

Moiré-Free Collimating Light Guide with Low-Discrepancy Dot Patterns

<u>T. Idé</u>, H. Numata, H. Mizuta, and Y. Taira IBM Tokyo Research Lab. M. Suzuki, M. Noguchi, and Y. Katsu International Display Technology

May 2002

SID'02 45-2: Ide et al.

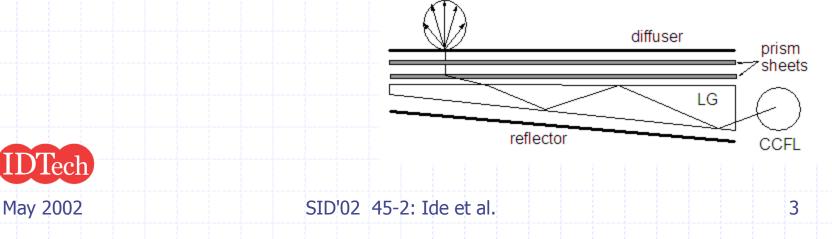
1

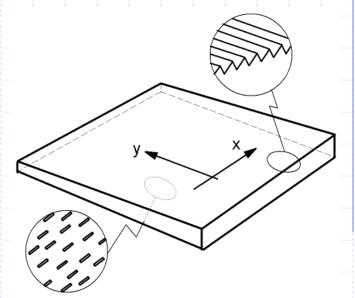
Agenda

Background

- Why must we optimize irregular dot patterns?
- Conventional methods
 - Why is a breakthrough needed?
- Our approach
 - How do we generate the initial pattern?
 - How do we remove inter-dot overlap?
- Implementation
 - How did our approach improve the luminance uniformity?
- Summary

Background




Edge-lit backlight units

- Diffusive reflection on the bottom surface of LGs
 - Shape of micro-scatterers
 - Distribution of micro-scatterers

Need for higher luminance

- Restriction on physical dimension
- Restriction on power consumption

- Integration of a prism sheet
 - Lower loss of flux

A new type light guide

- Carefully-designed micro-scatterers
 - In place of conventional diffusing white spots
- transparent
 - clear moiré patterns
 - optical interference : LC cell & micro-scatterers

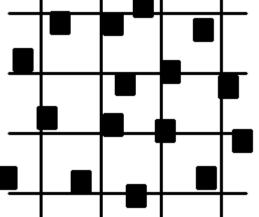
> Optimize the distribution of micro-scatterers

Conventional Methods

Simple pseudo-random number method
 The coordinates are determined directly with pseudo-random numbers

- Sufficiently irregular
 No moiré pattern
- Very rough
 - Visible to the eye
- Inter-dot overlap
 - Causes anomalous light scattering

"Pseudo-random perturbation" method To generate patterns without inter-dot overlap



"Pseudo-random perturbation" method To generate patterns without inter-dot overlap

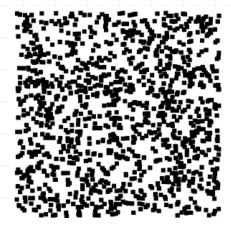
Regular lattice points

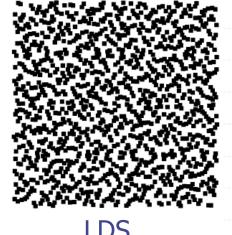
Random perturbation

"Pseudo-random perturbation" method

- To generate patterns without inter-dot overlap
- Known drawbacks:
 - Visible roughness
 - Difficulties in higher density domains
 - Intractable inter-dot overlap
 - Survival of the periodicity
 - Less flexibility
 - to reproduce density distributions

	Moiré prevention	Uniformiti	
		Uniformity	
Regular array	Extremely bad	Good	
Simple pseudo- random	Good	Very bad	
Pseudo-random perturbation	Bad	Moderate	
Error diffusion methods	Bad	Moderate	


May 2002



Our approach

Low-discrepancy sequences (LDS)

- Controlled homogeneity with sufficient irregularity
 - Have been applied for speed-up of Monte Carlo integration/simulations

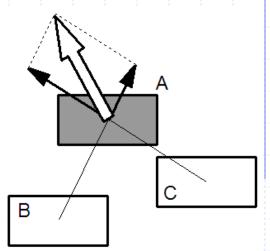
The first attempt to apply the LDS to physical dot patterns

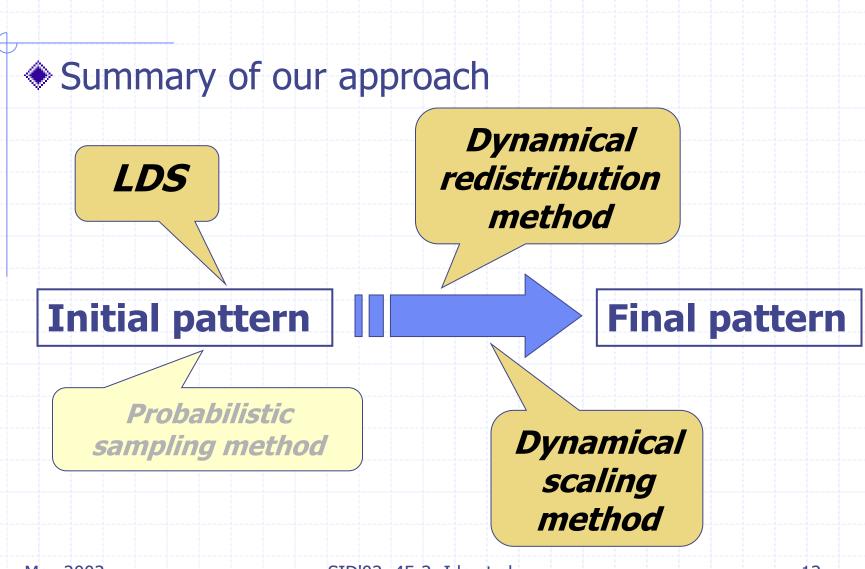
Pseudo-random

Need to remove inter-dot overlap...

May 2002

Dynamical redistribution method

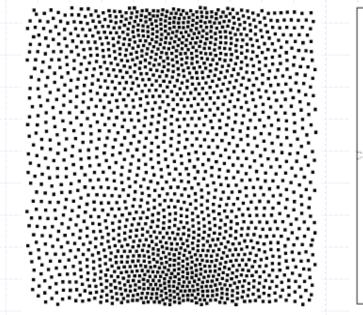

- Give each dot a repulsive force
 - Small distance strong repulsion
 - Large distance weak repulsion


The inter-dot overlap is removed gradually as time evolves

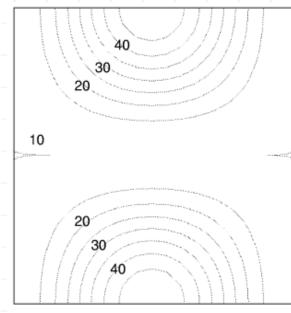
Dynamical scaling method

- The range of force varies with local density
 - (range) ~ O (minimum separation)
 - The principal wavelength (Ulichney 1988)

May 2002


SID'02 45-2: Ide et al.

12

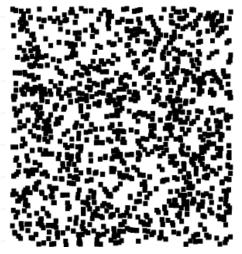

• Example 1:

Steep density gradient is well reproduced

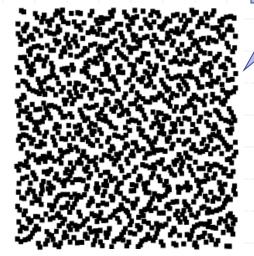
From ~10% to ~50%

Generated pattern

Density distribution


May 2002

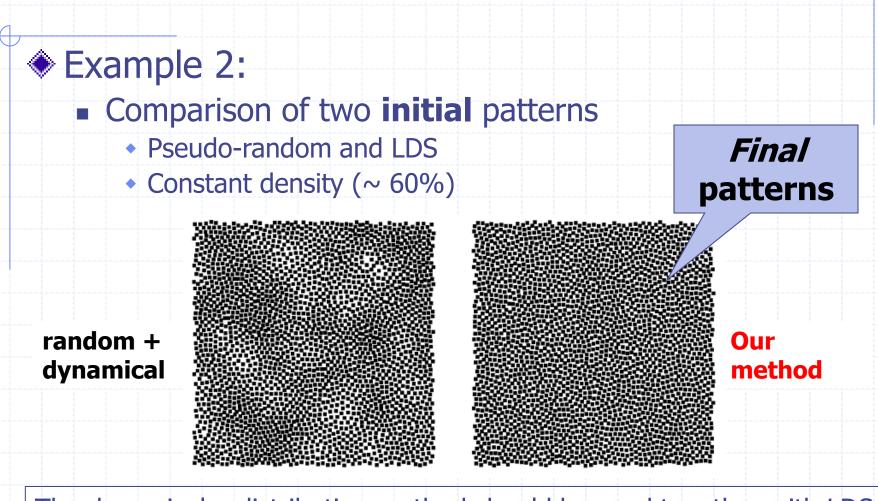
SID'02 45-2: Ide et al.


13

• Example 2:

- Comparison of two initial patterns
 - Pseudo-random and LDS
 - Constant density (~ 60%)

Pseudo-random


LDS

May 2002

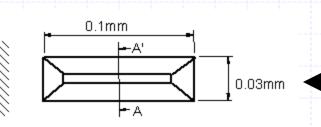
SID'02 45-2: Ide et al.

Initial

patterns

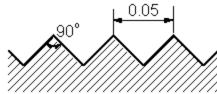
The dynamical redistribution method should be used together with LDS

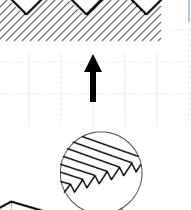
May 2002

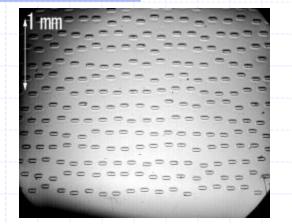

Implementation

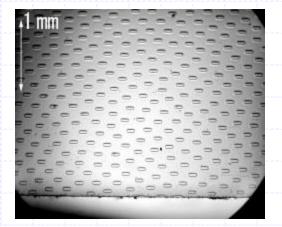
Integrated-type light-guide

- 50 μm pitch prismatic grooves
- 30×100 μm dimples


Experiment


- Comparison with the PRP method
- 15 inch-diagonal UXGA LC cell

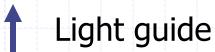



LC cell

A moiré pattern disappears

PRP method

(conventional)


Our method

(proposed)

68 mm

68

mm

May 2002

Summary

Integrated-type light guide

- High luminance
- Transparent
 - Tends to cause moiré patterns

Dynamical approach with LDS

- Super-uniform
- Sufficiently irregular
- Flexible: arbitrary density distributions

Implementation of a moiré-free collimating light guide

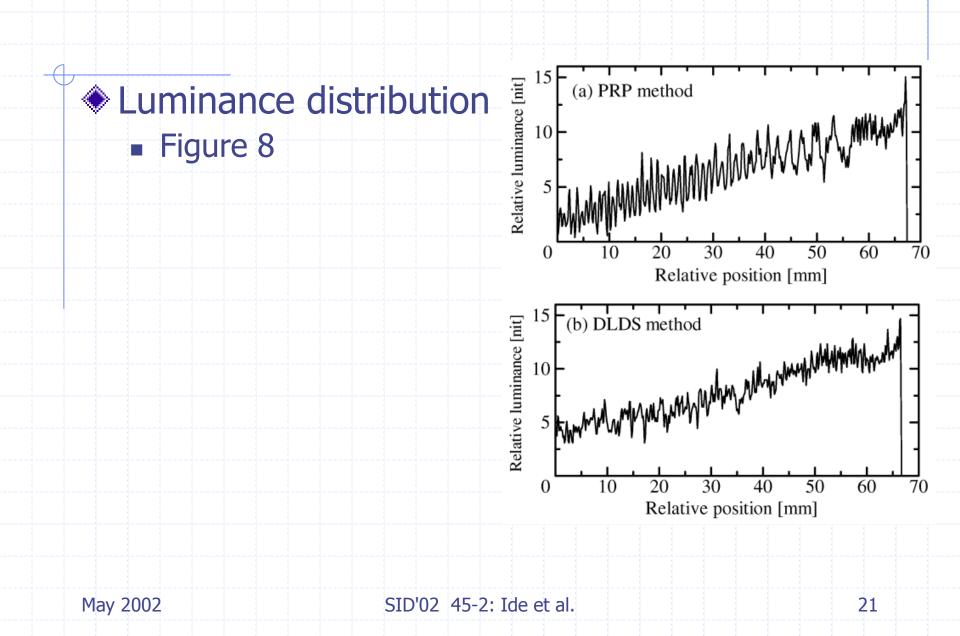
- Achieved high luminance and uniformity
 - Based on our new approach
 - Currently the best randomization method
- IBM ThinkPad A30/A30p
 - First IPS-LCD on laptop PCs
 - "FlexView" display
 - Released in Oct. 2001

Thank you!

May 2002

Addenda

IBM


IdealRandomizer

- Simple DLDS pattern generator
 - Any density distributions
 - Outputs text data file

lRandomizer					- (
充埴率ファイル					
○ 読み出し	density.dat				- [
○ 定数	0 [N]			簡易チェック	1
	1 04				_
「ットバターン計算範囲					
×1	y1) (10	y2		
(p	Į0)(110	110	'	
出力データー					
	result.dat				-
□ 初期ドット	・パターンを見る(init.dat)	□ 境界条件	を見る〈boundary	dat)	
ットの径と傾き					
Sx : 0.1	Sy : 0.1	□ 呼び稽	を使う		
Angle : 0	[deg]	SX: 0	2 Sy's	0.2	
力学的定数(説明書参	ddx: 1	ddy: 1	* 1区面に1: 入るように設	1個以上のドット1 定してください。	ŋï.
range 1	tail	0.4	exponent	0.5	
truncation 2		n 35			
length ^{j2}	stej	p 90			
艾්复回發		14884	球員る		
又復回数 100	計算開始		捻見る	中断目	1:3
	計算開始		終見る ed options	中断	903
	計算開始			中断	903
	計算開始			中断	103

May 2002

