows that the inelastic spectrum for
any excitation energy consists of three lines. These correspond to states with an electron-hole pair in

39



10

NXES {0,
| A=1.5 =
o,
RXES o= 3
r - Y= 19 0 o
x15 gjki 5 ' @
[e]
X 1 M 4 g
x15 J\4 3r 102
©
x 30 Y 2| =
x10/\_._+ 1]

L | L | L I L
-40 -30 -20 -10 O 10
(@) Emitted Photon Energy [eV]

T T T T 10
NXES fypg | XAS
_Jg_A:'lﬁ =
RXES s Uiro. || 2
x10 I\ 13 Ho ©
s E

Q
x15 Mg 4 £
x3 N4 3 102

©
xa N\ 2] &

x6 ANy 1]
L1 ' [ [ | -
40 -30 -20 -10 O 1
(b) Emitted Photon Energy [eV

— T T T T T T T 10
NXES fron

L SN | Ac15 -

i >

RXES o,

20 6 S

X L _Ufc=13' 0 I‘:T_)

c

X1 Y5 =

S

x3 <_,A\i, 4 2

I\ ! D_

| '_ o

x3 m 2 i
K5 ANy 1]
" 1 " 1 " 1 " 1 "

4030 20 100 10 -20

(©) Emitted Photon Energy [eV]

Figure 2.5: XAS and RXES spectra for the Celixe parameters with (af p2 (upper), (b)fzps (lower
left) and (c)fsps (lower right) clusters. See the caption for Fig. 2.4.



energy [eV]
9]

o

-T -Tt/2 0 /2 L
wave number [rad]

Figure 2.6: One electron energy dispersion in the abserldg andUy.. Parameters used are indicated
in the panel.

{0,+m/3,4+2m/3}, from lower to higher energy. Whel is tuned to 2, for example, a conduction
electron ak = +211/3 is resonantly selected in the intermediate state. Then the resultant final state has
an electron-hole pair &= +21/3 according to thé&-conservation rule. SimilarhQ at 3 (4) leads to

an electron-hole pair &= +7/3 (k = 0) in the final state. The valence (conduction) banH atris

of purep (d) character as suggested by Eq. (2.11). Hence the final state with an electron-holempair in
has no contribution to the RXES spectra within the intra-atomic transition model as shown in Eq. (2.7),
and the inelastic scattering process is necessarily virtual one for the incident photon energy 1.

If we fix a core hole site in the intermediate state, kheonservation rule breaks down. RXES
spectra calculated with a fixed core hole site are shown in Fig. 2.7 with dashed curves. In this case, the
spectral shape of RXES is the same as that of NXES. This is because the excited conduction electron
has no contribution to the RXES spectral shape, so that the situation is the same as NXES.

These results suggest the origin of the cluster size effect in thglik®system. If the cluster size
is small, an excited conduction electron is necessarily localized and makes an active contribution to
the X-ray emission process. In this case, the emitted photon energy shifts in parallel with the incident
photon energy. However, when the cluster size is large, we have some intermediate states in which
the excited conduction electron state is extended in space as in the ddgg=0f=0. Thereby the
photoexcited electron can be dissipated from the unit cluster with a core hole to the surrounding system.
If this dissipation completely occurs in the intermediate state, the X-ray emission process necessarily
resembles NXES, then the fluorescence-like spectra come arise. The dependence of the fluorescence-
like spectra o2 is expected to come from ttkeconservation rule within the present model (§2€.3).

Effects of finite values obl4g andUq are also important in the TigGlike system. In order to see
the effect ofUqc, calculated RXES spectra withyq=0 butUy4.=6.0 eV are shown in Fig. 2.8. In the
XAS spectrum we observe a strong main peak 1, which corresponds to a bound state between the core
hole and an electron excited from the core level, i.e. the core extit@omparison of Fig. 2.7 and

4See the discussion k1.4.4. For an original paper, see Ref. [100].
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Fig. 2.8 shows that the RXES spectra are more broadened and exhibit new fine structures because of
Uqgc, Which causes excitations with more than one electron-hole pairs in the final state, although the final
state Hamiltonian is independentld§.. However, the RXES spectra of 2, 3 and 4 in Fig. 2.8 are found

to resemble those in Fig. 2.7, and this suggests that these intermediate states have somewhat common
characters with spatially extended conduction electron states.

It appears that a weak peak located at the highest eresdyifts in parallel withQ, but this occurs
as a result of the finite sizé °.

When we introduce a finite value 0f4, occurrence of doubly occupied orbital states is considerably
suppressed, and then the RXES in Fig. 2.8 is changed to that in Fig. 2.4 (c). The RXES spectral
broadening in Fig. 2.8 is somewhat suppressed in Fig. 2.4 (c), because of the suppression of more than
one electron hole pairs in the final state. However, the effddtgfs not very strong except for the case
of 1, because the occupation numbeddafiectrons is small in most states of the Filike system.

Compared with the Ti@like system, the cluster size dependence of RXES in £&é@ system is
much smaller because of the smaller value of the hybridization

5Although the statement that a finite cluster size is likely to excessively highlight this peak is true within the present model, it
may be questionable whether or not it holds in realistic systems having orbital degeneracy. The experimentally observed Raman
component involves nonbonding states (§&4.4) as well as the antibonding state, and the intensity ratio between the Raman
and fluorescence-like components strongly depends on how many states we have in a unit cluster, as will be discussed in the next
chapter.
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2.4.3 Role of thek-conservation rule

To study effects of thé-conservation rule in Tilike and CeQ-like systems, we calculate RXES
spectra by fixing the core orbital on a single site and compare them with those including the translational
symmetry of core orbitals (denoted as “coherent spectra”). The results are shown in Fig. 2.9. F+he TiO
like spectra in Fig. 2.9 (a) show clear difference between the fixed core-site and coherent spectra. The
fixed core-site spectra are considerably broader than the coherent ones for the incident photon energy of
2,3 and 4. This is clearly attributed to tkenonconserving nature of the fixed core-site model. Thus,

the role of thek-conservation rule is (1) to narrow the inelastic peak width, and (2) to fluctuate their
peak position around that of NXES spectra.

Note that the RXES spectral shape depends on the incident photon energy even with the core-fixed
k-nonconserving model. This is in strong contrast to the cabl@fUy.=0 (Fig. 2.7). Because of finite
values olUyq andUyqc, the photo-excited conduction electron in the intermediate state cannot be a single
Bloch state, and some rearrangement between the conduction and valence electron states occurs in going
from the intermediate to the final states. Therefore, the origin of the dependence of the fluorescence-like
spectra on the incident photon energy is partly the effect oktbenservation rule and partly the effect
of Udd andUdc 6.

According to Fig. 2.9 (b), there is little difference between the fixed core-site and coherent RXES
spectra for the Ceflike parameters, although close inspection shows that we have slightly broader
spectral shapes with the fixed core-site model. For the,&#&® system, the quasi-particle bandwidth
is of the same order as the lifetime in the final state. Furthermore the small valy®) qf makes
the intermediate state almost localized. Then clear cluster size effects are not observed. The fact that

6We discuss the contribution of crystal field splitting in the next chapter.
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the fixed core-site and coherent spectra are almost the same demonstrates the reason why the analyses
of Ce4f-3d RXES with the impurity Anderson model have successfully reproduced the experimental
result [94].

2.4.4 Limitation of the present model

We have discussed qualitatively the cluster size effect of RXES in @@ CeQ. In order to make

a quantitative study, it is necessary to improve the model. Firstly, the atomic arrangement should be
developed from the 1D chain to a 3D model that is more realistic. Secondly, the orbital degenerdcies of
(or f) andp states should be taken into account. As shown in Appendix, we have introduced the effective
hybridizationv, in which effects of orbital degeneracies on the hybridization betwi®eandd!L are

taken into account. With this effective hybridization, however, effects of orbital degeneracies on the
hybridization betweerd! andcd?L configurations in the intermediate state cannot be well described.
Furthermore, the effects of orbital degeneracies are essential in the calculation of RXES for the incident
photon energy tuned to the main XAS peak. As shown by Nakazdveh [94], the main inelastic
RXES spectra in resonance with the XAS main peak of Ce@inate from the nonbondinélL final

states, instead of the antibonding state betwiéeand f 1L configurations. The nonbonding final states
occur only by taking explicitly into account the orbital degeneracies. The situation is also the same for
TiO,. In this sense, the present calculation of RXES for the case 1 is not realistic. In the next chapter,
we will discuss the cluster size dependence with degenerate models to remove this limitation.

2.5 Conclusions

We have numerically studied large-cluster effects on XPS, XAS, NXES and RXES spectra. The model
we have used is a one-dimensional nondegenerate periodic Anderson model, which is a minimal model
having the explicit translational symmetry. It qualitatively describes those speatihasfd f© com-
pounds. Following results have been obtained.

Firstly, we showed that the cluster size dependence is extremely suppressed for the first order optical
process, XPS and XAS. It suggests that an impurity model is applicable to analyses of these spectra, in
contrast to the second-order optical process, RXES and NXES.

Secondly, for TiQ-like systems, we numerically demonstrated the occurrence of fluorescence-like
spectra because of the large-cluster effect. Their behavior is qualitatively consistent with3dhe Ti
2p RXES experiment of TiQ. The origin of the fluorescence-like spectra is the existence of spatially
extended states of a conduction electron in the intermediate state.Apart from the effects due to orbital
degeneracy, the dependence of fluorescence-like spectra on the incident photon energy originates from
thek-conservation rule, as well as from the effectdé)gfi andUqc.

Thirdly, for the CeQ-like system we have shown that the large-cluster effects in RXES spectra are
fairly suppressed, compared with the ke system, because of the smaller hybridization stremgth
The effect of the translational symmetry is the broadening of inelastic peaks.

Finally we pointed out that explicit orbital degeneracies should be taken into account to describe
RXES spectra in resonance with the XAS main peakiand f° systems. This subject will be discussed
in the next chapter.
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Appendix: Effective Hybridization

In a TiOg cluster model with local @symmetry and with full orbital degeneracies, the Hamiltonian of
hybridization between T3d orbitals and p ligand molecular orbitals is given by

Hi= Y [V(F)dﬁmgprma+H.c.], (2.12)
r.mo

wherel runs over two irreducible representations of, Oe. g; andtyg, andm distinguishes the 2- or
3-fold degeneracies of them. On the other hand, in the impurity limit (Fig. 2.2 (b)), the hopping energy
of our model satisfiegv = (d°|H|d*L), where|d®) = L%YLI|0> and

1
d'L) = — S diLs|dO).
¢ =5 3 diLold)
The ligand orbitaLZ, is defined by (see Fig. 2.2 (c))

1
Lo = \72(plo+ P2g)-

|0) denotes the state which has no valence electrons but has filled core levels.
Now we map the hybridization strength of T§@luster onto 1Dd-p model. It is quite natural to
define ouw as
2v = max{(d°|H]|dL)}, (2.13)

where|dlL) is a linear combination such as

d'L) = 3 armedlp Prmeld®), (2.14)

r.mo

and the coefficient§armg} are chosen to maximiz&i®|H;|dlL) under the normalization condition
2rmo a?ma =1

It is easy to solve the extremum problem and show that the effective hybridization defined by
Eq. (2.13) is given by

v= %\/4V(eg)2+6V('[zg)2 (2.15)
for V()
o = oV (tg) 2+ AV (e (2:40)

Within so-called two-configuration approximation, bonding and antibonding states in the final state of
RXES are defined as lower and higher energy eigenstates, respectively2 ef2léamiltonian spanned
by |d°) and|d'L). By definition, the bonding-antibonding separation of the present single-cation model
with the effectivev is exactly the same as that of the Fi€luster model.

In the case of the Cefdike system, we can take

Hi=V'S [floPmo+H.c] (2.17)
mo

with SO(3) symmetry and 7-fold degeneracyle8 orbital. Therefore, the effective hybridizations
given by
V14

V= ?V. (2.18)
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Chapter 3

Interplay between Raman and
Fluorescence-Like Components in
Degenerated® and d! Systems

XAS, NXES and RXES spectra are theoretically studied with a doubly-degenerate one-dimensional
periodic Anderson model unddf andd? fillings. This is a simplified model of band insulators such as
TiO,, and Mott-Hubbard insulators such as@s. Comparing with nondegenerate model calculations,

we point out the important role of orbital degeneracy in reproducing experimental excitation energy
dependence of RXES. The calculated results exhibit interplay between Raman and fluorescence-like
components in both band insulator and Mott-Hubbard insulator. The former and latter components
reflect the local point symmetry and the translational symmetry of the system, respectively. Our results
qualitatively well explain TBd-2p RXES of TiO, and ThOs. 1

3.1 Introduction

In this chapter, we discu$s 3d-2p RXES M being a transition metal ion) fa® andd* insulators with
multi-M cluster models includingrbital degeneracy We have proposed a mechanism of electronic
origin in the preceding chapter for the experimentally observed fluorescence-like spectradi2di
RXES [46, 47] (see Fig. 1.6). The key point of our picture is the existence of extendecesfaitestthe
strongUq. in the intermediate state, although such extended states may have almost negligible weight
in the XAS spectrum. WhegR (incident photon energy) is tuned there, an electron excited3s a
orbital can escape to the neighboring site (Fig. 3.1 (b)) because of a finite valence band width and finite
electronic relaxation time of the core hole. Consequently, RXES spectra roughly reflect the valence
band density of states. This transition process resembles NXES, which is schematically described in
Fig. 3.1 (a), in the sense that a core electron is excited to a continuum state in the both cases. Thus, one
can call this RXES spectrum NXES-like one, which has naturallydestependence.

For theQ-dependence of RXES spectra, Minami and Nasu [102] stressed the role of phonon de-
grees of freedom. Using a model including the electron-phonon coupling but any Coulomb interaction,

1T. Idé and A. Kotani, submitted.
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they insist that the origin of the fluorescence-like component, “luminescence” component in their ter-
minology, is attributed to the full phonon relaxation of electronic momentum in the intermediate state.
The Raman component is, on the other hand, attributed to the zero-phonon process, and thus described
with the simple band theory. Note that the Raman component in their sense comes from delocalized
Bloch states, being completely different from our theory, where local charge-transfer excitations give
rise to the Raman component. Making a comparison between the phonon relaxatiopdimodifetime

of the core holerg, they concluded that the “luminescence” component due to the phonon relaxation
contributes comparably to the Raman component iBdFRp RXES of Ti0G,. No essential change in

this conclusion has been made in their sequel theory including core and valence exciton effects within
that approximation which takes only one electron-hole pair into account [103]. Experimental spectra,
however, clearly show the comparable spectral weight of the two components even in the case of late
transition metal oxides [104], which should be classified into Raman-dominant materials according to
their theory. Hence it may well be questioned whether the phonon relaxation really governs the appear-
ance of the fluorescence-like component in transition metal oxides, although the phonon coupling might
play some role in materials either with a longand high Debye temperature such as diamond [105].

While our model successfully explained the origin of the fluorescence-like spectra, the lack of inter-
nal structure of atoms prevents us from discussing features of local origin such as polarization depen-
dence in RXES. Very recently, Haragaal. observed polarization dependence of3dii2p RXES of
TiO,, where a drastic resonant enhancement occurs @hisrtuned at a satellite peak of XAS [106],
and Matsubarat al. pointed out that it is explained in terms of the selection rule of the local point
group [107]. It is the purpose of the present chapter to extend the previous model to include orbital de-
generacies, and show that calculated spectra represent coexistence of the fluorescence-like and Raman
components, the latter being qualitatively consistent to the experimental polarization dependence.

Another purpose of this chapter is to study the RXES spectra in a Mott-Hubbard (MH) insula-
tor. If an inter-site charge-transfer process crucially contributes to RXES spectra in appearance of the
fluorescence-like component, it is interesting to study how RXES spectra are suffered from change in
character of insulating gaps upon going from a band insulator to a MH insulator. Although effective
hopping energy seems to be considerably reduced-tyon-site Coulomb interaction, experimental
data on Ti3d-2p RXES of TkO3 [108], which is often referred to as a typical MH insulator, show a
clear fluorescence-like component. In the subsequent sections, we show that orbital degeneracy is es-
sential in appearance of the fluorescence-like spectra in MH systems, and we sketch interplay between
the fluorescence-like component and intra- or intergsiteexcitations in RXES spectra.

The layout of the present chapter is as follows: In the next section, the models used are explained.
As a minimal model with both translational symmetry and orbital degeneracies, a doubly-degenerate
one-dimensional (1D) model is introduced. §18.3 and§ 3.4, main features of calculated results are
discussed in detail fod® andd! systems, respectively, with special attention to the role of orbital
degeneracy and translational symmetry of the system§ 3rb, the aforementioned coexistence and
relation with experimental data are discussed; &6, a brief summary is given.
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3.2 Formulation

We use a 1D doubly-degenerate periodic Anderson model, which is topologically equivalent to the
system schematically described in Fig. 3.2 (a). The Hamiltonian is written as follows:

H =Ho+V 4+ Hgq + Hyc, (3.1)

where the first two terms describe one-electron part, the third3dsg Coulomb interaction, and the
forth one3d-core intra-atomic Coulomb interaction.
Hp andV are defined as

Ho = Z |80 Q1 Q0 + 00, t10 + £:Cly010
g

)

+ (D+&)D/ Dig+ (A—10Dq+ &) leadm} 7

vV = Z{dﬁa[vl(qa +0+10) + U (Qo + Qit10)]

+ Dip[v2(Qio — Q1) + (Gl - Q|+1o)]} +H.c.

In the above equations] andD/' represent creation operators of t&t orbitals with spinc atl-th

unit cell, respectivelyqfro andQlTG are creation operators of oxyg2p orbitals with one-electron energy
&. A and10Dq are the CT energy and the crystal field splitting energy between thed\msd)itals.clJr(I
is a creation operator of a core electron with one-electron ergrgy

The interaction terms are defined as

Moo = Unn Y (dfciyf dh, +Df; DD Dy )

- vey(pee) (oo

Hao=—Usc 3 (df50io+D/yDio ) GiorGl, (32)

l,0,0'

and

whereUq; (Uqp) is the on-sited-d or D-D (d-D) Coulomb correlation energy, akl. is the intra-atomic
core3d interaction. Exchange and spin-orbit couplings are omitted for simplicity.

Thed-p hopping energies are represented with, v, u;, Uz }. Depending on their relative phases
and values, there are some ways to include orbital degeneracy into this model. The single-metal-ion
cluster limit of our model is described in Fig. 3.2 (b). We consider that the siMgtddster is an
effective model of atMOg cluster. In the case ofOg cluster with @, symmetry, a subsystem having
d(ey) orbitals and ligand orbitals with; symmetry is coupled with a subsystem havi{tyy) orbitals
and ligand orbitals witliog symmetry throughd-d Coulomb interaction (cf. Fig. 1.9). If there were
no Coulomb interaction, the subsystems would be completely decoupled. Considering this fact, we set
vi = Up andvs = Uy, then the ligand orbitals are separated into two orthogonal molecular orbitals as

1
Po=3 (Qog + A0 + Qoo + Q10) (3.3)
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and 1
P = E(qOU — 015 + Qoo — Q10)~ (3.4)

Consequently, the singlgt cluster is reduced to that in Fig. 3.2 (c). Now we can regarddtipeunit
as an effective subsystem of thétxg)-L(t2g) one, and théd-P unit as an effective subsystem of the
d(eg)-L(ey) one, wherd. stands for ligand molecular orbital

To evaluate hopping energies, we apply the effective hybridization theory separagglyrdtyg
orbitals. Foityg (d) orbitals, the starting point is the equation

max{(d°|H|d"p)} = max{(d°|H |d(tzg) "L(tzg)) },

Where|d1E> = % zad}pg|d°>. As suggested by Eq. (3.3), the left hand side is given/yx 2vy,

where+/2 represents the contribution of spin degeneracy. The right hand side is give@\b(yzg),

whereV (tyg) is the hybridization strength of a Ti@luster model. Hence we have=y/3V (tpg) /2. Sim-
ilarly, v, is estimated ag,=V (e5)/v/2. ForV(gg)=3.0 andV (toq)=—1.5eV [49], we haves;=u;=1.3 and
Vo=Up=2.1 eV. Other parameters are chosen to be the same as ReNOD, 10Dg=1.7,Uq1=Ug2=4.0
andUyc=6.0 [eV].

Uozumi [109] and Taguchi [110] report nearly the same valubgf, Uqe, 10Dq, andV (gy) as
those of TiQ in their analyses on T2p-XPS of ThO3, so that we take the same parameter alsalfor
systems in this chaptér

In addition to the doubly-degenerate models, we use also nondegenerate models shown in Fig. 2.2
to discuss the role of orbital degeneracy. The value of the parameter set inalagihgpping energy
v, CT energyA, on-sited-d Coulomb energyJqq, and on-site corel attractive interactiotyc will be
explained in the subsequent subsections.

In the present model, X-ray absorption and emission processes at a metarsitdescribed with
the following operators:

T2(1) = Y (aad’, +aD];)cio (3:5)

g

T¢() = Zcrg(bldla'f‘bZDla), (3.6)

where{a;,a»} and{bs,by} are numerical factors, representing polarization dependence of the RXES.
All of them are taken to be unity unless any particular mention is made. The transition operator of RXES
is defined in Eq. (2.8),

ZTe(I)Go(Q)Ta(I).

It is worth noting that the point group symmetry of operatd|r§God|TU and D|UGOD|TU is different

from that ofdeoDlTG and D|UGod|TG. The latter leads to final states with a different local point group
symmetry from the ground state. As will be discussed, it brings about a class of nonbonding final states.
The spectral function of the RXES process has been defined by Eq. (2.10). In this chapter, we use the
same valué =0.4 eV as that in the preceding chapter.

2The other choice that, = u; andv, = —u, also leads to the exactly same sinlesluster as in Fig. 3.2 (c). Since these two
choices prove to be exactly equivalent even in the dobblguster (periodial, py) case, it is conceivable that the conclusions in
the present chapter do not drastically depend on the choice at all.

SReference [110] reports a large CT energy 6.5 eV. Note that this correspohidg toA — glqu in the notation of the
present model, giving=3.52 forUgy=4.0 andl0Dg=1.7.
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(b) single-M cluster ~ (c) reduced
(impurity limit) single-M cluster

Figure 3.2: Thedegenerated-p models used. (a) A topologically equivalent system of the doubly
degenerate periodit;ps model. (b) The singléd cluster model wittopenboundary condition. (¢) The
reduced singlév cluster model, wherd-D Coulomb interaction couples the two subsystems. For the
definition of the orbitald® andp, see the text. In these figures, the black and white circles represent Ti
3d and oxyger2p orbitals, respectively. The-p transfer with positive sign is described with the solid
lines, whereas transfer with negative sign is described with dashed lines. Note that local symmetries
around the nonequivaleBtl orbitals @ andD) are not the same.

3.3 Calculated Results I: Band Insulators

3.3.1 Nondegeneratel® system

To elucidate role of orbital degeneracy, we first recapitulate results of nondegenerate models as shown
in Fig. 2.2, where the parameter €8t4.0,Ugq=4.0,U4c=6.0, andv=/(2v1)2 + (2v2)2/2=3.5 eV are
used. These are the same as those in the preceding chapter. For all XAS, RXES and NXES spectra in the
present chapter, the momentum-transfes fixed to be zero, and calculated line spectra are convoluted
with Lorentzian 1.0 eV (HWHM). Moreover, thecomponent of the total spif, is taken to be zero
except for singleM cluster calculations witk? filling.

Figure 3.3 (a) and (b) show the calculated spectra with nondegenerate single- anill roluléiter
models. Detailed discussions on the spectra have been given in the preceding chapter with special
attention to the appearance of the fluorescence-like spectra in theNhdltister model. Let us briefly
review the bonding-antibonding separation in the XAS and RXES spectra within the BMngjlester
model. When photoexcited, there are only two stdted!), |cd?L)} in the Hilbert space of the single-
M cluster. Diagonalizing th@ x 2 Hamiltonian matrix, we have the energy separaWgrbetween the
bonding and antibonding states as

W, = \/(A+Udd ~Uge)?2+8v2 ~ 101 eV.

Similarly, in the final state of RXES, the bonding-antibonding separation is roughly estimated within
so-called two-configuration approximation,

Wo = VAZ+16v2 ~ 14.6 V.

Note that matrix elementd'L|H|d®) is v/2 x v/2v, where the first,/2 originates from the spin de-
generacy. These formulae will give a rough estimation on the bonding-antibonding separation in more
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elaborate models.

3.3.2 Degeneratel® system

Figure 3.4 (a) shows XAS, NXES and RXES spectra calculated with the degenerateMiolylster
model. In the XAS spectrum, we observe two strong peaks and a number of subpeaks in their high
energy tail. Experimentally, four distinct peaks are observed in the main structure2pf3t XAS
of d° compounds such as TiGand FeTiQ [46, 47]. Since our model does not include the spin-orbit
interaction of the core level, the two experimental peaks with lower energies correspond to the calculated
main structure.

We also see that the RXES spectra depend on incident photon eQergther than the simple
Raman component in the case of the nondegenerate $hglaster. For lowef’s such as 1 and 2, the
single spectrum which linearly shifts &sincreases is observed. This inelastic spectrum highlighted
with blank bars survives for higheR’s, whereas another spectrum highlighted with the shaded bar
suddenly appears for 5 and 6. This kind of enhancement Whisrtargeted at a satellite peak of XAS
is also observed in the nondegenerate case, as marked also with shaded bars in Fig. 3.3 (a). However,
the nondegenerate results have no peaks corresponding to the series of peaks marked with blank bars in
Fig. 3.4 (a). Hence, we conclude that this series of peaks originates from the orbital degeneracy. By the
reason discussed below, we call these peaks nonbonding ones hereafter.

To understand the origin of the inelastic spectra, consider the case of isotropic linfiobt— O
andvy — v, where the Hamiltonian recovers permutation symmetry betyeégnm: and{D, P}. Within
the two-configuration approximation, the bonding and antibonding states in the final state of RXES are
described with state vectoj@) = |d°) and

1

|10) = 5 3 (d&po + D5Ps)|d).
g

N

Note that these two states have the same permutation symmetry as well as local point group symme-
try. With a matrix elemenYes(d®) = (1o/H|0o) = 1/2[(2v1)2 + (2v2)?], the bonding and antibonding
separation is proven to B&p, although calculated spectra exhibit somewhat smaller valueWpahn
Similarly to the nondegenerate cagg), is the bonding state with relatively larg@) weight, and the
antibonding state has relatively larg) weight. Since the transition operators are symmetric as to

the permutation, all allowed intermediate states have the same symmegyiaghis case. In the
two-configuration approximation, each of them is a linear combination of

1
1) = 5 ¥ (@} +D})eal00)
o

and
12) 0y (df +D})co o),
o

giving bonding and antibonding intermediate states. Sih¢dJyq — Ugc > O, the bonding intermediate
state has mainlyly) weight, and would have large overlap with] + Df)cs|g). Similarly, the anti-
bonding intermediate state has large overlap \M@H D};)cs|AB), where|AB) is the antibonding final

4From a quantitative point of view, the two-configuration approximation is poor one in the context of thé\lasgension
theory [20, 111] because the number of degenerate orbitals is only two.
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Figure 3.3: XAS, RXES and NXES spectra calculated witimdegeneratenodels unded® filling, (a)

the singleM and (b)d4p4 periodic clusters. For each figure, the right and left panels show XAS and
RXES spectra, respectively. There is also a NXES spectrum at the top of the array of the RXES curves
in the left panel. The arrows in each XAS spectrum indicate the position of excitation energies, and
the numbers in the XAS spectra correspond to those of RXES. The elastic scattering peaks are omitted
from the figures, and they are replaced with the arrows. Each of original calculated RXES spectra is
magnified by a rate indicated as ‘3".
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Figure 3.4: XAS, RXES and NXES spectra calculated witgeneratenodels unded? filling, (a) the
singleM and (b)d, p4 periodic clusters. See the caption for Fig. 3.3.
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state. Consequently, absorption intensity strongly concentrates at the main pegkBaiglstrongly
enhanced whef is tuned at the satellite peak in the XAS spectra.
Note that a final state such as

IN1o) = = Z (d5Py + Dl pg)|d°)
g

can contribute to inelastic scattering. This has the same permutation symmetry as that of the ground
state, but local point group symmetry around the metal site is different. This fact encourages us to
call it a nonbonding state. By the reason explained above, it is the elastic line (ground state) that the
most strongly enhanced whéhis tuned at the main absorption manifold. The elastic line is, however,
omitted from the figures, so that the main inelastic spectra originate from the nonbonding states for that
Q. By definition, the existence of the nonbonding states is direct consequence of orbital degeneracy.
The nonbonding state is energeticalyhigher than|d®), being nearly independent of hybridization
strength. Since the energy of the bonding state is estimat@il-at\p) /2 within the two-configuration
approximation, the nonbonding state will be observed

Won = (A+Wp)/2

distant from the elastic line. Note that this is always smaller Wgrand therefore the nonbonding state
is located in between the bonding and antibonding states in any case.

When a finitel0Dq is introduced, we have a finite energy difference betwenandcD*-dominant
intermediate states due18Dq, so that we observe the doubly-peaked structure in the main manifold of
the XAS spectrum. Similarly, the nonbonding lines split into several ones in a RXES spectrum. Since
the Hamiltonian is not symmetric as to the permutation, an antisymmetric state

IN2o) = (d; Po — D] oPo) ‘d0>

appears as a nonbonding peak in the final state. This state has the same local point group symmetry as
the ground state. Furthermoidllp) split into the following two states:

IN1p1) = sz Py|d)
V24

1
N12) = 755 Db pold).
o

with energy separation of order 40Dg. Thus, we observe three nonbonding lines in this case. Gen-
erally, anisotropy of/; andv, gives rise to energy shift of the nonbonding peaks. As a reNdil1-
andN2p-dominat states are accidentally seen at nearly the same position in Fig. 3.4 (a). The transition
processes in the singM-cluster is summarized in Fig. 3.5, where these three nonbonding states are
represented with the shaded rectangle. Note that the nonbonding states are hardly perturbed with the
metal-ligand hybridization.

These features of the degenerate singleluster calculation are substantially conserved in the
multi-M cluster calculation. Apart from subpeaks such as 4, the main manifold of the XAS spec-
trum shown in Fig. 3.4 (b) is composed of two definite lines, and we can naturally attribute these lines
to those states which have relatively largl or cD? weight in the photoexcited cluster. For RXES
spectra, we see, firstly, that the nonbonding states give the main inelastic structure for the main peak
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resonance (spectrum 1 and 2). Secondly, the antibonding state marked with the shaded bar is strongly
enhanced whef is tuned in the vicinity of the satellite peak (spectrum 7), although the satellite peak
is greatly smeared out and does not give a clear structure.

Sat.

c3d' AN
7. Main N
/ A SRR
/ il \\\\ \\\‘\\:_‘
3d'L - // e \\\\\\\\ _3d1L
. / 7 \ N\
— / 7 —
3d0 ezl . 1 3do
(XAS final)
Initial Intermediate final

Figure 3.5: The energy scheme &d-2p RXES of d° compounds in the standard notation. In the
initial and final states, the metal-ligand hybridization creates the bonding (represented with the lowest
horizontal bar), antibonding (the highest bar) and nonbonding states (the shaded rectangle). These
three kinds of states similarly exist in the intermediate state. Whilaltpenhybridization gives rise

to the bonding-antibonding separation, the energy of nonbonding states is hardly perturbed with the
hybridization.

Close inspection shows, however, certain modifications are observed in the spectra of local origin.
Firstly, while the nonbonding states keep energy separation of ordedDaf in the singleM cluster
calculation, the separationin Fig. 3.4 (b) is considerably contracted because of the finite transfer between
unit clusters. Whether or not this is the case in realistic three-dimensional systems is unclear because
whether the separation between the nonbonding states get smaller or larger would greatly depend on a
band structure. Secondly, the intensity ratio of the main XAS peaks is slightly changed. This is possibly
associated with a change in character of the main absorption peaks, i.e. from the simple bonding state
to a core-excitonic state.

The most conspicuous change in RXES spectra is occurrence of the fluorescence-like spectra. Figure
3.4 (b) exhibits the inelastic spectra whose position is almost the same as that of NXES for almost
all Q’s higher than 3. This is sharp contrast to the nonbonding-antibonding spectra explained above,
which behave as if NXES spectrum has no relation with RXES. Similarly to the nondegenerate case, we
confirm again that the origin of such spectra s itinerancy in the targeted intermediate state. The subpeaks
in the high-energy tail of the main absorption peaks, such as 3, 4 and 5 in Fig. 3.4 (b), originate from
a finite number ok-points, and highly itinerant according to the core exciton theory. In fact, a detailed
analysis of the present author shows that a photoexcited electron in the intermediate state 3 is delocalized
mainly through thel-p transfer path, and that a photoexcited electron in the intermediate states 4 and 5
is delocalized mainly through tHa-P transfer path.
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3.4 Calculated Results IlI: Mott-Hubbard Insulators

3.4.1 Nondegenerate’ system

Figure 3.6 shows calculated XAS, NXES and RXES spectra with nondegenerate modeds filith

ing, which simulates theg bands of TO3. The parameters are taken\a=2.0,A=2.0,Uy4=4.0 and
Ugc=6.0 eV [109]. Because &fyq+ A > Uggq, this system is in the MH regime in the Zaanen-Sawatzky-
Allen diagram [22]. Note that the lowest charge excitation is made by inted<sitexcitations in this

case. Then it is interesting to study RXES spectra of MH systems in the context of the nonlocal (or
large-cluster) effects.

In the nondegenerate sing\é-cluster model wittd? filling, the only possible configuration in the
intermediate state isd?, so that we have the only single peak in XAS spectra in Fig. 3.6 (a). On the
other hand, two configurations df andd?L are possible in the final state. Thus, we observe the only
inelastic peak due to charge-transfer

W, = (A—‘r Udd)z +8v2~82eV

distant from the elastic line, and the RXES spectra exhibit necessarily only Raman component.

In the NXES spectrum in Fig. 3.6 we see a strong peak at ab®el/ and a weak structure at about
—10eV. The former corresponds tadd-dominant state, and the latter talL-dominant state.

In addition to the CT peak, the inter-sitkd excitation should take part in RXES spectra in the
multi-M cluster model. There observed an inelastic peak approximately 4.4 eV distant from the elastic
line in RXES spectra in Fig. 3.6 (b). While spectral weight of this peak is strong for |Q/geup to 5,

a structure about 10 eV distant from the elastic line is enhance@'$onigher than 5. To study these
structures, we calculate valence photoemission spectra (PES) and Bremsstrahlung Isochromat spectra
(BIS), whose spectral functions are written as

Fedk @) = Y [(fl0k10)"8(0+ E1 &) (3.7)

Fais(k, w) Z' fldy|9)[8 (e — Es + Eg). (3.8)
Figure 3.7 shows PES and BIS spectra, where we adopt a nondegeahggatduster model with the
same parameter to take mdegooints. The figure clearly shows that the upper branch of the simple
Bloch bands in th&lgq — 0 limit (solid curves)

£ (K)— g = % (u: Vit (4v/A)2co§(k/2))

is substantially modified into the lower Hubbard band (LHB) and upper Hubbard band (UHB). Hence
we attribute the aforementioned lower energy structure in RXES to a CT process, and the higher energy
one to an inter-sitel-d transfer, which rules the Mott-Hubbard gap. We call the former one “CT” and
the latter “MH” hereafter. Furthermore, the intense peak4eV in the NXES spectrum (Fig. 3.6 (b))
is attributed to a radiative transition from LHB, whereas a bump in its low energy tail to a radiative
transition from the lowest valence band. The difference in intensity is naturally explained by difference
in d-weight of these bands.

Although the MH structure in Fig. 3.6 (b) is composed of the single line, there should be generally
energy dispersion in this structure. To confirm this, we show XAS and RXES spectra calculated with
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Figure 3.6: XAS, RXES and NXES spectra calculated witindegeneratenodels unded? filling, (a)
the singleM and (b)dsp4 periodic clusters. See the caption for Fig. 3.3.
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Figure 3.7: PES and BIS spectra calculated withdgyes nondegeneratehain. The calculated spikes

are convoluted with Lorentzian 0.2 eV (HWHM). The solid curves show the Bloch bandsliyghe 0

limit. The arrows show the upper and lower Hubbard bands. The Fermi level is represented with the
dotted line. We takep as the origin of the energy.



the dgpg cluster in Fig. 3.8, where all RXES spectra are plotted as a function of Raman shift. The
MH structure is clearly seen at abouB.5 eV, and the CT structure at abou9.5 eV. We observe

energy dispersion of the MH structure for spectra 4 and 5. Corresponding to the fact thatd3ly

is possible in the singl® cluster limit, the XAS spectrum has the strong peak labeled with M, as in
Fig. 3.6 (b). The additional peaks are also observed in its high energy tail. Their characters are depicted
schematically in Fig. 3.9 (a), where each transition process between many-body states is mapped into
a counterpart in the one-electron picture. In the states corresponding to the main peak M and the very
weak satellite peak S, the core hole is mainly screened by the photoexcited electron itself. The peaks 4
and 5 correspond to the excitation to UHB. These are necessarily delocalized and poorly-screened. The
peaks 2 and 3 have an intermediate character of the two states, and they are irrelevant to be depicted as
a one-electron process.

Similarly, RXES final states are visualized in Fig. 3.9 (b) in terms of the one-electron density of
states. The MH structure is related to one electron-hole pair creation between UHB and LHB, whereas
the CT one between UHB and the filled ligand band. The dispeidependence for the spectra 4
and 5 is directly associated with energy dispersion of UHB. Although this behavior is somewhat similar
to the fluorescence-like spectra, its energy width is too narrow under the realistic parameter set for Ti
oxides® to explain the experimental trend of, e.g.,@ [108].
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Figure 3.8: RXES and XAS spectra calculated withdgps nondegeneratehain. Note that the abscissa

is defined as Raman shift — Q, which is the same &; — E¢. The elastic line, which should reside at
zero, is omitted from the figure. The excitation energies and the numbers attached to the arrows in the
XAS spectrum correspond to those in the RXES spectra.

5This is still true also for the larger value w£3.5 eV, which roughly simulates boty andtyg orbitals.
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Figure 3.9: Schematic explanation of representative final states in XAS and RXES spectra. The shaded
and blank areas show occupied and unoccupied densities of states, respectively. The closed and open
circles represent an electron and hole, respectively. (a) In the intermediate (XAS final) state, a core
electron is photoexcited to bound states (represented with bars) or UHB. The labels M, S, 4 and 5
correspond to those in Fig. 3.8. (b) An electron-hole pair is left in the final state.

3.4.2 Degeneratel! system

Figure 3.10 shows XAS, NXES and RXES spectra calculated with degeneratelgimdlster andl; ps
models withd? filling. We fixed S,=1/2 for the singleM cluster calculation.

Let us first consider the singld-cluster case. We see that the main manifold of XAS spectra exhibits
a doubly-peaked structure. This is consistent tadthealculation, but the lower energy absorption peak
is considerably suppressed because of larger occupation number in the lower eoebipal. We
also see that the higher branch of the main manifold in Fig. 3.10 (a) is composed of a few peaks with
extremely small energy separation. This is attributed to the contribution of spin multiplet. Wien
tuned at these peaks, the resultant final state would havedrgesight. Thus a strong inelastic peak
observed 2.5 eV distant from the elastic peak in RXES spectrum 2 is attributed to the intladsite
excitation, which has been shown in Fig. 1.8 (left). We denote this excitatiod-ol hereafter. Note
that the value 2.5 eV is the same orderl6Dq, but from a quantitative point of view, it considerably
deviates froml0ODg because of relatively large anisotropy of hybridizatierandv,.

In addition to thed-d peak, another structure is observed about 10 eV distant from the elastic line.
This is attributed to charge-transfer to the metal site from the neighboring ligand sites. To study the ori-
gin of inelastic peaks more clearly, we arrange the same RXES spectra with Raman shift in Fig. 3.11 (a),
where one sees that the CT structure is distributed over about 4 eV. Unlikié dase, the permutation
symmetry does not rule the separation between antibonding and nonbonding states whea@Diinite
works, because the unperturbed stdtg = d;r |d%) is not symmetric. Within the two-configuration
approximation, there are two other state vectors, which have the same point group symrilatry as

211) = dp;|11)

1
|212) = NG ZDLP0|11>~
[
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Figure 3.10: XAS, RXES and NXES spectra calculated withdidgeneratenodels unded? filling, (a)
the singleM and (b)dsp4 periodic clusters. See the caption for Fig. 3.3.



Both of them have a doubly-occupied metal site. Consider a linear combination of these Véglors,
under condition such tha{2;|H|1;)| is maximized. Following the effective hybridization theory, we
have
20) = o (wf200) +V20[212))
Vert(d?)
where
Verr(d) = 1/ (2v1)2 + 2(2v2)2.

Diagonalizing2 x 2 Hamiltonian spanned b§{1;),|2;)}, we have bonding-antibonding separation

Wy o~ \/(A+ Uga)2 +4V2,

which is the same order &%. A peak at—12.6 eV labeled with “AB” in Fig. 3.11 (a) originates from
this antibonding state, and it is strongly enhanced wfen tuned at the satellite structures 5 and 6,
being consistent to the® case. This is also described in Fig. 3.10 (a) with the shaded bars.

In this context, we consider the state orthogonal2 as the nonbonding state in the truncated
Hilbert space,

IN21) (—fzvz\211> +v1|212>> .

2
- Veff(dl)
This corresponds to a peak-aB.8 eV, which is strongly enhanced in the RXES spectrum 4. This fact
suggests that the absorption spectra in the vicinity of the arrow labeled with 4 has also nonbonding
character. In fact, it has relatively large weight@D*; d?p), which gives rise to relatively larg@; 1)
weight after radiative transition of tH2 electron.

There is another class of nonbonding states, which has different point group symmetrjgfrom
WhenQ is tuned at the main absorption peaks, it is this class of states that are the most strongly en-
hanced, as in tha® case. Corresponding thli1o1) and|N102), state vectors such as

IN111) = d/P|13)

1
IN1;2) = 7 S D5poll1)
o

are of this kind. The former contributes to an inelastic peak®B eV whenQ is tuned at the peak 1,
whereas the latter contributes an inelastic peak¥t 3 eV whenQ is tuned at the peak 2. The energy
separation between them is naturally attribute@@Dq.

Apart from thed-d structure, theQ dependence of RXES spectra has much in common with the
d® spectra in Fig. 3.4 (a) rather than the nondegenerate calculation in Fig. 3.6 (a). Thnolltter
(d4pg) results are shown in Figs. 3.10 (b) and 3.11 (b). In contrast to the dihgllesster results, we
observe fluorescence-like behavior there. Note that the nondegeneratéd/nulltster calculation in
Fig. 3.6 (b) exhibits no such behavior. Thus we conclude that it is essential for the appearance of the
fluorescence-like spectra it systems to include orbital degeneracy.

The other large-cluster effect is inelastic peaks due to intedsitexcitations. Compare Fig. 3.11
(b) with Fig. 3.8. As explained, the latter model is regarded as a truncated model to include ahly the
transfer path of the former. We notice that a bump at abetieV in Fig. 3.11 (b) for RXES spectra
1, 2, 3 and 4. This is attributed to the inter-git&l excitation, and labeled with “MH”, as in Fig. 3.8.
Although the MH structure is separated from the CT structure in Fig. 3.8, one observes that the center
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of the spectral weight moves to lower energy roughly proportion&l,tecom MH to CT structure and
beyond, resulting in the fluorescence-like spectra in Fig. 3.11 (b).

On the other hand, we see that a structure at abdteV is enhanced for 1 and 2, and a structure
at about—11.9 eV is enhanced for 3. This is explained by the enhancement of the nonbonding states
which originate from/N1;1), |[N1;2) and|N2;). We also observe an isolated peak-dt4 due to the
intra-sited-d excitation. The resonance enhancement of the antibonding peak is also observed for the
spectrum 7, as expressed with the shaded bar in Fig. 3.10 (b). Figure 3.11 (b) is very intriguing in that
these structures of local origin, which are successfully explained with sMgikister model, coexist
with the aforementioned structures due to inter-site effects.

3.5 Discussion

3.5.1 d°system

We defined a nonbonding state as that state which has no or little hybridization matrix element with the
ground state. Mathematically, this definition may hold in realistic three-dimensional systems. Figures
3.4 (a) and (b) show sligl2-dependence in the nonbonding structure, where the spectral weight moves
from higher energy to lower energy branch of the nonbonding peaks in going from the spectrum 1 to
3. As discussed within the singM-cluster model, the energy separation between the two nonbonding
states, which originate froniN1g1) and|N1y2), is attributed mainly tdl0Dg. While this kind of Q-
dependence is consistent to experimental feature [106], the calculated spectra show considerable cluster
size dependence of the separation. This is an example that a feature of local origin is renormalized by
multi-M cluster effects. Apart from this kind of slight dependence, the fact®dependence of the
nonbonding structure is not very strong in experimentaBd2p RXES of TiO, [106] suggests that

the nonbonding structure is composed of states with various symmetries, and these states are highly
smeared out by @p band effects.

The latest experimental data on Td-2p RXES of TiO, [106] shows a strong resonance enhance-
ment of a peak 14 eV distant from the elastic line wikkis tuned at the satellite structure of the XAS
spectrum under a polarized configuration. This enhancement is not observed in Fig. 1.6, where the de-
polarized configuration is adopted. This fact means that the CT excited state corresponding to the 14 eV
peak is the same symmetry gg, and we naturally attribute it to the antibonding state, whose origin
is the higher energy eigenstate in the truncated Hilbert space spann@s} layd |1). Despite of its
simplicity, our model well explains the essential physics of the experimental 14 eV enhancement. Note
that spinless exciton models [103] can not describe the CT satellite of XAS, and therefore by no means
describe the experimental polarization dependence.

There had been a controversy on the origin of the satellite structure 21f-XiPS or2p-XAS of
TiO, [49, 112]. Okada and Kotani conclusively demonstrated that it is the CT satellite by their theo-
retical analysis with a Ti@cluster model [49]. With this regard, the polarization dependence of RXES
whenQ is tuned at the satellite structure is significant in that it dramatically proves its character as the
CT satellite. Moreover, the large bonding-antibonding separation offers evidence thaisTiOthe
strong hybridization regime. Thus, parameter estimations based on the atomic picture would be subtle
in many cases.

Apart from the fluorescence-like behavior, the sinigleeluster model well explained th@-
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Figure 3.11: RXES and XAS spectra fot filling calculated with (a) the degenerate singleand (b)
degeneratel;ps cluster models. Allg; andb; are set to be unity, and all excitation energies and the
numbers attached to the arrows are the same as in Fig. 3.10. See the caption for Fig. 3.3.
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dependence of RXES spectra calculated with the nMiltuster model. This means that the local
transition picture as shown in Fig. 3.5 is at least partly applicable to the Raman component despite the
translational symmetry of the system. This is a consequence of the special feature of RXES that reflects
local as well as itinerant nature of the system.

We comment on the relative intensity of the structures of local origin, i.e. the antibonding and non-
bonding structures. Comparing Fig. 3.3 with Fig. 3.4, we see that they are clearer in the latter than in
the former. This suggests a trend that the more available internal degrees of freedom a unit cluster has,
the more weight of spectra of local origin is observed. The reason is naturally related to the number of
transition paths.

3.5.2 d!system

We demonstrated the appearance of the intragsideexcitation in RXES spectra fai® systems. Re-

cently Higuchiet al. reported that intensity of a peak 2.3 eV distant from the elastic line increases
with La doping for SrTiQ [113]. Since LaSr_4TiO3z has nominallyd* filling, their explanation that

the 2.3 eV peak is caused by the intra-$jte— e transition (see Fig.1.8) seems to be natural. While
they made estimation of the value D8Dq simply as 2.3 eV, Fig. 3.11 shows considerable cluster size
dependence of its energy separation from the elastic line. We have the value of 2.5 eV with th#single-
cluster model, whereas 1.4 eV with the mMicluster model. Although the latter is fairly close to

the actual valud0Dg=1.7 eV, whether or not this is the case in realistic three-dimensional systems is
unclear because whether it gets smaller or larger would greatly depend on a band structure. What we
can say definitely is that the anisotropy betwegrandey orbitals play a certain role.

Experimentally observed-d peak in Ti3d-2p RXES of TiO3 [108] is much weaker than other
inelastic spectra even whéhis tuned at they peak in XAS. Figure 3.11 shows, however, a strdng)
structure. This discrepancy is partly attributed to larger probability for electrons to ocalifyrdyg)
orbital in |g) . In the weak hybridization limit|g) is trivially d];|d0), which gives the probability of
1/2 to occupy up or dowl orbital. In realistic ThO3, the probability is onlyl/6, resulting in smaller
amplitude of the transition from &y to a core orbital. In this context, the maximum intensity of the
d-d peak would get larger with increasing the occupation numbegalrbitals, i.e.,TioOz < V203 <
Cry0s3, etc.

For the CT structure, Fig. 3.10 showsdependence similar to the results of e systems in
Fig. 3.4. This is related to the fact that we can successfully define the antibonding state as explained in
the preceding section. The lower symmetry of the unpertudbestiate, however, disturbs the resonance
enhancement of the antibonding peak as compareld.ténalogous to TiQ, there is a broad satellite
structure in experimental Bp-XAS of Ti»Oz [108]. Our results onl! systems predict that polarization
dependence of the antibonding peak should be observed @ligetuned at the satellite structure.

For band insulators, we have confirmed that spatially extended states are in the high energy tail
of the main manifold of XAS, and that these states maintain the one-electron character to great extent
against the stronglyg andUq.. While we have some extended states also for MH insulators, they are
quite unlike the simple one-electron states, but complicated many-electron states involving excitations
in the Hubbard bands. It is not necessarily clear what kinds of extended states are created when orbital
degeneracies are introduced in. What one can definitely say is that the orbital degrees of freedom relaxes

6polarization dependence is another possible reason.
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the reduction effect due to the Pauli principle, and therefore encourages the dissipation of a photoexcited
electron. In any case, the existence of highly delocalized states that are densely distributed over finite
width in an absorption threshold is a necessary condition to display the fluorescence-like component in
RXES spectra.

3.6 Conclusions

We have discussed the role of orbital degeneracy in n3et&@lp RXES with periodic multiM cluster

models unded® andd? fillings. We first investigated® systems with a singl#4 cluster model. Calcu-

lated RXES spectra showed only Raman component, which is composed of antibonding and nonbonding
states. The origin of the antibonding state comes from totally symmetric states as to the permutation

of degenerate orbitals, whereas that of the nonbonding state comes from those states which have dif-
ferent symmetry from the unperturbed ground stat®. This mathematical definition well explains

the Q-dependence of RXES spectra, which is quantitatively consistent to the experimentally observed

resonance enhancement of the antibonding state under a polarized configuration.

With a degenerate mult¥ cluster model, we demonstrated that the above properties of local origin
are substantially conserved in RXES spectra. Large-cluster effects, however, were observed, first, in the
modulation of intensity ratio between two main absorption peaks, and second, in the reduction of the
peak separation in the nonbonding structure. Moreover, third, we again confirmed the appearance of the
fluorescence-like RXES spectra, which is completely missing in the siMgikister results. Our result
is the first calculation that demonstrates toexistencef the fluorescence-like and Raman components
with a periodic Anderson model.

Next we showed calculated results fby systems. RXES spectra calculated with nondegenerate
models exhibit only Raman component for both single- and even mudtiuster models, but the latter
results show considerabt®-dependence. While a structure due to inter-gigbtransition is enhanced
for lowerQ, a structure due to CT is enhanced for higheAlthough energy dispersion of UHB slightly
reflects on theQ-dependence, it is too small to explain the occurrence of fluorescence-like spectra in
realistic parameter set for Ti oxides.

The most remarkable effect of orbital degeneracy is the appearance of the fluorescence-like spectra
in the multi-M cluster calculation, being qualitatively consistent to experimental spectra. The naive con-
jecture that effective hopping energy reducedlbyon-site Coulomb interaction hinders the appearance
of the fluorescence-like behavior does not hold when the orbital degeneracy is introduced. This result
demonstrates the essential importance of the orbital degeneracy as well as the translational symmetry.
The appearance of the fluorescence-like spectra seemsaaéeeral phenomenon that is observed
wherever highly delocalized continuum states exist.

In addition to the fluorescence-like spectra, the orbital degeneracy gives rise to, first, a peak due to
the intra-sited-d excitation. The separation between this peak and the elastic line is of ortiebqf
but it considerably depends on cluster size. Second, honbonding states as well as the antibonding state
contribute to inelastic spectra. Despite the difference in symmetry of the ground state, the calculated re-
sults showQ-dependence similar to th¥ case, from which resonance enhancement of the antibonding
peak is predicted whef is tuned at the XAS satellite structure under polarized configurations.
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Chapter 4

Local and Nonlocal Excitations in Cu
4p-1s Resonant X-Ray Emission
Spectra of N,CuOy4

Theoretical study on Cdp-1sRXES of NCuQy is given in the context of local and nonlocal natures

of electronic excitations. Detailed analyses with an impurity Anderson model and multi-Cu models are
presented, based on the exact diagonalization technique. By investigating partial densities of states,
substantial characters of each excited state are clarified. It is demonstrated that a disagreement with
experimental data is unavoidable with the impurity model. The key concept to solve the difficulty is
Zhang-Rice singlet formation in the intermediate state of RXES. We find that it survives in the final
state of RXES as the lowest charge-transfer excitation. The limitation of the impurity model and the
essential role of nonlocal excitations in RXES are stressed.

4.1 Introduction

Nd>CuQy is well known as a mother material oftype superconductor, NdyCgCuOy_y [114], which

has attracted special attention in the context of appearance of the electron-hole symmetry [115], a char-
acter which single-band models should have;GldO, has two-dimensional (2D) corner-shared GuO
planes with nominallyl® configuration, which is believed to be essential for higtsuperconductivity.
Recently, Cup-1s RXES of NaCuQy has been measured by Hill and coworkers [116]. Thel@ds

RXES process is schematically shown in Fig. 4.1. A completely localizedre electron is resonantly
excited to an emptylp conduction band by an incident photor @ keV), and then the excitedp

electron radiatively comes back to thecore orbital. In the intermediate state (Fig. 4.1 (b)), a valence
hole on the core hole site is strongly scattered to move away to surrounding sites, so that the dynamics
of the “dopant” hole such as Zhang-Rice (ZR) singlet formation [43] would be strongly reflected on the
RXES spectra. Itis interesting to see how the ZR singlet state decays or survives with going to the final
states, and to examine what kind of state is created above the insulating gap through varying the incident
photon energy.

1T. Idé and A. Kotani, J. Phys. Soc. Ji8 (1999) 3100-3109.
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Figure 4.1: Schematic diagram of Cg-4p-1s RXES process. The blank circle and blank arrows
represent adcore hole and up- or down-spin valence holes, respectively. The shaded circles represent
1sor 4pelectrons. (a) The ground state with antiferromagnetic order. (b) THe intermediate state, where
a photon excited aslelectron to an empty ptlevel (the4p band width is disregarded in this figure),
creating a & core hole. The strong repulsive interactidg. between3d and 1s holes gives rise to a
charge-transfer (CT) excitation. There is also attractive interatliggy betweendp electron andd

hole, but it can not completely compensbkg. (c) The final state with a CT excitation. The energy
difference between the final and ground states is observed as energy loss of the X-ray.

Figure 4.2 shows the experimental data of thedpy-1s RXES of NoCuO, [116]. The abscissa
is the energy loss of X-ray, which is the same as the energy difference between the initial and final
electronic states¢ — Eg 2. The incident photon energy is taken in the region ofil&dp, XAS, which
is shown in the upper panels of Fig. 4.3 with the open circles. The first (at 8984 eV) and second (at
8990 eV) features of the Cils-4p,;; XAS are denoted by a main peak and a satellite, respectively. It
is seen in Fig. 4.2 that an inelastic structure at about 6 eV is observed for 8987.5, 8989 and 8990 eV
in addition to the extremely strong elastic peak at zero. The incident photon energy dependence of the
6 eV excitation is shown in the lower panels of Fig. 4.3 with the open circles. We recognize that the
6 eV intensity is strongly enhanced when the incident photon energy is tuned at the satellite of the XAS
spectrum, but it indicates almast enhancement at the main peak position.

The aim of this chapter is to give a theoretical interpretation for these experimental data. We will
first analyze the experimental data with an impurity Anderson model. The calculated results will be in
fair agreement with the experiment, but there exists a conspicuous difference between the theoretical
and experimental results: The calculated 6 eV intensity shows a considerable enhancement at the main
peak position. In order to remove this discrepancy, we will next use a multi-Cu cluster model. It will be
shown that the 6 eV intensity is strongly suppressed at the main peak resonance because of the formation
of a ZR singlet in the intermediate state.

The layout of the present chapter is as follows: In the next section, the models used are explained.

2t equals—1x (Raman shift). Although the calculated RXES spectra will be arranged as a function of this quantity to compare
with the experimental data, we hope that the readers do not confuse them.
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Numerical analysis with the impurity Anderson model is described4dr8. We discuss iy 4.4 the role
of the nonlocal screening effects with multi-Cu cluster models. In the last section a brief summary of
the present study is given.
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Figure 4.2: CWpr-1s RXES of NbCuQy [116] as a function of energy loss. Incident photon energies
are tuned in the range 46-4p;; absorption. The polarization vector of the incident X-ray has an angle
60° to the CuQ planes, and its momentum-transfer is perpendicular to those (see Fig. 5.2 (a)). The
excitation energies are indicated in the upper panels of Fig. 4.3 with vertical bars.

4.2 Formulation

We consider a 2D extended periodic Anderson model including<Gand Cu4p orbitals, as shown in
Fig. 4.4. The explicit form of the Hamiltonian is as follows:

H= Hdp"’ pr+ Heore+ Hac+ H4p + H4pc+ H4p3d7 (4-1)

where

Hip = —AY digdog+Tpp Z; (1™ {Pgr par/+H-C-}
ko rfo

+  Tpd Z (—1)% [ddgpor +H.c] +Uag S d] digd] dig,
R0 R

Hpp=Upp Z p%rr Prr plrr Pyr, (4.2)
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Figure 4.3: (aJ.ower panel The 6 eV intensity as a function of the incident photon energy idGH1s
RXES of NbCuQy. The open circles represent the experimental result byetidil. [116]. The solid

and dashed curves represent calculated results with @fggicluster forR. = 0.8 and1.0, respectively.

In accordance with the experimental resolution [116], all the calculations are convoluted with Gaussian
e =0.95eV (HWHM) for the scattered photon, ahgd = 0.3 eV for the incident photonJpper panel

The open circles represent experimentallGXAS of Nd,CuOy [117], where the polarization vector

of the X-ray is 60 to the CuQ plane (see Fig. 5.2 (a)). The definition of the two curves are the same as
the lower panel, although they are convoluted with LorentEias- 0.8 eV (HWHM) to take in lifetime
effects, and further witlh g = 0.8 eV to reproduce the experimental line width. (b) The same as (a), but
calculated curves are obtained with asCulg cluster. The calculated XAS spectra are broadened with
[L=08eVandlig=12eV.
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Heore = Slsz SLSQ’ (4.3)
R
and

Hac = Udc 5’ [z ngng] S:Sk- (4.4)
R | O

In these equationsﬂ,R creates a Cu,._,» holewith o spin atR site ande,r creates ar-bonded
O 2p hole with o spin atr site. A (> 0) is the charge-transfer (CT) energy between thand d
orbitals, and intersite hopping energy, andTpq are related with the Slater-Koster parameters [118]
asTpp = [(ppm) — (ppo)]/2 and Tpg = v/3(pdo) /2. The signs ofTpp and Tpg are described by
anda», which are 0 or 1, depending on the relative position of a nearest-neighbor O-O and Cu-Cu pair,
respectively.S’FQ creates a Cds electronat R site. Ugg andUyc are on-site Ci8d-3d and Cu3d-1s
Coulomb repulsion energies, respectively.

Udd,U4p3d
Upp, Udc,
Udpc

(a)orbitals

(b) CusO1s cluster

Figure 4.4: Geometry of the system. (a) Orbitals in the modeRp@ and Cu{1s, 3d(by), 4pr}

orbitals are taken into account. The blank (shaded) area of the ellipses represents positive (negative)
phase. (b) The GiD16 cluster with open boundary condition. The oxygen sites are discriminated with
{&,bj, i} to construct molecular orbitals in the next section.

Generally, Cudp states are split off intay (4p;) ande (4py) symmetries in terms of the localsp
irreducible representations. Fép-1s RXES of NbCuQy, however, both contributions are separable
because there is no overlap between the experiméptagand4p, absorption threshold. We only take
into account thds-4p-1s transition process. The polarization dependence odEis RXES will be
discussed in the next chapter. THey, is given by

Hap = apn Y QRQr+t0 3 QfQy, (4.5)
R (RR)
whereQ’FrQ creates a Cdpy; electronat R site,tg is 4p;-4p;; nearest-neighbor hopping energy.
Hapc and Hapag describe Cudpr-1s and Cu4dp,-3d intra-atomic interactions, respectively. The
explicit forms are

Hape = —Uapc S QFQrSkSt (4.6)
R
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and
Hapad = —Uapag 5 QRQr ¥ dbxdor (4.7)
R c

In accordance with systematics of higheompounds discussed by Oletiaal. [119] and with arab
initio calculation [120], we set the valence electron parameters for large-cluster calculation€ofdyd
asA =25, Tpg = 1.21, Typ = 0.55andUqyq = 2Upp = 8.8 [eV]. A band calculation for NgCuQy [121]
gave thedp;; band widthW; = 2.5. Thereby we estimatg = 0.3 eV, along with one-electron formula
of the bandwidttW; = 8tg. Ugc, Uapad andUyp are set to be 7.5, 3.0 and 4.0 [eV].

In addition to the above model, we define an impurity Anderson model, which contain@plaad
Cudp orbitals inH, as well as the central C2d and1s orbitals. Since the system we are interested in
have nominallyd® configuration in the electron picture, the impurity problem is necessarily a one-hole
problem with one electron in thks orbital or the4p orbitals. In order to keep the main-satellite energy
separation of XAS to be the same as that of the large cluster model, a different parameteseV is
used for this model [86].

As far as thels-4p,; absorption process is concerned, the absorption opélrat®given by

Ta= %e*iQIRQLSQ, (4.8)

whereq; is the wave vector of the incident photon. The emission opefatisrdefined a$Ta)’r with the
substitution ofg; with gz, which is the wave vector of the emitted photon. Then the transition operator
of the4p,-1s RXES can be written as

T(Q) =Y ShQrGo(Q) QS (4.9)
R

whereGo(Q) is the resolvent operator defined@g(Q) = (Q+ Eq—H +il) 1. Eg andQ are energies
of the ground state and the incident photon, respectively. e s€0.8 eV in the present calculations,
considering semi-empirical data of the Auger process [122], and another calculation of RX&S for
systems [123]. In the above equation, we assumeghaty, — q; is perpendicular to the Cuy(plane
in accordance with the experiment. The polarization dependence [117] agai¢pendence [152] of
RXES will be discussed in the next chapter. To make sure, the explicit forms of spectral functions of
XAS and RXES are

Fras(Q) = 3 [(HITalg)8(Q +Ey — Eg) (4.10)
[

and
Fues@:0) =y 3 (fT(@)9)6(0 -0+ & -E) (@.11)
g

whereE, (E¢) is a final state energy of XAS (RXES), angldenotes the emitted photon enerdyis
the number of the Cu atoms.
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4.3 Analysis with Impurity Anderson Model

4.3.1 Properties of eigenstates

It is well-known that the eigenequation of the impurity Anderson model is exactly constructed as
&4 = Z,(X), wheregy is unperturbed energy of thtkorbital, and>, (x) is the self-energy function [124]:

Z |VJk|2
2= N2 %= Ej —

For the 2D periodic system with Cu-O distaraeéhere are two oxyge®p bands:

. 4Typsin(k@)sin(ka) — ,j=1
k = —4Tppsin(ka)sin(ka) ,j=2

For each band, the-p hybridization energy is

v —V/2iTpa[—sinka+sinkja] ,j=1
LO —V/2iTpg[sinka+sinkya] ,j=2

The graphical representation of the eigenequation is depicted in Fig. 4.5. We see that a bound state
exists at—4.3 eV. This is the ground statg). The above equation still holds for the intermediate state
under substitution ofy with &4 + Ugc — Uspaqd, as far as the energy dispersion of éhe electron is
neglected. In this case we have two bound stistesdS, as described in the figure.

In order to study properties of the eigenstates further, we calculate partial density of states (PDOS)
which is defined as

=Y l@len)?3(e — &n) (4.12)

for a ¢ orbital. |€,) is an eigenstate of the systefn.

By constructing molecular orbitals withhg symmetry around the impurity site, it can be easily
shown that the impurity Anderson model is equivalent to the model shown in FigA4sGhe nearest-
neighbor orbitals to the Cu site, which is defined by

AT:%(—aIJra;Jrag—aD. (4.13)

Starting with this, we come to more accurate description of the whole system by &Khg.. molec-
ular orbitals, wher® andC are defined by

1
BT:%(bJ{—b£+b§+b1—bg+bg—b;—bg) (4.14)
and

Ch=Z(~cl+ch+c}—ch), (4.15)

5!
respectively. Since they span the complete set, note that a surf yplg = p as well asf depy = 1
holds,p representing the total density of states (TDOS).

3Several authors have tried to decompose calculated spectra accordifigrentpoint group symmetry, se=g. Ref. [127].
We here define this function in order to investigate contribution of a set of state vectors sdithepoint group symmetry but
different spatial extent.

75



LU bhbsbbio—rDweE o w®
————

Figure 4.5: Graphical representation of the eigenquations of the 2D impurity Anderson modekwith 4
oxygen network.
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Figure 4.6: A equivalent model of the 2D impurity Anderson model. The closed and open circles
represent the impuritydBorbital and O2p molecular orbitals, respectively. The diagonal elements of
the equivalent Hamiltonian are described above each of the circles. The hybridization matrix elements
are described below each bond, whé&je= ﬁTpp andTo = \@Tpd. Note that there happen to be
degeneracies in molecular orbitals bey@d
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Figure 4.7 (a) shows PDOS @&fl and theA, B andC orbitals as well as TDOS for RXES final
state. We see th@ly and pa have definite peaks at the ground state and at around 5.2 eV. The energy
separation is approximately equal with the value obtained from the formula of the bonding-antibonding
separation [86]

W= \/(—A+ 2Typ)? +16T2,

in the simple CuQ@ cluster. This implies that the 5.2 eV peak corresponds to the antibonding state.
Since these bonding and antibonding orbitals are just two ones in the simplediigter, the 5.2 eV
excitation is nearly local, i.e. the hole spend most of its time at the plaquette with the infburity

On the other hand, we notice that the state at about 2 eV hadlisttel A weight. This means that
it is a nearly purep state, which has little amplitude at the impurity plaquette. In other words, it is a
nonlocally excited state. This character makes a sharp contrast to the ground state and the 5.2 eV excited
state, and it is directly reflected in t@edependence of RXES.
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Figure 4.7: (a) Total and partial densities of states of the imp@dtyrbital and O2p molecular orbitals

(A, B and C) defined in the text. TDOS and PDOS's are calculated with the impurity Anderson model
with N = 16 x 16 oxygen network, and they are convoluted with LorentZian= 0.2 eV (HWHM).

All densities are normalized so that the integrated areas are to be unity. The shaded bars are guide to
eye to represent unperturbed2p band width. (b) Total and partial densities of states (PDOS) in the
intermediatestate. The energy dispersion of thp dlectrons is disregarded for simplicity to calculate
PDOS, but it is fully included to calculate XAS. The ds-4p; XAS spectrum is convoluted with

'L = 0.8 eV. For both (a) and (b), the origin of the abscissa is adjusted to the lowest eigenenergy.

“More exactly, this excitation energy, which corresponds to the experimental value 6 eV, depends on the model, and takes
5.2 eV for the impurity Anderson model, 5.5 eV for £l cluster model and 5.7 eV for €@ cluster model.
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4.3.2 XAS

Figure 4.7 (b) shows calculated Gs4p XAS and PDOS for the intermediate (XAS final) state. The
energy dispersion of thép electron is neglected in the calculation of PDOS for simplicity, but it is fully
included in that of XAS. We observe a doubly-peaked structure in the calculated XAS spectrum, which
has been plotted with the dashed curve also in Fig. 4.3 (a). The energy separation between the main and
satellite peaks is consistent to that of the experimeistdlp,; XAS spectrum. If we subtract contribution
of a steeply increasing background spectrum due to the secondary electron emission process [125, 126]
from the experimental one, these two spectra would broadly agree.

We see that the major weight of the main peak of XAS, which is denotétMbyereafter, lies on
the A orbital. This is consistent with the standard notatioL in the electron picture, but there are
no little weights in bottd andC orbitals. The satellite peak of XAS, which is denoted Byhereatfter,
is composed mainly of thd orbital and slightly of theA orbital, being consistent with the standard
notationcd®.

As seen from Fig. 4.7 (a)g) as the initial state of XAS consists dfandA orbitals approximately
in the ratio of5 : 5. Large weight in these orbitals is a necessary condition to have a strong intensity in
XAS. Although|M) and|S) similarly fulfill the condition, Fig. 4.7 (b) shows that their XAS intensities
are quite different. The reason comes from a phase cancellation mechanisng)Bott|M) are split-
off states at lower energy side of the continuum, whef8ass the split-off one at the opposite side.
Thus we have considerable phase cancellation in the pragess|S).

4.3.3 RXES

Calculated results of the Clp;-1sRXES are shown in Fig. 4.8, where CT excitations appear as inelas-
tic spectra. The elastic peak is omitted from each spectrum.

Roughly speaking, we have broader spectra wfeis tuned atM, whereas a single feature at
around 5.2 eV appears for oth@r As discussed in the preceding subsection, the value 5.2 eV is nearly
the same as the bonding-antibonding separation in,Gu@ter. Within the present parameters, it is
approximately given by ~ 4T,q4. The lowest position of the inelastic peak is estimated as the energy
difference between the bottom of tpeband and the bonding state in Cu€uster:

1 A

This formula gives a rough estimation of the CT gap from the viewpoint of the impurity Anderson
model. Since it is believed thah — 2Tp;) is the same order dif,q for high-T. compounds, note that a
naive estimatiorggap~ A which comes from the simple limit of weak p hybridization does not hold.

We now discuss th€@ dependence of RXES. First we consider the case wihém at |S). This
intermediate state is strongly localized in the impurity plaquette, as shown in Fig. 4.7 (b). Moreover,
the phase of it matches the 5.2 eV excitation well by the aforementioned reason. Thus the main peak of
RXES appears around 5.2 eV.

Second,|M) has not a little weight in extended orbitals suchBasSince|M) is much closer to
the continuum tharg) in Fig. 4.5, it well hybridizes withp orbitals. The limitUgc — o is helpful to
illustrate the situation. The hole is completely pushed out to tpdands in this case, naturally getting
over the nearest-neighbor ligand orbital. In this sefidé,as well as the 2 eV excitation has a nonlocal
character, through which the transition frol) to the states around 2 eV is caus@d) has also large
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Figure 4.8: Calculated Cdip;-1s RXES and XAS spectra for the @056 cluster (impurity Anderson
model). The arrows indicate the incident photon energies, and their numbers correspond to those in
RXES.

weight inA, so that the overlap with the 5.2 eV excitation is large, although there is no reason for the
intensity enhancement by the phase matching in this case. This brings about the emission intensity
around 5.2 eV, resulting in the broader spectra.

Finally, since the absorption intensity in the region betwi@énand|S) is extremely small, spectral
shapes of 2, 3 and 4 in Fig. 4.8 are substantially determined by virtual transition process, although the
2 eV excitation is slightly favorable for these intermediate states which have large ex{eneaéght.

4.3.4 Excitation energy dependence of the 5.2 eV intensity

Let us consider the mechanism of thedependence of the inelastic peak intensity around 5.2 eV. For
the CuQ cluster, there are only two states in the final states of RXES. The intermediate states are also
spanned in two-dimensional Hilbert space as far as the energy disperdiprelaictron is disregarded,

so that|M)(M| + |S (S = 1 holds. Since the line width is much smaller than the energy separation
betweerSandM, we have the following identity between transition amplitugtgs— |5.2) throughM
andSintermediate states:

(52TM)C(M[Tg) + (529 T (STlg)
1

= (5.2|TeTalg) =

1

F
which demonstrates that the two amplitudes are the same except for their signs, and wss ameof

the 5.2 eV intensity takes a symmetric “U-shape”. We then take its asymmetry as a measure of nonlocal
nature of excitations.
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TheQ-scan is plotted in Fig. 4.3 (a) with the dashed cutvk shows that the scan takes almost the
U-shape, and that the large-cluster effect with respect 2p ®and plays a minor role. It suggests that
the transition process which gives the 5.2 eV excitation as a final state of RXES is mainly ruled by local
orbitals such ad andA.

Recently Nakazawat al. [94] pointed out the importance of configuration dependence [128] of
cation-ligand hybridization in Céf-3d RXES of CeQ. In order to see the effect, we here introduce a
parameteR., which renormalize3q of the plaquette with the core hole Bsx Tpq in theintermediate
(XAS final) states.

The calculated results witR; = 0.8 are also given in Fig. 4.3 (a) (solid curve). All calculated scans
are normalized so that each height of the maximum peak is the same. We fReAhhsuppresses the
5.2 eV intensity (although the suppression is too small to reproduce the experimental resul€) vghen
tuned aroundM), and strengthens its asymmetry. The limiRaf— 0 helps to make the situation clear.
Since the main peak of XAS has doweight in this case, and moreover the orbiéak not stabilized
throughd-p hybridization, the extrg weight contained in the extend®] C, ... orbitals necessarily
comes into the state to reduce the lafgaveight. Also for a finiteR., it must work to increase the
extended weight ifM). Thus overlap betweelil) and the 5.2 eV excitation tends to be decreased by
R in comparison with that ofS). This is the explanation of the asymmetric shape of®hscan of the
5.2 eV intensity.

Although the calculated XAS with the impurity Anderson model well reproduces the experimental
main-satellite separation, there are considerable discrepancies with experimental daa-stémeof
the 5.2 eV intensity. Wheg is tuned at the main peak of XAS, the 5.2 eV intensity always exhibits
one of the two peaks of the U-shape as far as the impurity Anderson model is used. The observed
suppression effect can not be reproduced at all. This is nothing but an indication of a nonlocal effect
(which is brought about by Zhang-Rice singlet formation) in the intermediate states of multi-Cu clusters,
beyond the simple @Qp band effects. It will be discussed in the next section in detail.

4.4 Analysis with Multi-Cu Models

4.4.1 Properties of eigenstates

Considering the results with the impurity Anderson model and the experimental fact that an antiferro-
magnetic order ofl holes is realized ifg), we are led to an idea that eigenstates of a multi-Cu cluster
model are described as some superposition of those of each plaquette [129]. We expect that there are
relatively local excitations around 5.2 eV, but somewhat new states should be created around 2 eV above
|g) upon going from the impurity to the multi-Cu model.

In order to see the point in detail, we again calculate PDOS and TDOS fog@;galuster with
Householder method [79], based on the fact that spectra gD{glare essentially the same as that of
Cus046. We choose

|AF) = de;dgl\vacuun),

as a counterpart @) in the impurity model, and

|A) =L do| |AF),

5The present result is essentially the same as that given in Ref. [116] with an impurity Anderson model, but quantitatively they
are slightly different because of a slightly differen2P band model and slightly different parameter values.
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as a counterpart dA\), where the suffix 0 means the central site, aﬁpis the creation operator of its
nearest-neighbor ligand orbital with lodaly symmetry of the local i, group, just as eq. (4.13). The
numbering rule is given in the inset of Fig. 4.9 (a).
In addition to these, we define alfg/) = Bgld0l|AF> and|C') = Cgldol\AF% WhereB(T)G andcga
are defined by
Bga = %(bIO’ - bga + bgo - szlU)v (4.16)

and 1
ng =5 (C;II-.O' - C;o)7 (4.17)

V2

respectively. The orbitallsga, Bgo andcgo haveag symmetry in terms of the f irreducible represen-
tation of the CygOqg cluster, so that all the above states have the same symnBatjyas the ground
state.

The result of the final state is shown in Fig. 4.9 (a) within the energy range corresponding to the
one-hole CT excitationH — Eg less than about 7 eV). We see tigai andp, have definite structures
at the ground state and at 5.5 eV. These features are similarly observed in Fig. 4.7. We thus conclude
that the 5.5 eV excitation is nearly localized in each plaquette, i.e. “intra-plaquette” excitation.

There are also some structures in the energy region betjggemd the 5.5 eV excitation, which
are not observed in Fig. 4.7. A detailed calculation shows that theqaeads large overlap with states
which have frustrated-spin arrangements such as

1 N .
N _Z(—l)"' dﬂdnd&dm |AF),
i=

whereN, is the number of up-spin hole, amgl is determined so that the state is By representation
of the overall symmetry group 3. Thus we conclude that the peak is due to spin excitations.

Figure 4.9 (a) also shows PDOS’s and TDOS gf = 0 with the dashed curves. It is observed that
a few peaks between 2 and 3 eV survive with slight energy shifts. Since the impurity Anderson model
is reduced to the Cugxluster in this limit, we conclude that the existencede network particular to
multi-Cu models is their origin. In order to study the properties of these peaks we here define a new
PDOS for

1 t
1Z+) = ﬁ(ziile +2,,.0a1)do, |AF), (4.18)
where the operatczq-Ti is defined by
1
ZiTi = \ﬁ(dfy LiTi idiTl LiJrT)~ (4.19)

|Z—) (|Z+)) describes a state where a hole pushed out from the central plaquette forms a local singlet
(triplet) at the nearest-neighboring plaguettes. The phase factor in eq. (4.18) was determined so that its
global symmetry is in agreement with that of the ground stag) (

According to the calculated resulpz_ has clear structureZ{) between 2 and 3 eV, but little
weight in pz,.. Although the impurity Anderson model contains the nearly guigtates in this en-
ergy range, this result suggests ttiet CT excitation in this energy range has ZR singlet like character
Hence the CT gap may be defined by the energy to move a hole from the bonding orbital at a pla-
quette to the surroundings, where the local singlet is forme®TJ§ < A held as Zhang and Rice
originally discussed [43], the binding energy of the local singlet would be estimated by their formula
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- szd[l/A2+ 1/(Uga — A)?). However, our parameter givéd,q ~ A. We hence obtain the conclu-
sion again that the simple estimation ttggs, ~ A doesnot hold. This point is made still clearer by
studying Cup-1s RXES of CuGeQ@, which has relatively largek [130, 131]. In fact, our recent cal-
culation shows that the charge gap is approximately haff iof CuGeQ. The detailed discussion will
be published elsewhere.

Except for this fact, PDOS’s in Fig. 4.7 and 4.9 have much in common. For example, the 2 eV
excitation has hardly AF weight, but has relatively large weighignandpc .
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Figure 4.9: (a) Total and partial densities of states in RXES final state fgD{guluster, whose struc-

tures are shown in the panel. The definition of the sfi&f and so on is given in the text. The solid

and dashed curves represent the results Wjgh= 0.55 and 0, respectively. (b) TDOS and PDOS in

the intermediate (XAS final) state, and As4p; XAS spectrum. The energy dispersion of #he
electron is disregarded to calculate PDOS, but fully included to calculate XAS. The solid and dashed
curves are obtained witR; = 1.0 and 0.8, respectively. For both (a) and (b), the origin of the abscissa
is adjusted to be the lowest eigenenergy, and all spectra are broadened with Lordntziab.Z eV),

whose integrated areas are normalized to be unity.

Similar arguments are applicable to the intermediate state. The calculated results are givenin Fig. 4.9
(b) for the system with a core hole at the central site. The energy dispersigredéctron is neglected
to calculate PDOS. It is clearly shown that AF weight is transferred to about 6.6 eV higher than the
lowest energy state, being denoted by “S”. Naturally, the main structypgrircorresponds tad® in
the standard notation of the impurity Anderson model.

In addition, first, we can assign the lowest energy feature “Z" to the state with the local simgflet (
triplet). This is the direct evidence of appearance of the ZR singlet in the intermediate state, also in
the final state oRp-XPS first discussed by van Veenendathl. [41], i.e. a hole pushed out by the
corehole potential moves to the neighboring plaquettes to form the local singlet. Second, structures
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about 1.5 eV above the ZR state is attributed to a charge-transferred state having a considerable weight
in the nearest-neighbor orbital of the core hole site, correspondifig tef the impurity Anderson
model.

Figure 4.9 (b) also shows Cls-4p; XAS. In contrast to the impurity Anderson model, there are
three structures in XAS, which are the above discussed Z, M and S. This interpretation has close rela-
tionship with that of2p-XPS [86, 88].

442 RXES

Figure 4.10 shows XAS and RXES spectra with the;@Q cluster with open boundary condition.
Calculated spike spectra of RXES are convoluted with Gau$siaa 0.95eV (HWHM) in accordance

with the experimental resolution [116]. XAS is also broadened with Lorentzias 0.8 to consider

the lifetime effect and g = 0.8 eV to reproduce the experimental peak width. To avoid boundary
effects, the core hole is fixed to the central site for both RXES and XAS. Effects of spatial coherence
are discussed separately in the next chapter in the context of momentum-transfer dependence [152].
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Figure 4.10: Calculated Cupf-1s RXES and XAS spectra with the @0, cluster model. The core

hole is fixed to the central site in order to avoid boundary effects. The arrows marked with numbers in
XAS indicate incident photon energies, and the numbers in RXES represent the corresponding excitation
energies.

As is the case of the impurity Anderson model, RXES in Fig. 4.10 have two structures around 2
and 5.7 eV, which are hereafter symbolically denoted2yand|5.7), respectively. The latter value is
somewhat larger than that of the impurity andsOwy models, but closer to the experimental value.

The 2 eV intensity is considerably enhanced when the incident photon efeigyuned at the
main peak “1" of XAS. This is observed in common with the case of the impurity Anderson model,
but the enhancement is extremely intense in this case. The reason is that both 2 eV excitation and
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the main absorption peak have a ZR singlet, so that their overlap is very large. Because of the ex-
tremely strong elastic scattering, the 2 eV peak is hardly observed in Fig. 4.2. It is established from
experimental [132] and theoretical results [133, 134] in the optical conductivity that the charge gap of
undoped highk; cuprates is of order of 2 eV. A recent high-resolution experiment id@as RXES

of SLCuO,Cl; [135] successfully observes the 2 eV peak. For the relative intensity of the 2 eV peak as
compared to the 5.7 eV one, the spatial coherence of the core orbitals seems to play some role. We have
fixed the core hole to the central Cu site in the present calculation. Roughly speaking, this corresponds
to that situation, where RXES spectra with all kinds of the momentum tragsfier mixed up. As will

be suggested by @dependent calculation in the next chaptethe 2 eV peak might be excessively
highlighted under this situation, as compared to the experimental data, gheperpendicular to the

CuGQ;, plane. At any rate, one needs experimental studies with higher resolution and theoretical studies
with larger clusters for detailed discussion on the 2 eV peak.

On the other hand, sing&.7) is the intra-plaquette excitation, corresponding to the 5.5 eV excitation
of CuzOq9 cluster discussed in the preceding subsection, the overlap with the ZR state is expected to be
quite small. The ZR state contains a plaquette with almost no hole. As a result, the 5.7 eV intensity is
suppressed whe@ is tuned at the XAS main peak. We believe that this is the fundamental mechanism of
the experimental suppression effect. Note that this conclusion is hardly affected by the above-mentioned
spatial coherence of the core orbitals, because of the intra-plaquette nai® .of

Since the satellite peak “5” has the dominant weight in AF as shown in Fig.4.9 (b), it is likely for
this state to have large overlap with7), the state almost localized at each plaquette. This coupling
would be preferred also from the phase matching point of view. In addition, it is expected to have little
overlap with the 2 eV excitation containing the ZR singlet like state. Thus the RXES spectrum has an
only structure around the 5.7 eV excitation.

WhenQ is tuned at the shoulder “2”, which was denoted by M in the preceding subsection, the situ-
ation is halfway. The dominant weight of M lies @), but more extended orbitals have no negligible
weight as shown in Fig.4.9 (b), so that the former gives rise to the intensity of the 5.7 eV excitation, and
the latter causes the transition to the 2 eV excitation, resulting somewhat broader spectra.

4.4.3 Excitation energy dependence of the 5.7 eV intensity

The disagreement with the experimental data in®scan of the 5.2 eV intensity with the impurity
Anderson model is essentially cleared up by considering the above multi-Cu effects. Cal@Qitdads
of the 6 eV (actually 5.7 eV) intensity #p-1s RXES of NCuQy are given in Fig. 4.3 (b), where the
results withR. = 1 and0.8 are represented with the dashed and thick solid curves, respectively.

In contrast to the doubly-peaked shape of the impurity model calculation, the multi-Cu one gives a
triply-peaked structure. Because of the suppression effe€® fiomed at around-3 eV, it reproduces
the experimental data much better than the impurity one.

IntroducingR., we see that the 5.7 eV intensity is more suppressed @hsituned at the main peak
(2), but enhanced whef is tuned at the shoulder (M), improving the agreement with the experiment.
TDOS and PDOS's witliR; = 0.8 for CuzO1 cluster is shown in Fig. 4.9 (b) with the dashed curve. We
see that, firstpz_ is enhanced byR; # 1 at the lowest state “Z”. This means that the hole is pushed
out from the core hole plaquette more strongly, so that the overlap with the intra-plaquette excitation

6See Fig. 5.9.
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tends to be decreased. On the other hamd,is increased around the energy of the shoulder “M”,
being consistent with the discussion in the subsection 4.3.4. Hoygvandpc are decreased at this
energy, so that the overlap with the intra-plaguette excitation tends to be increased. This means that the
existence of the ZR singlet state reduces extended nature of the state M.

We finally give a few comments on the present study. There is slight discrepancy with the ex-
perimental data mainly due to the incompleteness of the suppression effect. We have performed the
calculations with relatively small clusters such agOth or Cus016. All excitations necessarily have
more or less local character as far as the system is finite. Moreover, it is impossible to avoid bound-
ary effects perfectly. In order to make the point clear, detailed experimental and theoretical analysis
is needed for one-dimensional systems [136], where one can extend the cluster size without facing the
limitation of the memory size of computers.

45 Conclusions

We theoretically investigated the Glps-1s RXES of N&CuQy firstly with the impurity Anderson

model. Utilizing PDOS functions, we found that excitations about 5.2 eV above the ground state have
considerably localized character, and that excitations about 2 eV above the ground state are nearly pure
p states, having less amplitude at the plaquette with the impurity.

In the large cluster calculations, however, the low energy excitations created by CT processes have
ZR singlet like character in contrast to the result with the impurity Anderson model, although excitations
about 5.7 eV above the ground state is similarly local (“intra-plaquette”). This difference is clearly
reflected in the RXES spectra when the main absorption peak is resonated.

A conspicuous disagreement with the experimental 6 eV intensity as a function of the incident
photon energy could not be removed with the impurity Anderson model. It was demonstrated that the
difficulty is solved by considering Zhang-Rice singlet formation, using the multi-Cu model.

We finally discussed the role of the configuration dependence af-fhv&ransfer. The satisfactory
agreement with the experimental data is obtained with the large cluster calculatiodR.with
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Chapter 5

Polarization and Momentum
Dependence of Charge Transfer
Excitations in Nd>,CuQy4

Polarization and momentum-transfer dependence idfggtlsresonant X-ray emission spectra (RXES)

of Nd,Cu(y is theoretically studied. We explain the experimental polarization and angular dependence
of the 5.7 eV excitation. Comparing results calculated with single- and multi-Cu models, we confirm
again the essential contribution of the nonlocal screening effect ipgtls. We predict considerable
dependence of a CT excitation at about 2 eV on momentum transfer along thepGu@s, and the

5.7 eV excitation has less dependerice.

5.1 Introduction

As explained irg 1.1, RXES occupies a unique position in that it offers rich information on electronic
structures in terms of both local and translational selection rules. With well-polarized X-rays created by
synchrotron light sources, several groups have reported angular and polarization dependence of RXES
in these days [71, 97, 106, 137, 138], and derived significant information on electronic structures. Since
specific resonance enhancement occurs at the corresponding absorption peak in general, it is of great
use also in that it may give clear explanation on the origin of somewhat complicated structure of XAS
spectra such as GQ-XAS of La,Cu0y [139].

Most of theoretical studies on polarization dependence of RXESamd f electron systems within
the framework of the second-order optical process have been based on impurity Anderson models so far.
As well as the dipole transition, more complicated angular and polarization dependence of quadrupolar
transition is recently discussed within an impurity Anderson model [140]. The applicability of im-
purity Anderson models to angle or polarization resolved RXES is mathematically understood from
Eq. (1.37), where the scattering amplitude of whole crystal is expressed as Fourier transformation of
the local scattering amplitudd, ¢ (R; Q) of angular and polarization dependence. Here we explicitly
write Q-dependence of this amplitude defined in Eq. (1.39). As far agpels RXES of NbCuQy is

1T. Ide and A. Kotani, submitted. A part of this chapter will be published also in Ref. [117].
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concerned, however, it is also apparent from these equations that the impurity limit disregards, first, the
nonlocal screening effect due to the Zhang-Rice singlet formation, and second, the momentum transfer
(q) dependence of RXES.

In this chapter, we discuss the polarization dependence #pclis RXES of NabCuOy, together with
the latest experimental data. While definite polarization dependence KEXCAS in this material has
been already reported by a number of authors [141, 142, 143], little has been known about polarization
dependence of RXES. Sincelaorbital has no orbital degeneracy, theoretical analysis on polarization
dependence is much simpler than thateo§}, 3d-2p transition [107]. Furthermore, the absence of apex
oxygen in NgCuOy and no overlap betweetp,; and4p, absorption edges make the situation clearer.
Thus, comparison with experimental data offers us a plain confirmation on the theoretical framework of
RXES.

In the preceding chapter, we considered the nonlocal screening mechanism for the absence of res-
onance enhancement when the mainkGabsorption peak is targeted by an incident X-ray. Detailed
character on spatial direction 4p orbitals was not used to interpret the Qo1s RXES spectra. Hence
what the experimental data with differently polarized photon are successfully interpreted with the same
theory is the ideal justification of the theory. At the same time, it is interesting to investigate whether
the anisotropy irtp orbitals affects the screening process in the valence electronic state. We will show
that the polarization dependence in RXES can be clearly understood in terms of the framework of the
second-order optical process. We will also show that4py-1s spectra essentially followdp-1s
spectra discussed in the preceding chapter.

The other point that the impurity limit disregards is thelependence of RXES. Momentum re-
solved RXES with hard X-rays is a complement to angle-resolved PES to examine entire Brillouin
zone. Recently, thg-dependence of RXES is measured for Mott-Hubbard systems [144, 145] and in-
sulating cuprates [135]. Despite of their significance, there have been few theoretical studies on the
g-dependence so far. Very recently, Tsutstal. reported a numerical calculation on thelependence
of Cu4p-1s RXES for the fist time [82]. Based on an effective 4 Hubbard model, they discussed the
energy dispersion of the Cy®lanes of insulating cuprates. Within one-dimensional (1D) systems, we
will show a model calculation on thepdependence of Clip-1s RXES of cuprates, and derive valuable
information in the context of local and nonlocal excitations inn8dOy.

The layout of this chapter is as follows. In the next section formulae for angular dependent transition
operators are given. 1H5.3 we explain experimental polarization dependence with those formulae. In
§ 5.4 the role of the nonlocal screening effect is briefly described.3r% we discuss intra- and inter-
plaquette natures of CT excitations from a viewpointiafependence of RXES. In the final section a
brief summary is given.

5.2 Formulation

5.2.1 Hamiltonian

The model adopted in this chapter is the same as that of the preceding chapter except for terms describ-
ing 4p electrons. Calculated results are obtained with the multi-Cy@gg) model or the single-Cu
(CuO256) model (impurity Anderson model). To discuss the polarization dependence, we introduce
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4pg HamiltoniansHapg, Hape andHapsg. The one-electron paHyys is defined by

Hipo = €apoy S QrrQur+t1 Y [QrQurrar+ QrQuriag+H-C]
R

R N=Xy
+ £ [QgQuriay+ QrQurrar+H.cl,
R

WhereQ;r7R creates a Cdlp, (n = X,y) electronat R site, X andy are two unit vectors along Cu-O
direction in the Cu@ plane.a is the Cu-O distance andt, are respectivelyppo) and(ppmn) of the
4pg orbitals in terms of the Slater-Koster parameters [118].

Hapc andHyp3q describe Cutp-1sand Cudp-3d intra-atomic interactions, respectively. The explicit
forms are

Hape=—% lz u4ch2RQnR] S (5.)
R LN
and

H4p3d == z l;u4p3dQ;r1RQnR Z dLRdaR] : (5.2)
R [

These are the same as those of in the preceding chapter except4arand the numerical value of
Uspad. Now total Hamiltonian is written as

H= HdpJF prJF Hcore+ HchF H4pa+H4pc+ |'|4|;)3d7

where the first four terms have been defined in the preceding chapter. All parameters are the same as
those of the preceding chapter excepttior= 0.24 andt, = —0.8, andU434=3.3 eV. For thedp-4p

transfer energy parametdisandt,, we consider a first principle band calculation [121]. The difference
betweenUspzq(0) andUgpsq(7T) due to multipole contribution of the Slater integrals is estimated as
0.34 eV with Cowan’s numerical program [146] and the empirical reduction factor 0.85 [26], from
which we take the value 3.3 ftsp34(0).

5.2.2 Angular-dependent transition operators

The general form of the X-ray absorption and emission operators has been given in Eq. (1.22). For
1s excitation, it is appropriate fodp operators to be expressed under the Cartesian coordinates,
(4px,4py,4p;). The definition of the coordinates, whose origin is fixed to a Cu site, is described in
Fig. 5.1. We set unit vectors along thegy andz axes to be&, § andé&,. In the atomic approximation,

we immediately have thi&s-4p absorption operator as

TR =¢- Y &Ql Sk
{=xy,z
where we dropped a trivial prefactor.
Let us define another set of unit vectoRs,and V1, which are parallel and perpendicular to the
scattering plane, respectively. Both are perpendicular to the incident wave geckEperimentally, it
is convenient to express the polarization vector in terms of these unit vectors,

88



a

Table 5.1: Angular dependent functiﬁ)é (6,6,).

(B.a) X y z
(%2,%1) cogB+0)coBcody cogB+0)coBsig  sin(6+6)sing,
(Y2,%1) —cogg;singcosy cogg;singcosy 0
(%,y1) —cog6+0)cospsing cog6+6)copsing 0
(Y2,¥1) sinfQ cosq 0
Hence we obtain
TA(R) = Zz €a(G-8)Q} Sk (5.3)
o

While this formula explicitly assigns this — 4p transition path, one can easily generaliZR)
for a(lc,m;) — (I, m) transition under the atomic dipole approximation. Rewritintm|e- p|nclcme) in
terms of spherical tensor operators, we have

TER = Y (miCe” mo)AG” (B, @)l mo Crmeoar (5.4)

ma.d,0

where dipole geometrical functidkff’)(&, @) is defined by

X _ 1 L =41
() (g @) — /zacoss e d 55
SICRY { o P 59
. i H
AT(6.9) = sle™ g0+l (5.6)

6 and @ designates the direction of (see Fig. 5.1) [110]. It is straightforward to derive the general
formula for the X-ray emission due to the dipole transition, and therefore that for RXES. This matter is,
however, beyond the scope of this chapter.

On the analogy oT&(R), the4p-1s X-ray emission operator is given by

TeR=5 Y £3(B -85 Qrs (5.7)
¢ B=%2,92

whereX, andy, are unit vectors parallel and perpendicular to the scattering plane, respectively, defined
for the emitted wave vectay, (see Fig. 5.1). Hence we obtain the transition operator of RXES at

Tee(RQ) = 5 5D, (6.6, 0)eaSQrrGo(Q)Q S (5.8)
a.B.g

whereDga(e,G‘hqq) = (B'éz)(éz -@) is tabulated in table 5.154(Q) is the resolvent operator defined
by (Q+Eg—H +ilM)~1. We takel =0.8 eV as in the preceding chapter. Eventually, the overall operator
of RXES is given by

Teg(Q) = ZéqRTs/s(RJ Q),
R

whereq = g — qp is the momentum-transfer of the X-ray.

89



scattering Z A €,
plane

Figure 5.1: Geometrical configuration of RXES. The semicircle represents the scattering plane. The
solid and open circles are Cu and O atoms, respectixedndy axes are taken along two Cu-O direc-
tions. @ and & designate the direction of the wave vector of the incident phaigngy is the wave

vector of the emitted photon with a scattering an@leThe polarization vector of the incident photon

is described in terms of unit vectoks andy;. The former is parallel to the scattering plane, whereas
the latter (not shown in the figure) is perpendicular to the scattering plane. These agree with each of
the unit vectors of the andy axes, respectively, in the limgy, 6 — 0. The polarization vector of the
emitted photon is described wia andy,, which agree wittk; andy,, respectively, in the limitp, 6;

andé — 0.

5.3 Polarization Dependence

5.3.1 Experimental data

Experimental data were measured for a single crystal giQu@, under two geometries depicted in
Fig. 5.2. In the geometry (a), both polarization vect@rgnde’, are parallel to the scattering plane,
and they take 30to the z-axis (so-callecc-axis). In the geometry (b), both polarization vectors are
perpendicular to the scattering plane, being parallel toattrplane. Note that momentum transfer
vector is common to both geometries.

ot I L 20 W
8|\<—e\/ . W

ab-plane ab-plane

(@) e~ c (b) €] ab

Figure 5.2: The experimental geometries. (a) Polarization vectors of the incident and emitted photons
are parallel to the scattering planes (* ||c”). (b) Polarization vectors of the incident and emitted
photons are perpendicular to the scattering plaagaly’). For both (a) and (b), the scattering angle is

6 = 60°, and the momentum transfer vector is perpendicular to the;@legde (so-calle@b-plane).
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The upper panel of Fig. 5.3 shows ®uXAS spectra for both geometries. We observe four distinct
bumps from A to D for the geometry (a), which is denoted by~ ||c” in the figure, whereas only two
structure C and D are observed for the geometry (b), which is denotegl|ayg™ The first question to
be answered is this polarization dependence.

Analogous to CUpy-1s RXES shown in Fig. 4.2, where the geometry (a) is adopted, a charge-
transfer (CT) excitation is observed at about 5.7 eV energy loss also under the geometry (b). The
Q-dependence of the 5.7 eV intensity is plotted in the lower panel of Fig. 5.3 for both geometries. The
experimentaQ-scan represented with the open circles is just the same data as in the lower panels in
Fig. 4.3. As seen in the figure, strong resonance enhancement is observed oni wasses by the
absorption peak B in the case of the geometry (a). On the other hand, strong enhancement occurs only
whenQ passes by the absorption peak D in the case of the geometry (b). To confirm this, RXES spectra
under the two geometries with=Qg=8990 eV (peak B) an@p=8999.5 eV (peak D) are shown in
the lower and upper panels in Fig. 5.4, respectively. We see that an inelastic peak is observed at about
5.7 eV in both geometries. However, no enhancement occurs in the geometry (bYwbenned at
B (lower panel). This is theecondqjuestion. Conversely, no enhancement occurs in the geometry (a)
whenQ is tuned at D (upper panel). This is tthérd question. Moreover, the maximum intensity of the
5.7 eV peak is considerably different in both cases. This i$aheh question.

5.3.2 Theoretical explanation

For theoretical description, we put an assumption, as the lowest nontrivial approximation, that difference
betweeno andrin Uapg, Uspc and4p-4p transfers do not substantially change the valence states in the
intermediate state. Let us first consider the angular dependeKeXAS. We easily see from Eg. (5.3)

that only4p, absorption, i.e. excitation to4py or a4py orbital, occurs whes = 1 (the geometry (b)).

This is the reason of the double-peak structure in the XAS spectrum in Fig. 5.3 (closed circles), and this
fact certifies these peaks as a resulis#p, transition. Where = X, the formula immediately give

the ratio of the absorption intensity as approximately

0 : T=co<6 : Sirfh,.

This result roughly explains the intensity ratio between the first and third features of the experimental
XAS described in Fig. 5.3, where the ratio is found to be broadly consistent@08inco$60° = 3: 1
by considering a steeply increasing background spectrum. Now the first question has been answered.
The functionDZA(} rules angular dependence of RXES. WHehe) = (¥»,¥1) we see that there is
no contribution ofdp, (4p;) orbitals because ‘ﬂ;zyl = 0. This fact explains no enhancement over the
4py absorption threshold under the geometry (b). This is the answer to the second question.
Next we notice thak; — y» andy; — X, transitions are not allowed if the ground st&ggis notE
representation of thBa, group?. If it is the case,

(fTx(Q)g) = (f[Ty(Q)|9)

follows for a final statéf) with the same symmetry dg) becausdy = C4T,(C4)3, C4 being the rotation
operator offr/4 around thez-axis at a Cu sit®. Here we defined; (Q) by

T(Q) = ;éq'RS;QzRGo(mQ}RSR

2This assumption is numerically justified for undoped two-dimentional clustee)@@nd CuO».
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Figure 5.3:Upper panel Cu K-XAS of Nd,CuQy [117]. The open and closed circles represent ex-
perimental data under the geometries (a) and (b), respectively. The solid and dotted curves represent
calculated Culs — 4p, absorption spectra under the geometry (b) with the multi-Cu and single-Cu
models, respectively. Both curves are convoluted with LorentZjaa 0.8 eV (HWHM) to consider
lifetime of a1s hole, and further convoluted with Gaussigg = 0.8 eV (HWHM) for the multi-Cu
model, and with'¢ = 1.2 eV (HWHM) for the single-Cu model to reproduce the experimental line
width. Lower panel the Q-dependence of the 5.7 eV intensity [117]. The definition of the open and
closed circles is the same as the upper panel. The solid and dotted curves repreQeté¢plemdence

of intensity of the 5.7 eV peak in C4ps-1s RXES calculated under the geometry (b) with the multi-Cu
and single-Cu models, respectively. Both curves are convolutedrwits 1.10 eV (HWHM) for the
incident X-ray and with ¢ = 1.15eV (HWHM) for the emitted X-ray.
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Figure 5.4: Experimental polarization dependence o @dsRXES [117]. The open and closed circles
correspond to the geometries (a) and (b), respectively. In the upper@asélned at the absorption
peak D, and in the lower pan€l is tuned at B. The definition of D and B are given in Fig. 5.3.
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for { = x,y andz, with g L Rin this case. Thu®}, . = —D} . or D}, = —Dj, . leads to the zero
2X1 y2X1 x2y1 x2y1
transition amplitude. Note that one can not suppress the elastic line by cheesirg0 as far ag) L R
holds, because elastic as well as inelastic scattering is not allowed in this casd (3.
Under the same assumption on the ground state, emission intensity under the geometry (b) is given

asly(Q) = |(f|Tx(Q)|g)|%, and emission intensity under the geometry (a) as
11(Q) = |{f|Tx(Q)cog 6 + 8)cosB, + T,(Q)sin(6; + 6)sinG |g) |*. (5.9)
Thus we can estimate the intensity ratio betwaeand o-resonances under this geometry as
0 : = co(6 + 0)cos 6 : sir?(6 + 0)sin’a,

givingo : m=1:9for 86 = 6 = 60°. This ratio partly answers the third question, i.e. the little resonance
enhancement whe@ passes by thép, threshold under the geometry (a), although the relatively large
error bars prevent us from further quantitative statement.

One can also roughly estimate the ratio of maximum intensity of the 5.7 eV peak for the two geome-
tries. Since the maximum peak is realized at4lpg absorption threshold in the case of the geometry
(a), we havd; ~ sir?(6 + 8)sir?8 | (f|T,(Qg)|g)|2. If |(f|T2(Qg)|g)| can be regarded to be the same
order as(f|Tx(Qp)|g)|, the assumption that is exactly justified in the isotropic limi#pforbitals, we
have the ratio as

l1/12 ~ Sir?(6 + 8)sir’8.

For 6, = 6 = 60°, this is approximately 0.56, which broadly explains the ratio of the 5.7 eV intensity in
Fig. 5.4 (the answer to the fourth question).

We have studied Cdp-1s RXES under only the two geometries. Although the present calculation
and experiment show no clear evidence that the assumption we put at the beginning of this subsection
breaks down, it may be interesting to watch the angular and polarization dependence of RXES spec-
tra in a class of materials. Ishihara and Maekawa recently emphasize the role of anisotropy between
Ugpad (11) andU,p34(0) to explain anomalous elastic scattering in orbital ordered Mn compounds [147].
Analyzing angular and polarization dependence of also inelastic scattering, it is expected to obtain more
detailed information on spatial direction of orbitals. This subject is left for the future study.

5.4 Incident Energy Dependence

5.4.1 Calculated results

We carried out numerical calculations for the geometry (b) again with the multi-G3Q(glcluster and

the single-Cu (CuO,sg) cluster models. Part of the results are shown in Fig. 5.3 with solid (multi-Cu)
and dotted (single-Cu) curves for both panels. Corresponding to the experimental structures C and D
in the XAS spectra, a doubly-peaked structure in the calculated absorption spectra is observed in the
upper panel. For convolution width of the calculated spectra, see the figure caption. We hardly find
discrepancy between the multi-Cu and single-Cu results, except for slight difference in the width of the
main structure. The resonant behavior of the 5.7 eV peak shown in the lower panel is, however, quite
different. The multi-Cu model presents a singly-peakedependence, whereas the single-Cu model
presents a doubly-peakéldependence. Note that somewhat larger convolution width of Gaussian
'c = 1.1 eV for the incident X-ray is used to reproduce the experimental resolution, as compared to
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Fig. 4.3. While theQ-scan of the multi-Cu calculation reproduces much better than the single-Cu one,
the experimental2-scan exhibits more definite suppression effect wRlas tuned at the peak C.

To remove this discrepancy, we performed calculations including the reduction factor dfgthe
transfer,R;, whose definition has been given in the preceding chapter. Calculated XAS and RXES
spectra withR; = 0.8 are shown in Fig. 5.5. Despite the difference in the transition process, these
figures are very similar to Figs. 4.8 and 4.10, whigge= 1 calculations are given. The only remarkable
difference is that the main absorption structure is more broadened than in Fig. 4.10. This result is
consistent to the experimental difference in line width between the peak A (B) and C (D).

The Q-scan of the 5.7 eV peak based on these improved calculations is plotted in the lower panel
of Fig. 5.6. We see that agreement with the experimental data (closed circles) is considerably improved
in the multi-Cu result (solid curve). Specifically, the suppression effect ihéntuned at the main
absorption peak is more clearly reproduced. While includfgg0.8 also in the single-cluster case
seems to give rise to more suppression as compared to that in Fig. 5.3, the overall line shape is still
doubly-peaked, being utterly different from the experimental data.

L L 0 LA LA L B B 15 L L LA LA L B B B
RXES Cu 4po-1s | XAS | RXES Cu 4po-1s | XAS
_CU10256 _CU5016

15

10

1L

N
N 1 (b)

S A R ERT! R R ERY]
Energy Loss [eV] Energy Loss [eV]

Relative Photon Energy [eV]
N jw oo (N

Relative Photon Energy [eV]

-10

Figure 5.5: CWK-XAS and4pg-1s RXES withR; = 0.8. (a) The impurity Anderson model (0256
cluster). The XAS spectrum shown in the right panel is convoluted with Lorenfzias 0.8 eV
(HWHM) to consider lifetime of als core hole, and further convoluted with Gaussian= 1.2 eV
(HWHM) to reproduce the experimental line width. The RXES spectrum shown in the left panel is
also convoluted with g = 1.15 (HWHM) to reproduce the experimental resolution. (b) The multi-Cu
model (CgO;4 cluster). The XAS spectrum shown in the right panel is convoluted with Lorentzian
. = 0.8 eV (HWHM) to consider lifetime of dls core hole, and further convoluted with Gaussian
e =0.8eV (HWHM) to reproduce the experimental line width. The RXES spectrum shown in the left
panel is also convoluted withg = 1.15 (HWHM) to reproduce the experimental resolution. For (a) and
(b), the elastic line, which should be located at zero, is omitted from the figure. The numbers attached
to arrows in each XAS spectrum corresponds to those in RXES, representing the excitation energy.
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Figure 5.6: The improved calculations of BUXAS and theQ-scan of the 5.7 eV inelastic peak with
R: = 0.8. The closed circles represent again the experimental results measured under the geometry (b)
for both panels. See the caption in Fig. 5.3.
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5.4.2 Discussion

Because of the similarity betwedip;; and4ps spectra, we naturally assign the main absorption peak
calculated with the multi-Cu cluster to that state which has a Zhang-Rice (ZR) singlet at plaquettes
neighboring to the photoexcited one. The shoulder (3 in Fig. 5.5 (b)) of the main structure is attributed
to a well-screenedd!®L-like state, and the satellite peak (7 in Fig. 5.5 (b)) is attributed to a poorly-
screenectd®-like state, where andL represent core and ligand holes, respectively. The main and
satellite absorption peaks in the single-Cu model are, on the other hand, maiitilyandcd® states,
respectively.

Q

smgle core hole
Large overlap) smaNerlap

inter-plaquette intra- plaquette
CT excitation CT excitation
(= 2eV peak) (= 5.7eV peak)

Figure 5.7: The essential contribution of the nonlocal screening effect irs@p-1s RXES when the
incident photon energ® is tuned at the main peak of XAS.

Whichever model is used, there is a certain difference in spatial extent among these states, and
this difference gives rise to th@-dependence of RXES spectra. As demonstrated in the preceding
chapter, the ZR state has the most nonlocal character beca@ts@dae is pushed out by the strong
1s-3d repulsive Coulomb interaction into neighboring plaquette, so that it has little overlap with intra-
plaguette CT states. Although the-3d correlationUspzg should more or less disturb the motion of the
ZR singlet, it seems to act as only small perturbation. The final states are the same as #pssof
RXES because of the absencelpfelectron. As discussed, the 5.7 eV inelastic peald®a-dominant
anti-bonding state, and the 2 eV peak is attributed to an excitatioldhale from the upper Hubbard
band to the ZR singlet band.

The mechanism of the suppression effect of the 5.7 eV inelastic peak is summarized in Fig. 5.7.
WhenQ is tuned at the ZR intermediate state, the 5.7 eV final state is unfavorable because it is an intra-
plaquette excitation. To the contrary, the 2 eV final state has large overlap with this intermediate state as
suggested in the figure. The effectRf or detailed discussion on tle-dependence of RXES spectra
substantially follows those in the preceding chapter, and we do not repeat it here.
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5.5 Momentum Transfer Dependence

In the context of local and nonlocal excitations, it is interesting to measure the energy dispersion over
space, because an excited state completely localized in a unit cluster should exhibit no energy dispersion.
Figure 5.8 shows the experimentptlependence of RXES spectra [117], whegig taken perpendicular

to theab-planes. We find that there is no shift in the peak position. This result clearly suggests weak
coupling between the CuQayers.

The energy dispersion in a Cy@lane can be measured by sweeping the in-plane component of
g. We carried out numerical calculation on @p-1s RXES for a 1D periodic Ci0;» cluster for
g=0, 71/2 and 7T in the unit of (2a)~. The results are shown in Fig. 5.9, where we adopt the same
parameter set as that in Fig. 5.5 (b) exceptUgg=8.03. Note that all core orbitals are taken into
account here, whereas we have fixed a core hole to the central Cu site so far. Analogous to Figs.4.10
and 5.5 (b), the main absorption structure is composed of two peaks, and a satellite structure is observed
about 7 eV distant from the main peak. Recent experimental and theoretical studies on high-resolution
Cu 2p-XPS of various cuprates show that the nonlocally screening path gives rise to the main peak
of Cu 2p-XPS in one-dimensional as well as two-dimensional cuprates, as far as the corner-shared
structure is conserned [136, 148, 149, 150]. Although close inspection shows that each spectrum has
slight difference according to difference in physical parameters and dimensionality, the character of the
shoulder of the main peak or the satellite structure is also broadly common to both dimensions [151].
Hence we can utilize the calculated results to imfelependence of the CT excitations in JXoiOy.

For theg-dependence of the RXES spectra, we find in Fig. 5.9 that the 2 eV peak exhibits consider-
ableg-dependence in its intensity and position. Recently, Abbametrak [135] successfully observed
g-dependence of the 2 eV peak, which was hidden in the tale of the elastic line in Figs. 4.2, 5.4 and 5.8,
in Cu4p-1sRXES of a two-dimensional insulating cuprate;GuO,Cl,. Moreover, their experimental
data show that the CT structure at about 5 eV displays tittlependence in its peak positibnThis is
qualitatively consistent to Fig. 5.9, and suggests the intra-plaquette nature of the 5.7 eV CT excited state
in Nd>CuQy. On the contrary, the stronggdependence of the 2 eV peak confirms the inter-plaquette
(nonlocal) nature of the 2 eV CT excited state.

Itis interesting to regard Fig. 5.9 as representing energy dispersion of a 1D system itself. Recently,
angle-resolved PES measurements have been performed on (quasi) 1D cuprates, [$5GL@nd
SrpCuG; [154], in the context of spin-charge separation [155, 156] due to photodoping. These exper-
iments report that energy dispersion of a holon band, which is symmetric in each of halves of the first
Brillouin zone k > 0 or k < 0) with respect to the maximum #t|=71/2, is much larger than that of
SrCuGCl, [157]. Furthermore, they report that there is a spinon band evef2 < k < 11/2 with
smaller band width. While it has been established that the ZR singlet formation due to the “potential
doping” (se&; 1.4) in the intermediate state strongly contributes talg1ls RXES spectra, the relation
with these phenomena unique to 1D systems is unclear. This is a subject left in the future.

3This value ofUgc is taken in order to keep the main-satellite separation in XAS spectrum the same as that in Fig. 5.5 (b).
4They assign the 5 eV structure to a “shakeup” scattering. However, it has been established from the analysis in the preceding
chapter that this is the'°L-dominant anti-bonding state.
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Figure 5.8: The experimental momentum transfer dependence wigeperpendicular to the CyO
planes [117]. The incident ener@yis tuned at thé peak in the XAS spectrum.
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Figure 5.9: Theg-dependence of Cdps-1s REXS for a one-dimensional cluster as shown in the in-
set [152]. We see that the 2 eV CT excitation is strorgiependent, whereas the 5.7 eV peak has little
g-dependence.
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5.6 Conclusions

We have studied the polarization dependence of charge transfer excitations4p-TURXES of
Nd,CuQy. Starting from the general formula introduced in Chap. 1, we derived a closed expression on
angular and polarization dependence of RXES. The experimental polarization dependence is success-
fully explained with the formula, and the fact that the incident polarization dependence of the excitation
process may be exploited to select the intermediate state of the resonance is shown.

Next, we confirmed the mechanism of the suppression of resonant inelastic scattering for nonlocally
screened intermediate states. The difference betépgiand4p, gave no drastic change in XAS and
RXES spectra. Finally, we examined thelependence of the CT excitations in RXES spectra. The
calculated spectra showed, first, that the 5.7 eV peak displaysfittependence, and second, that the
2 eV peak considerably dependsariThese are interpreted in terms of intra- and inter-plaguette natures
of the excitations, and are regarded as further support of the explanation of the suppression effect.
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Chapter 6

Concluding Remarks

We have studied nonlocal effects in RXES with periodic Anderson models. The principal conclusions
are twofold. First, the origin of the interplay between fluorescence-like and Raman components has
been clarified. Second, the essential contribution of the nonlocal screening effect4mISIRXES
spectra has been demonstrated. We recapitulate the conclusions of this thesis in what follows.

In Chap. 2, we studied the role of the translational symmetry on rBdtap RXES ofd® systems.

The model used is a one-dimensional nondegenerate periodic Anderson model, which is a minimal
model having explicit translational symmetry. It was shown that RXES depends more sensitively on
the cluster size than XAS and XPS, so that RXES is a useful probe in studying the duality between
itinerant and localized characters3if electrons. From results calculated by changing the cluster size,

we proposed the NXES-like mechanism for the appearance of the fluorescence-like RXES spectra. Itis
summarized in Fig. 3.1. The essential point of our picture is the existence of extended states against the
strong core hole potential in the intermediate state, although such extended states may have negligible
weight in the XAS spectrum.

Regarding the3d orbitals as Cetf ones, it was also explained why the experimental4€esd
RXES of CeQ is well reproduced by calculations with a single-cation impurity Anderson model.

In Chap. 3, the theory in the preceding chapter was extended to include explicit orbital degeneracy.
We devised a doubly-degenerate one-dimensional model which contains two kinds of local point group
symmetry, and associated them wéghandtyg orbitals in a crystal of @symmetry. First we studgd-2p
RXES spectra fod® systems. Within the single-metal-ion model, we mathematically defined antibond-
ing and nonbonding states by utilizing the local point group symmetry or the permutation symmetry
between the degenerate orbitals, and successfully explained the experimental polarization dependence
of Ti 3d-2p RXES of TiG,. In going from the single-metal-ion model to multi-metal-ion model, the
fluorescence-like component comes arise, and the calculated spectra clearly exhibit the interplay be-
tween the fluorescence-like and Raman components.

Next we showed calculated results trsystems. The calculated RXES spectra displayed inelastic
structures due to inter- or intra-sitied excitation as well as nonbonding, antibonding and fluorescence-
like structures. We found that the energy separation of the inelastic peaks due to the indra-site
excitation from the inelastic line considerably depends on cluster size. The polarization dependence
similar to thed® system was predicted. The orbital degeneracy as well as the translational symmetry is
essential to the appearance of the fluorescence-like spectra.
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In Chap. 4, we theoretically investigated the €ay-1s RXES of Na,CuO, with impurity Anderson
and large-cluster models. While the former model failed to reproduce the experimentally observed
suppression effect of resonance enhancement of the 5.7 eV inelastic peak, we obtained satisfactory
agreement with the experimental data by using the large-cluster model. Utilizing PDOS functions, we
found that the 2 eV structure is interpreted as an “inter-plaquette” excitation of a hole from a Cu site to
other plaquettes to form a Zhang-Rice singlet, whereas the 5.7 eV excitation is attributed to the “intra-
plaquette” CT excitation. This difference is clearly reflected on the excitation dependence of RXES
spectra. The physical picture of the suppression effect is summarized in Fig. 5.7, which elucidates the
essential contribution of the nonlocal screening effect on RXES.

In Chap. 5, first we studied the polarization dependence of charge transfer excitationdprl€u
RXES of NCuQy. With a closed expression on angular and polarization dependence of RXES, the
experimental polarization dependence is successfully explained. The calculated XAS and RXES spectra
involving 4p, orbitals substantially followed those of tid;. We next examine thg-dependence
of 4pys-1s RXES spectra. The calculated spectra show, first, that the 5.7 eV peak displayg-little
dependence, and second, that the 2 eV peak considerably depeqd§tase are interpreted in terms
of intra- and inter-plaguette natures of the excitations, and are consistent to the interpretation in the
preceding chapter.

To complete the investigation, some problems are left for us. First, for the NXES-like mechanism,
we need to extend more the cluster size to obtain results that are more conclusive, and need to clarify the
limitation and applicability of the present effective one-dimensional model. This is interesting also as a
subject to examine new numerical algorithms such as DMRG. Within the exact diagonalization method,
it is extremely difficult to demonstrate the NXES-like mechanism for realistic three-dimensional, pos-
sibly degenerate, models. However, one-dimensional systems themselves have attracted much attention
in the context of spin-charge separation [153, 158]. It interesting to study what kind of role RXES plays
in such systems.

For cuprates, RXES would give significant information also in doped systems because RXES sensi-
tively reflects electron dynamics associated with relaxation process due to a core hole creation. In fact,
our (unpublished) calculation predicts considerable doping dependence4p-CuURXES. Together
with angle- or momentum-resolved RXES, detailed experimental and theoretical studies are left for the
future problem. In this regard, one may investigate the network dependence in various cuprates.

We have obtained in Chap. 5 a negative answer to whether the anisotrbpyudifitals gives observ-
able effects on the valence electronic system. It is of considerable interest to examine orbital ordering
with angular- and polarization-resolved RXES.
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