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Dot pattern generation technique
using molecular dynamics
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We have developed a new technique for generating homogeneously distributed irregular dot patterns useful for
optical devices and digital halftoning technologies. To introduce irregularity, we use elaborately designed se-
quences called low-discrepancy sequences instead of pseudorandom numbers. We also use a molecular-
dynamics redistribution method to improve the distribution of dots. Our method can produce arbitrary den-
sity distributions in accordance with a given design. The generated patterns are free from visible roughness
as well as any moiré patterns when superimposed on other regular patterns. We demonstrate that our
method effectively improves luminance uniformity and eliminates moiré patterns when used for a backlight
unit of a liquid-crystal display. © 2003 Optical Society of America

OCIS codes: 230.0230, 230.3720, 230.3990, 100.2810, 100.2980.
1. INTRODUCTION
Liquid-crystal displays with edge-lit backlight units have
been widely used in laptop computers because of their
thinness and their relatively good luminance uniformity.
Figure 1 shows the typical structure of the backlight unit.
The edge-lit backlight unit is an optical device that con-
verts a linear light source from the cold cathode fluores-
cent lamp (CCFL) into a planar light source. Light rays
emitted from the CCFL are guided into the light guide
and repeatedly reflect diffusively from the bottom surface
and, as a result of total internal reflection, from the top
surface. When the total-internal-reflection condition
fails for a light ray, the ray comes out into the diffuser
film and the prism sheets. In conventional light guides,
periodic arrays of diffusing white spots are printed on the
bottom surface with white ink, as shown in the figure. To
make the luminance distribution uniform, they are in
principle arranged in gradation so that they are more
sparsely placed near the light source and more densely
placed far from it.

Recently, Oki1 proposed a new type of light guide,
where one prism sheet is integrated into the light guide.
There have also been several proposals to replace the con-
ventional diffusing white spots with carefully designed
microstructures.2 While these technologies greatly im-
prove the light use efficiency, such backlight units often
exhibit moiré patterns caused by optical interference be-
tween the patterns of the microstructures and the liquid-
crystal cells. This is mainly because such backlight units
achieve high efficiency by reducing the diffusive scatter-
ing of light. In other words, the paths of the light rays
are simpler than those in the conventional backlight
units, so that such backlight units look more transparent.
The moiré patterns, which seriously damage the quality
of the backlight units, can be eliminated in principle by
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randomizing the distribution of the microstructures.
However, the conventional methods for randomizing the
dot pattern are known to lead to visible roughness in lu-
minance because of the randomness itself.

In this paper, we report a method for generating irregu-
lar dot patterns that meet the following requirements:
The generated patterns should be (1) properly irregular
so as not to cause any moiré patterns when superimposed
on the liquid-crystal cells and (2) sufficiently uniform not
to cause visible roughness. In addition, (3) the method
should be capable of providing any density gradation.

These requirements are similar to those of digital half-
toning techniques. Digital halftoning (or spatial dither-
ing) is a method of mapping continuous-tone images onto
displays capable of producing only binary picture ele-
ments. One of the major technical issues in modern digi-
tal halftoning is how to introduce a controlled noise into a
local distribution of minor pixels so as not to cause any
moiré pattern when continuous-tone images with some
periodic pattern are halftoned or when two or more half-
toned screens are superimposed. It has been known3

that a class of moiré patterns can be avoided by using sto-
chastic screens rather than periodic ones. Lau et al.4 re-
cently discussed an aperiodic interference pattern created
by overlapping two stochastic dither patterns, calling the
pattern ‘‘stochastic moiré.’’ To minimize stochastic moiré,
one must introduce an adequate spatial correlation be-
tween the two stochastic dither patterns. These facts
show that both irregularity and correlation between mi-
nor pixels are essential for obtaining high-quality half-
toned images.

There have been many approaches tried to enhance the
quality of halftoned images. Ulichney5 discussed condi-
tions under which visually satisfying binary images could
be obtained. His criteria are as follows: (1) The power
2003 Optical Society of America
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spectrum of the dot patterns should exhibit ‘‘blue-noise’’
nature, and (2) the dot patterns should be sufficiently iso-
tropic. The former criterion corresponds to the require-
ment that adjacent pixels should on average be separated
by an adequate length, the principal wavelength.5

Based on that analysis, several halftoning methods
aimed at satisfying these criteria have been proposed.6,7

However, most of the algorithms break the permutation
symmetry between arbitrary pairs of dots (or pixels) in the
generating processes, so that generated binary images are
not free from periodic artifacts to a greater or lesser de-
gree. For instance, consider an error diffusion method
along a scan direction (Fig. 2). A pixel, say (i, j), is not
commutable with any other pixels, say (i 1 1, j), since

Fig. 1. Conventional structure of edge-lit backlight unit.
There is a pattern of diffusing white spots on the bottom surface
of the light guide. (a) Bird’s-eye view. The x and y axes, which
are perpendicular to each other, show the directions of the pris-
matic grooves of the prism sheets. (b) Cross-section view. An
example of the path of a light ray is shown. LG is short for light
guide.

Fig. 2. Broken permutation symmetry among pixels in error dif-
fusion algorithms. The pixels are not treated symmetrically be-
cause the order of the error diffusion process is fixed for the pix-
els.
the error of the (i, j) pixel is diffused over surrounding
pixels before the error of the (i 1 1, j) pixel is. Unless
the opposite scan direction exists at the same time, these
pixels are not treated symmetrically. Despite the fact
that permutation symmetry is one of the direct math-
ematical consequences of homogeneity and isotropy of dot
fields, little attention has been paid to this requirement.

Atkins et al.8 proposed an interesting postprocessing
algorithm, where every minor pixel is treated as being
connected to all of its neighbors by mechanical springs.
Each dot is individually considered a candidate for being
moved, so that permutation symmetry is conserved. Af-
ter a few iterations, the pixels pull themselves into ar-
rangements that eliminate an artifact of original half-
toned images. Recently, Hiller et al.9 also proposed an
algorithm for generating irregular dot patterns, where
permutation symmetry is implicitly conserved. Their ap-
proach provides a method that transforms randomly dis-
tributed initial dot patterns into final patterns by utiliz-
ing the Voronoi tessellation. While these algorithms
achieve considerable high quality of halftoned images,
they do not sufficiently examine the effects of the rough-
ness of the initial state. We will point out in later sec-
tions the essential role of the notion of low discrepancy in
the initial state, in addition to permutation symmetry.

For optically useful dot patterns, most of the practical
randomization techniques known so far are based on
pseudorandom numbers. Reference 10 extensively de-
scribes such a technique, where a quite simple method for
introducing the principal wavelength is proposed: If in-
terdot overlap is found in a tentative pattern, the coordi-
nates are regenerated by using the pseudorandom num-
bers. The initial pattern is generated by giving small
perturbations with pseudorandom numbers from periodic
lattice points. We call this approach the pseudorandom
perturbation (PRP) approach. Such hit-or-miss methods
are, however, unsuitable for the recent high-performance
backlight units as well as for digital halftoning, because
they unavoidably have inhomogeneity peculiar to pseudo-
random numbers and because the periodicity of the origi-
nal lattices survives to a greater extent when the density
of the dots is higher. We will show that our approach
makes it possible to introduce the principal wavelength in
a well-organized manner with neither visible roughness
nor survival of periodicity, while maintaining proper ir-
regularity.

The organization of this paper is as follows: In Section
2, characteristic features of low-discrepancy sequences
are described. In Section 3, we introduce a dynamical re-
laxation process to improve the initial dot patterns. In
Section 4, we briefly illustrate the quality of dot patterns
calculated with our approach. In Section 5, we report on
an application of our theory to backlight units. In Sec-
tion 6, we give a brief summary of this paper.

2. LOW-DISCREPANCY SEQUENCES
For a point set defined within a unit square @0, 1#2, the
discrepancy under the L` norm is defined as11

DN
~2 ! 5 sup

~x, y !P@0, 1#2
U#E~x, y !

N
2 xyU, (1)
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where #E(x, y) represents the number of points within a
rectangular domain E(x, y) 5 @0, x# 3 @0, y#. Although
we assumed that the point sets are two dimensional, as
denoted by the superscript 2, this definition is straightfor-
wardly generalized for higher dimensions. The first term
in the absolute value is the ratio of the number of points
within E(x, y) to the total number of points, and the sec-
ond term is the ratio of the area of E(x, y) to the total
area (i.e., unity). We see that the denser and more uni-
form the distribution of points, the lesser the value of the
discrepancy. Thus discrepancy can be a measure of non-
uniformity of point sets.

To calculate discrepancy for actual dot patterns, an-
other definition of discrepancy is more useful. For the
unit area @0, 1#2, the discrepancy under the L2 norm is
defined as

TN
~2 ! 5 H EE

@0, 1#2
F#E~x, y !

N
2 xyG2

dxdyJ 1/2

. (2)

For arbitrary positive integers n and N, the inequality
TN

(n) < DN
(n) holds. Practically, the following formula is

useful in calculating TN
(2) (Ref. 11):
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1
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~1 2 xi
2!~1 2 yi

2! 1
1

9
, (3)

where the coordinates of the ith point are represented by
(xi , yi). For dot patterns that distribute over a square
with length L, we use this formula with replacement of
(xi , yi) with (xi /L, yi /L).

The theory of discrepancy has recently attracted much
attention in the context of speeding up Monte Carlo inte-
gration in the field of financial engineering.12 Monte
Carlo integration is a method that reduces integrals to
summations by translating a continuous domain of inte-
gration into a set of discrete points. Roughly speaking,
the more homogeneous an irregular point set is, the
quicker is the convergence of the integration.

Fortunately, there is a known class of infinite se-
quences called low-discrepancy sequences (LDSs), which
satisfy the inequality

DN
~2 !~LDS! < C

~ log N !2

N

for the first N points in the sequences, where C is an
N-independent constant. Since TN

(2) < DN
(2) , the value of

TN
(2) of the LDS is estimated as

TN
~2 !~LDS! 5 OX~ log N !2

N C (4)

at most. These may be compared with the results of ran-
dom numbers:11

DN
~2 !~random! 5 OXS log log N

N D 1/2C,
^@TN
~2 !~random!#2& 5

A5

6AN
. (5)

In the latter equation, ^•& denotes the expectation value.
Roughly speaking, one finds that the ratio of the discrep-
ancy of pseudorandom numbers compared with that of
the LDS tends to be infinite as N increases.

Although the above definition itself does not include
the irregularity of the point sets, there is a known algo-
rithm to introduce adequate irregularity into the LDS.11

That is, a class of point sets having ensured uniformity
and sufficient irregularity is available. Our theory may
be more consistent than the conventional digital halfton-
ing theories, where there is no obvious relation between
the definition of uniformity and how to construct such dot
patterns. In fact, Ulichney’s criteria5 leads to no direct
answer as to how to generate visibly preferable dot pat-
terns. To the best of the authors’ knowledge, this work is
the first attempt to utilize the notion of discrepancy for
designing physical dot patterns.

Figure 3 shows the comparison between the LDS and
pseudorandom numbers. In this figure, we utilized the
generalized Niederreiter sequence13 for the LDS and the
rand ( ) function of Microsoft Visual C11 for the pseudo-
random numbers. Some types of the LDS have been
available in standard computer program libraries. For
an elementary review of other LDSs such as Sobol’s se-
quence, see Ref. 14.

The figure clearly shows that the dot pattern of the
LDS is more homogeneous than that of the pseudorandom
numbers. However, we see that there is interdot overlap
in both patterns because of the finite diameter of dots.
For optical uses, this overlap is undesirable, since it
causes anomalous scattering. This is also the case for al-
most all other practical applications. Thus the merit of
the LDS will be best shown by using the LDS together
with an effective overlap-removal technique, which is the
main subject of Section 3.

3. DYNAMICAL RELAXATION PROCESS
A. Equation of Motion
To remove interdot overlap, we introduce a molecular-
dynamics model, where dots repulsively interact with
each other, as schematically shown in Fig. 4. Starting
from initial distributions generated with the LDS as in

Fig. 3. Comparison between (a) pseudorandom numbers and (b)
LDS.
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Fig. 3, the repulsive interaction can remove the overlaps
gradually if the repulsive force is properly chosen.

For an interaction force fij between dots i and j, we con-
sider the equation of motion

m
d2ri

dt2 1 c
dri

dt
5 (

j51

N

fij~ri ,rj! (6)

for i 5 1, 2,..., N, where m and c are constants and t is a
parameter of time. The coordinates (xi , yi) in Eq. (3) are
expressed as ri here. This equation of motion is formally
solved for t . t0 as

ri~t ! 5 ri~t0! 1
1

c
E

t0

t

dtFi~t!H 1 2 expF2
c~t 2 t!

m G J ,

(7)

where Fi is a shorthand notation for ( j51
N fij and t0 is the

initial time. Since the ratio c/m is arbitrary, we take the
limit c/m → `, so that the equation is approximated as a
difference equation

ri~t 1 Dt ! 5 ri~t ! 1
1

c
DtFi~t !. (8)

This equation determines the coordinates of a dot at time
t 1 Dt by using information at past time t, so that the
many-body correlation problem is substantially reduced
to a single-body problem. The error due to this approxi-
mation is of the higher order of Dt, which essentially van-
ishes for sufficiently small Dt.

In the field of digital halftoning techniques, some au-
thors have proposed a technique utilizing repulsive inter-
action between dots to improve dithering bitmaps.15

They have offered an algorithm for generating dot pat-
terns with certain constant densities, say r, by sequen-
tially adding dots to dot patterns with lower density, say
r 2 Dr, searching for a point with minimal potential en-
ergy. Note that algorithms of this kind break the permu-
tation symmetry between arbitrary pairs of dots, since
the dots in the initial pattern of r 2 Dr are not affected
by the repulsive potential of the newly added dots.

In contrast, our formulation based on Eqs. (6) and (8)
treats all of the dots symmetrically, as illustrated in Fig.
4. Mathematically, we see that the set of equations of
motion is invariant with respect to the permutation i ↔ j
(i Þ j). From the viewpoint of the many-body problem,
any theory violating permutation symmetry leads to an
inconsistent approximation, as suggested in Section 1.

Fig. 4. Schematic diagram of the relaxation method. The re-
pulsive force from dots B and C is acting on A. The situation is
not one-sided: B and C are also affected by the surrounding
dots, showing the permutation symmetry in the relaxation algo-
rithm.
We assume that the interaction force is the central
force, i.e., fij } (ri 2 rj) [ rij . This assumption is made
to prevent the dot patterns from forming vortices as time
develops. The following elliptic model with an exponen-
tial tail is useful for the light-guide and halftoning appli-
cations:

fij 5
rij

uriju
3 H 1 for bij , D

exp@2~ uriju 2 bij!/L# for bij > D
, (9)

where bij is defined by

bij
2

~kD !2 5
x2 1 y2

~kx !2 1 y2 , (10)

where xi 2 xj and yi 2 yj are denoted by x and y, respec-
tively. Equation (10) defines an elliptic boundary with
long and short axes of D and kD (k < 1), where, for sim-
plicity, we assumed that the principal axes are parallel to
the x and y axes, respectively. The value of k (0 , k
, 1) is suitable for a light scatterer with oblong shapes,
an example of which will be shown in Section 5. Other-
wise, one may adopt other boundary shapes such as a
rectangular boundary given by bij 5 max(x, y/k) instead
of Eq. (10), depending on the purpose.

B. Density Distribution
To apply the LDS-relaxation method to optical devices, it
is often necessary to continuously vary the density over a
spatial domain. One can realize such a density distribu-
tion by a probabilistic sampling process and a dynamical
scaling rule.

Consider a situation where the whole domain is divided
into M rectangles of size Lxk 3 Lyk for k 5 1, 2,..., M and
density rk is allocated in each tile. We define the density
at each tile as the ratio of the aggregate area occupied by
dots to LxkLyk . We introduce a new (discrete) function
Pk :

Pk 5
rk

(
l51

M

r l

,

which is interpreted as the probability of hitting a tile k in
a ‘‘dart-throwing game’’ with dots.

Note that this step adds another probabilistic factor to
the pattern generation process: We have a three-
dimensional space spanned by the x, y, and k axes, and we
probabilistically choose a position in this space by using
the LDS. This is in contrast to the constant-density
cases in Fig. 3, where only the two-dimensional physical
space is considered.

Now the initial pattern is generated by repeating the
following process N times.

1. Generate a three-dimensional LDS defined within
@0, 1#3, and take a point (U0 , U1 , U2).

2. Choose k by using the condition
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(
l51

k

Pl < U0 , (
l51

k11

Pl .

3. Give the coordinates for the chosen tile by the
equations

x 5 xk 1 LxkU1 , y 5 yk 1 LykU2 ,

where xk and yk are the coordinates of the origin of the
kth tile.

Since the adequate distance between adjacent dots var-
ies with the density, the dependence of the force range on
r should be taken into account. As discussed in Section
1, Ulichney5 stated that a well-formed dithering bitmap of
fixed density should consist of an isotropic field of dots
with an average separation of the principal wavelength.
In the present context, the principal length is written as

l~r! 5
a

Ar
,

where a is the diameter of dots. Here we define a as the
square root of the area occupied by one dot. This equa-
tion is derived as follows. Within a (small) area A with
density r, the total number of dots is n 5 rA/a2 on aver-
age. The area allocated to one dot is A/n, so that the dis-
tance between adjacent dots is evaluated as AA/n
5 a/Ar.

We impose a scaling rule on the force model, given by

D ; l~r!. (11)

Similarly, we assume that L } D. After the work of Uli-
chney, elaborate halftoning theories have been considered
in the frequency space. This simple rule in the physical
space captures their essence.

There is substantially no characteristic length in the
initial patterns generated with the LDS. A short-range
order is introduced into the initial pattern by the scaling
rule. Since the order of the range of force is limited
within the order of the principal wavelength, long-range
orders are not likely to be introduced by the relaxation
process. We call our approach the dynamical LDS
(DLDS) method hereafter.

4. CALCULATED RESULTS
Figure 5 shows the resultant dot patterns after a common
relaxation process is applied for initial states generated
with (a) the pseudorandom numbers and (b) the LDS for a
constant density (;0.6). The force model used is the
aforementioned elliptic model with k 5 1. As shown in
the figure, the DLDS pattern is very uniform and suffi-
ciently irregular. On the other hand, the pseudorandom
pattern exhibits visible roughness even after the relax-
ation process. This result clearly shows the essential
role of low discrepancy in the initial state.

Based on our experience, even a very long relaxation
time does not result in regular lattice structures, nor do
the pseudorandom initial patterns result in the uniform
DLDS pattern. The course of convergence of the calcula-
tions is neither as simple nor as monotonic as that of, e.g.,
Monte Carlo calculations, whose convergence is ensured
by the law of large numbers. There may be a great num-
ber of local minima in the energy landscape of the many-
body systems, so that eliminating the global roughness in
the initial states is a tough task, unless appropriate ther-
mal fluctuation is taken into account.

Figure 6(a) shows a DLDS pattern with the density dis-
tribution of Fig. 6(b). In spite of the very steep density
gradient, we see a quite smooth irregular dot pattern
without interdot overlap. This feature offers great free-
dom in designing the light guides or the photomasks.

To study the influence of the initial-state sampling and
the relaxation processes on the discrepancy, we calculated
the two-dimensional discrepancy for the generated dot

Fig. 5. Comparison between two initial patterns: (a) pseudo-
random numbers and (b) LDS. The iteration number and the
dynamical parameters are the same for both. We observe visible
roughness in (a) and uniform irregularity in (b).

Fig. 6. Example of DLDS patterns with steep density gradient:
(a) DLDS pattern and (b) density distribution.

Fig. 7. Square of the L2 discrepancy as a function of N.
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patterns with Eq. (3). Figure 7 shows the squared dis-
crepancy as a function of N. The plus symbols (1) repre-
sent the results for dot patterns simply generated with
pseudorandom numbers without any relaxation process
for a constant density (;0.5). The circles (s) represent
the results for relaxed dot patterns with initial states gen-
erated for a constant density (;0.5) with the two-
dimensional LDS. The triangles (m) represent the re-
sults of dot patterns with continuous density
distributions and use of the three-dimensional LDS. Al-
though the density distribution actually corresponds to a
distribution of the light scatterers for the light guide dis-
cussed in Section 5; the effects of the distribution itself do
not matter, since the variation of density over the domain
(Dr) is negligible, i.e., Dr/(2r) ! 1.

From this figure, we find that the power index of N is
slightly increased by the relaxation process as compared
with that of the pure two-dimensional LDS estimated
from Eq. (4), where the power index of the squared dis-
crepancy is roughly of the order of N22. We also see that
the continuous-density case (m) exhibits relatively large
fluctuation, probably because of the effect of the three-
dimensional sampling in the initial state. However,
there exists a qualitative difference in the dependence on
N between the pseudorandom patterns [Eq. (5)] and the
DLDS patterns.

5. APPLICATION TO LIQUID-CRYSTAL
DISPLAYS
We prototyped two integrated-type acrylic light guides as
shown in Fig. 8.16 The detailed dimensions of the micro-
scatterers and the prismatic grooves are shown in Fig. 9.
To place the microscatterers, we employed two different
algorithms. One is based on the PRP method, which has
been the best randomization method known so far for this
application. The other method is our proposed algo-
rithm. The density of the microscatterers varies from ap-
proximately 0.2 to 0.6.

Figure 10 shows a comparison of the distributions of
the microscatterers near the center of the thicker edge of
the light guides with use of (a) the PRP method and (b)
the DLDS method. Both patterns are of good homogene-
ity and randomness, but a close inspection shows that
there are traces of a lattice in Fig. 10(a), where the verti-
cal spacing between the horizontal traces is approxi-
mately 0.193 mm on average. It becomes larger for the

Fig. 8. Prototyped integrated-type light guides.
dots closer to the center of the light guide (not shown).
On the other hand, the pattern in Fig. 10(b) shows much
better homogeneity in spite of its randomness, without
any traces of a lattice on a directly visible scale. Al-
though traces of an oblique lattice structure might be ob-
served in Fig. 10(b), the pattern disappears on a scale
larger than a few centimeters; i.e., the DLDS patterns
have substantially no long-range order.

Although seemingly slight, the above difference brings
about a major difference in observed luminance distribu-
tions. Figure 11 shows a comparison of snapshots of each
light guide through a 15-in.-diagonal ultra-extended
graphics array (UXGA) liquid-crystal cell. For illumina-
tion, a CCFL was placed parallel to the x axis, and an Ag-
reflective sheet was placed beneath each light guide. The
bottom edge of the pictures is near the center of the
CCFL. The height of the area shown is 68 mm. One can
see a clear moiré pattern in Fig. 11(a), while no such in-
terference pattern is observed in Fig. 11(b) with its much
more homogeneous luminance distribution. Even for re-
alistic backlight configurations with an additional prism
sheet, the PRP light guide still exhibits a moiré pattern.

In the PRP method, the periodic spacing of the horizon-
tal moiré pattern becomes larger from the top to the bot-
tom. This is due to the decreasing spacing of the original
lattice. According to a Fourier domain approach,17 when
light is transmitted through two optical components with
the periodic structures of wave-number vectors k1 and
k2 , respectively, the transmitted light will include a Fou-
rier component of k1 6 k2 due to multiplicative superpo-
sition. Therefore, when the two periodic structures are
arranged in parallel, the resultant wave includes at least
a wavelength of

Fig. 9. Shape of (a) the microscatterers and (b) the prismatic
grooves in units of millimeters.

Fig. 10. Snapshots of the microscatterer patterns with use of (a)
the PRP method and (b) the DLDS method.
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l 5
2p

uk1 2 k2u
5

l1l2

ul1 2 l2u
,

where ki 5 ukiu 5 2p/li for i 5 1, 2.
The observed interval of the periodic moiré patterns

can easily be derived from this formula. We have just es-
timated the nearest-neighbor spacing of the original lat-
tice as l1 5 0.193 mm in Fig. 10(a). For the UXGA
liquid-crystal cell with a spacing of l2 5 0.190 mm, this
lattice should cause a moiré pattern with l 5 13.6 mm,
which is very close to the measured periodic spacing of
13.0 mm. Similarly, the measured wavelength of 0.840
mm near the top of Fig. 11(a) is derived from the UXGA
spacing of 0.190 mm and combined with an experimen-
tally estimated original lattice spacing of 0.245 mm.

Fig. 11. Snapshots through a liquid-crystal cell with use of (a)
the PRP method and (b) the DLDS method.

Fig. 12. Luminance fluctuation along the vertical axis in Fig. 11
for light guides with use of (a) the PRP method and (b) the
DLDS method. For (a) and (b), the luminance is normalized
with the luminance value at the base of Figs. 11(a) and 11(b), re-
spectively.
Figure 12 shows a comparison of the measured lumi-
nance distributions corresponding to the vertical cross
sections in Fig. 11. In Fig. 12(a), we can estimate the
relative luminance amplitude as approximately 15%. On
the other hand, in Fig. 12(b), only an aperiodic irregular-
ity in luminance is observed, with the relative luminance
amplitude estimated as from 6% to 9%. Figures 11 and
12 definitely show that the DLDS method has a great ad-
vantage over the PRP method.

6. CONCLUDING REMARKS
We have developed a new approach to generating irregu-
lar dot patterns, including higher-filling regions without
interdot overlap. First, we showed the important role of
a LDS in generating the physical dot patterns. Second,
we developed an effective algorithm to remove interdot
overlap and to provide continuous-density variation.
Third, we demonstrated that our DLDS approach success-
fully generates superuniform irregular dot patterns even
under the condition of a steep density gradient.

Thanks to the homogeneity and the adequate irregular-
ity, our method can be successfully applied to the back-
light units of liquid-crystal displays. We confirmed that
the DLDS pattern of the light scatterers effectively elimi-
nates a moiré pattern and greatly improves the lumi-
nance homogeneity.

The superuniform dot patterns can be applied also to
other optical devices such as diffuser sheets or photo-
masks, as well as be used for digital halftoning tech-
niques.
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Idé et al. Vol. 20, No. 2 /February 2003 /J. Opt. Soc. Am. A 255
5. R. A. Ulichney, ‘‘Dithering with blue noise,’’ Proc. IEEE 76,
56–79 (1988).

6. T. Mitsa and K. J. Parker, ‘‘Digital halftoning technique us-
ing blue-noise mask,’’ J. Opt. Soc. Am. A 9, 1920–1929
(1992).

7. D. L. Lau, G. R. Arce, and N. C. Gallagher, ‘‘Digital halfton-
ing via green noise masks,’’ J. Opt. Soc. Am. A 16, 1575–
1586 (1999).

8. C. B. Atkins, J. P. Allebach, and C. A. Bouman, ‘‘Halftone
postprocessing for improved highlight rendition,’’ in Pro-
ceedings of the 1997 IEEE International Conference on Im-
age Processing (Institute of Electrical and Electronics Engi-
neers, New York, 1997), Vol. 1, pp. 791–794.

9. S. Hiller, O. Deussen, and A. Keller, ‘‘Tiled blue noise
samples,’’ in Proceedings of Vision, Modeling, and Visual-
ization 2001 (IOS, Amsterdam, The Netherlands, 2001), pp.
265–271.

10. H. Taniguchi, Y. Hira, and Y. Mori, ‘‘Liquid crystal display
devices,’’ U.S. patent 6,099,134 (1998).

11. S. Tezuka, Uniform Random Numbers: Theory and Prac-
tice (Kluwer Academic, Boston, 1995).

12. S. Ninomiya and S. Tezuka, ‘‘Toward real-time pricing of
complex financial derivatives,’’ Appl. Math. Finance 3, 1–20
(1996).

13. S. Tezuka, ‘‘Polynomial arithmetic analogue of Halton se-
quences,’’ ACM (Assoc. Comput. Mach.) Trans. Model. Com-
put. Simul. 3, 99–107 (1993).

14. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes in C: The Art of Scientific
Computing, 2nd ed. (Cambridge U. Press, Cambridge, UK,
1992), Chap. 7.

15. W. Purgathofer, R. F. Tobler, and M. Geiler, ‘‘Forced random
dithering: improved threshold matrices for ordered dith-
ering,’’ in Proceedings of the First IEEE International Con-
ference on Image Processing (Institute of Electrical and
Electronics Engineers, New York, 1994), pp. 1032–1035.
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