

Tokyo Research Laboratory

Eigenspace-based anomaly detection in computer systems

IBM Research, Tokyo Research Laboratory <u>Tsuyoshi Ide</u> and Hisashi Kashima

KDD 04 | 2004/08/24

© Copyright IBM Corporation 2003

Outline

- Motivation
- Modeling Web-based systems
- Problem statement
- Feature extraction
- Anomaly detection
- Experiment
- Summary

Motivation:

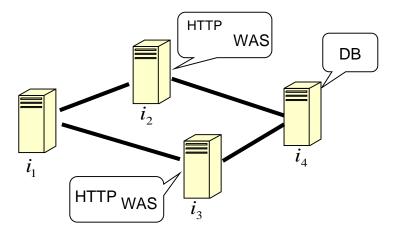
Fault detection in computer systems at the application layer

Faults at the application layer are hard to detect using existing technologies

 This is especially true for Web-based systems with redundancy

• Why?

- The *dependencies* between servers make everything complicated
- They are highly *dynamic*: Observed metrics greatly vary overtime.

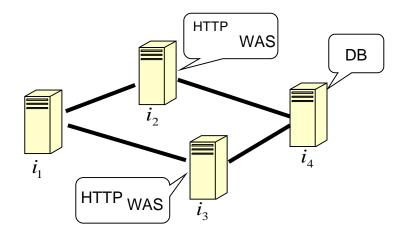


Computer system = strongly-correlated dynamic system

Motivation:

Knowledge discovery from correlated (or structured) dynamic systems

- Data mining from structured data has recently attracted attention
- However, most of the graph mining studies focus mainly on static data
 - We address the dynamic correlated systems, and
 - We develop a tool suitable for analyzing these systems.



knowledge discovery from dynamic systems

Modeling Web-based systems: definition

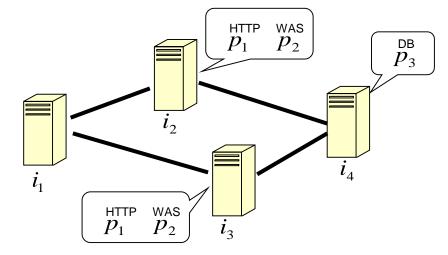
Service

- $s \equiv (I_{\text{source}}, I_{\text{dst}}, \text{port}\#, \text{trans.type})$
- contains <u>two</u> IP addresses
- Service dependency
 - + # of a service's request for another service
 - log transform and symmetrize

 $\mathsf{D}_{i,j} = (\tilde{d}_{i,j} + \tilde{d}_{j,i})(1 - \delta_{i,j}) + \alpha_i \delta_{i,j}$

Service dependency graph

- nodes: services
- edge weights: service dependencies
- defined as an undirected graph



$$s_{3} = (i_{1}, i_{2}, p_{1}, q_{1})$$

$$s_{4} = (i_{1}, i_{3}, p_{1}, q_{1})$$

$$s_{7} = (i_{2}, i_{3}, p_{2}, q_{1})$$

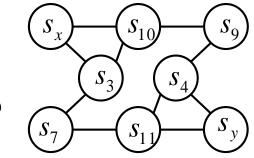
$$s_{9} = (i_{3}, i_{2}, p_{2}, q_{1})$$

$$s_{10} = (i_{2}, i_{4}, p_{3}, q_{2})$$

$$s_{11} = (i_{3}, i_{4}, p_{3}, q_{2})$$

$$s_{x} = (i_{2}, i_{2}, p_{2}, q_{1})$$

$$s_{y} = (i_{3}, i_{3}, p_{2}, q_{1})$$



Modeling Web-based systems: How to find D

Modeling Web-based systems: considerations

of edges is relatively large

- e.g. more than 1000 edges for 50 services
- the dependency (or adjacency) matrix might be sparse, but generally we do not know how sparse it is

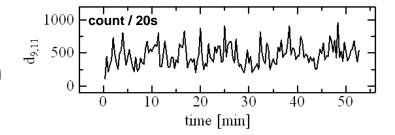
Services in a benchmark system

Index	I_s	I_d	Р	Q
0	0.0.0.0	0.0.0.0	0	(none)
1	192.168.0.19	192.168.0.53	80	Plants
2	192.168.0.19	192.168.0.54	80	Plants
3	192.168.0.19	192.168.0.53	80	Trade
4	192.168.0.19	192.168.0.54	80	Trade
5	192.168.0.54	192.168.0.53	5558	$_{\rm JMS}$
6	192.168.0.53	192.168.0.54	9081	Plants
7	192.168.0.53	192.168.0.54	9081	Trade
8	192.168.0.54	192.168.0.53	9081	Plants
9	192.168.0.54	192.168.0.53	9081	Trade
10	192.168.0.53	192.168.0.52	50000	DB2
11	192.168.0.54	192.168.0.52	50000	DB2

Service dependency between 9 &11

Edge weights greatly vary over time

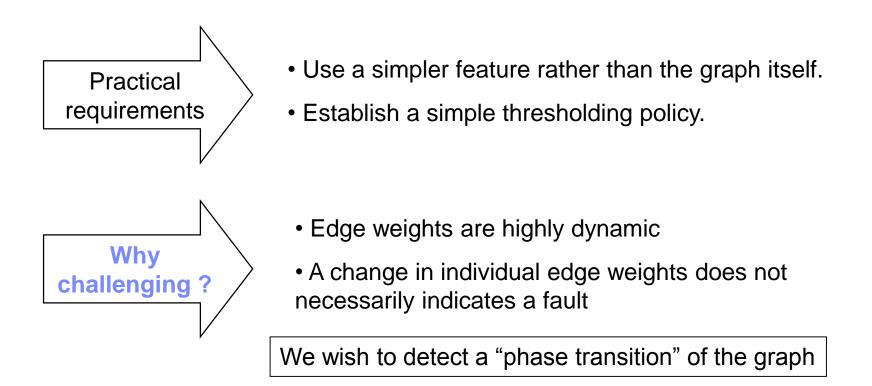
 autoregressive models are inappropriate in a time scale of several minutes



Problem statement:

Online anomaly detection from a time series of graphs

Given a time-dependent graph with a fixed structure,
detect anomalies *online* in an *unsupervised* manner.



Feature extraction:

The principal eigenvector is the summary of the activity of services

Definition of the "service activity vector (SAV)"

$$\boldsymbol{u}(t) \equiv \arg \max_{\tilde{\boldsymbol{u}}} \left\{ \tilde{\boldsymbol{u}}^T \underline{\mathsf{D}}(t) \tilde{\boldsymbol{u}} \right\} \qquad \text{subject to } \tilde{\boldsymbol{u}}^T \tilde{\boldsymbol{u}} = 1$$

dependency matrix at t

Why "activity"?

• If D₁₂ is large, then u₁ and u₂ should be large because of argmax (note: D is a positive matrix).

• So, if s1 actively calls other services, then the weight in s1 should be large.

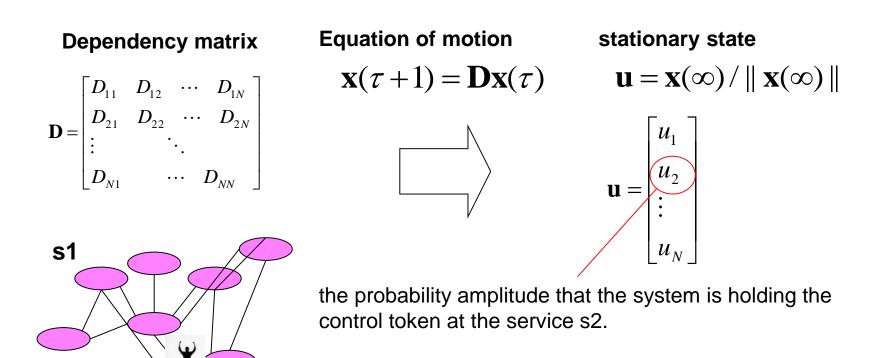
Mathematically, this equation is reduced to the eigenvalue equation:

$$\mathsf{D}(t)\tilde{\boldsymbol{u}} = \lambda \tilde{\boldsymbol{u}}$$
 subject to $\tilde{\boldsymbol{u}}^T \tilde{\boldsymbol{u}} = 1$

Feature extraction:

Also interpreted as the "stationary state" of the system

If we regard D as the time evolution operator, then the service activity vector can be interpreted as the stationary state of the system.



service activity vector = summary of the system

Page 10

s2

Feature extraction:

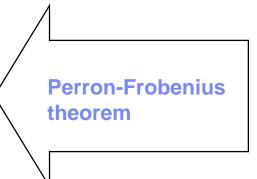
Mathematical properties

SAV is invariant with respect to uniform changes in traffic.

• we can separate normal fluctuations in traffic from anomalies

SAV is a positive vector.

• we never have negative activities.

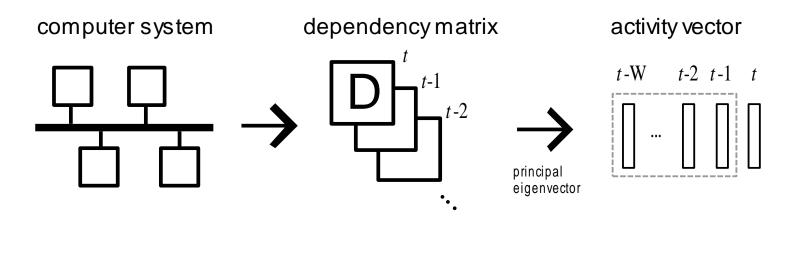


SAV has no degeneracy.

• we are free from such subtle problems as level crossings

Anomaly detection: From a graph sequence to a vector sequence

 The problem was reduced to anomaly detection from a time sequence of directional data (normalized vector).



Question 1:

How can we define the anomaly metric?

Question 2:

How can we determine its threshold?

Anomaly detection: Cosine-measure-like anomaly metric

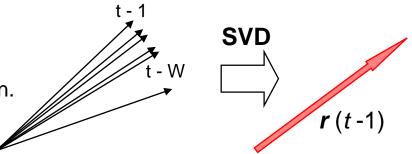
Definition of anomaly metric

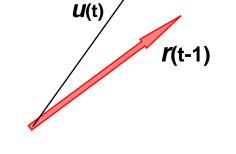
$$z(t) \equiv 1 - \boldsymbol{r}(t-1)^T \boldsymbol{u}(t)$$

- **u**(*t*) : activity vector at time *t*
- r(t-1): typical activity pattern at t-1

To find the typical activity pattern,

- We employ an LSI (Latent semantic indexing) like pattern extraction technique.
- Perform SVD for
 - U = [*u* (t -1), *u* (t -2), ..., *u* (t W)]
- The principal left singular vector is the solution.





Anomaly detection:

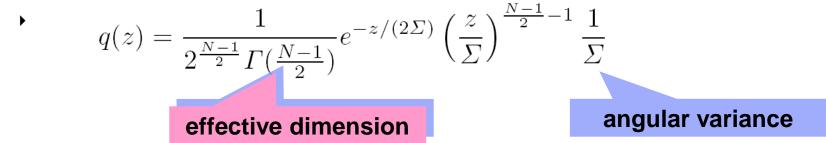
A generative model for the anomaly metric

- For directional data, Gaussian models do not work well
 - The distribution of *u*(t) degenerates on the surface of a hypersphere
- Our starting point is the von Mises-Fisher distribution
 - $p(\mathbf{u}) \propto \exp\left[\frac{\mathbf{r}^T \mathbf{u}}{\Sigma}\right]$, Σ : angular variance
 - We can approximately derive the pdf for z(t) itself.

The pdf of *z* can be expressed as the chi-squared distribution with *N*-1 degrees of freedom.

Anomaly detection: The notion of effective dimension

• Explicitly, the distribution of the anomaly metric, *z*, is given by



- We wish to determine a threshold of z online
 - We need to construct an online algorithm to update the parameters
 - Seemingly, we have a single fitting parameter, ∑, but this model doesn't work well because of the "curse of dimension"

• We regard N as a fitting parameter n.

- n : "effective dimension"
 - the actual degrees of freedom in action
 - this model works well when there are inactive degrees of freedom

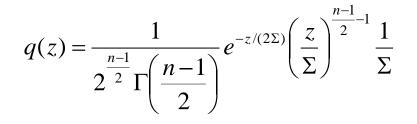
IBM

Anomaly detection:

A novel online algorithm to update n and \sum

Parameter estimation is still challenging

- Because MLE has difficulties
 - The gamma function makes everything difficult



• Our approach: the moment method

 The chi-squared distribution has explicit expressions for the 1st and 2nd moments

$$\langle z \rangle = \int dz q(z) z = (n-1)\Sigma, \quad \langle z \rangle^2 = \int dz q(z) z^2 = 2(n^2-1)\Sigma^2$$

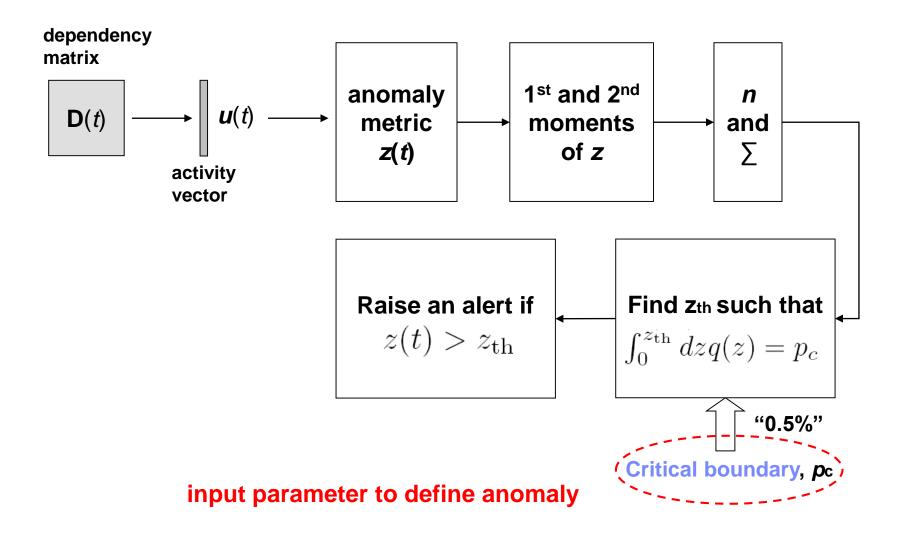
• These can be easily solved wrt n and \sum

$$n-1 = \frac{2\langle z \rangle^2}{\langle z^2 \rangle - \langle z \rangle^2}, \quad \Sigma = \frac{\langle z^2 \rangle - \langle z \rangle^2}{2\langle z \rangle}$$

Online estimation for the moments are easy:

$$\langle z \rangle^{(t)} = (1 - \beta) \langle z \rangle^{(t-1)} + \beta z(t) \qquad \langle z^2 \rangle^{(t)} = (1 - \beta) \langle z^2 \rangle^{(t-1)} + \beta z(t)^2$$

Anomaly detection: Summary of our algorithm



Experiment:

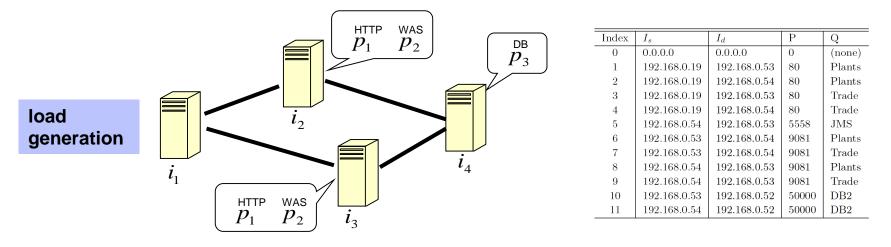
A bug in one of the Web applications

Settings

- On each of the two WAS, two applications are running ("Trade" and "Plants")
- Service dependency matrices are generated every 20 seconds
- The principal eigencluster has 12 services

A bug

- One of the "Trade" applications malfunctions at time t_A and recovers at t_B .
- The server process itself continues running, so the network communication is normal at the TCP layer or below.
- Potentially dangerous: The throughput is hardly affected for relatively low load



IBM

Experiment: The malfunction could be detected

 The malfunction started at t_A and finished at t_B

Time evolution of SAV

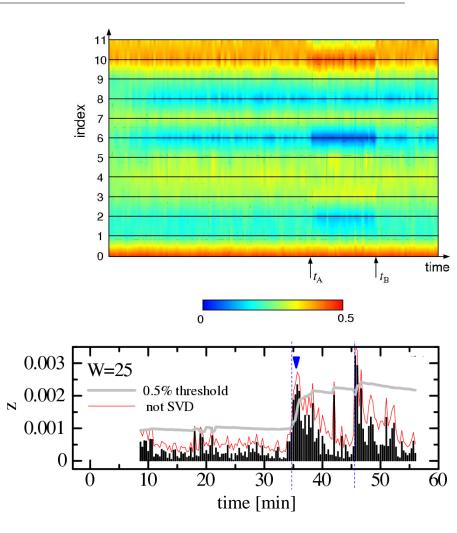
- clearly visualizes the malfunction period
- the malfunction of the single service (#11) causes a massive change

Anomaly metric

- Two features clearly indicate the malfunction period
 - The latter is the evidence that the online calculation works well

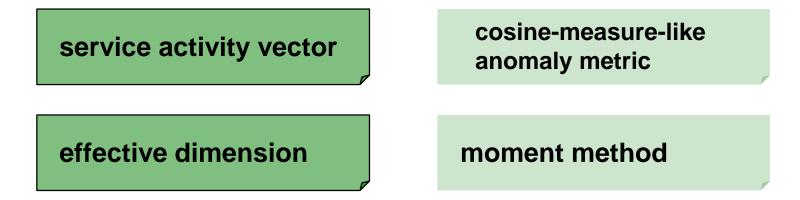
Calculated threshold value

- dynamically adapted to the situation
- n ~ 4 is much smaller than N=12



Summary

- We have considered the issue of anomaly detection from a highly dynamic graph sequence.
- We have introduced several new concepts



We demonstrated the utility of our approach in a benchmark system.