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Abstract. We consider the issue of online anomaly detection from a
time sequence of directional data (normalized vectors) in high dimen-
sional systems. In spite of the practical importance, little is known about
anomaly detection methods for directional data. Using a novel concept
of the effective dimension of the system, we successfully formulated an
anomaly detection method which is free from the “curse of dimensional-
ity.” In our method, we derive a probability distribution function (pdf)
for an anomaly metric, and use a novel update algorithm for the pa-
rameters in the pdf, where the effective dimension is included as a fitting
parameter. For directional data from a computer system, we demonstrate
the utility of our algorithm in anomaly detection.

1 Introduction

A general approach in anomaly detection from vector sequences is to introduce a
probability distribution function (pdf) of the collection of negative (or normal)
examples. Using a pdf, a threshold value to identify positive (or anomalous)
examples can be calculated in a consistent fashion. However, such probabilistic
methods often fail for systems with higher dimensions. One major reason is that
some of the degrees of freedom in such systems are inactive (almost constant)
in many practical applications. A typical example can be found in online text
classification, where the dimensions of the document vectors are often on the
order of one million, but the dimensions that are effective in classification are
known to be on the order of several hundreds [4].

In this paper, we formulate an online anomaly detection algorithm for di-
rectional data based on the von Mises-Fisher (vMF) distribution [10]. Although
directional data often appears in many practical situations [10, 2, 8], little is
known in the context of anomaly detection.

Explicitly, the vMF distribution is given by,

p(u|κ,µ) =
κ

N
2 −1

(2π)N/2IN
2 −1(κ)

exp
(
κµT u

)
, (1)

where µ is a mean direction and Il(·) represents the modified Bessel function of
order l. The value 1/κ > 0 is a constant parameter called the angular variance.
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The intrinsic dimension of the directional data u is denoted as N . Intuitively,
the vMF distribution describes fluctuations of u around the mean direction. The
vMF distribution is the most natural distribution for directional data in that it
can be derived using the maximum entropy principle under the conditions that
(1) the total probability is unity and (2) that the average over u on the unit
sphere is µ. Since the normal distribution is derived if the second condition is
replaced with that of the average in the whole N -dimensional space, the vMF
distribution can be regarded as the “normal” distribution for directional data.

To detect anomalies in an online fashion, we need to update the pdf in ac-
cordance with the data just given at the current time, t. One possible way is to
perform maximum likelihood estimation (MLE) continuously for the new data.
Banerjee et al. [2] employed a mixture of vMF distributions, and derived an
approximated version of the MLE procedure. However, parameter estimation in
this case is quite difficult due to the modified Bessel function. Especially, the
parameter N often degrades the accuracy of the approximations of Il(·) in many
application areas if N is relatively large [1].

In this paper, we introduce a novel concept, effective dimensions, to overcome
the curse of dimensionality. Starting from the vMF distribution, we derive a pdf
for an anomaly metric based on the Fisher kernel [9]. The pdf contains two pa-
rameters that the angular variance and the effective dimension, n, instead of the
intrinsic dimension of the directional data, N . Then we introduce a new online
algorithm to update the pdf at each time step. To the best of our knowledge,
this is the first attempt to overcome the curse of dimensionality using the notion
of the effective dimension. Note that existing formulation using Gaussian mix-
tures [15, 14] are not appropriate in this case because of the degeneracies of the
distributions due to the normalization condition and the existence of inactive
variables.

We will experimentally show that the effective dimension is actually much
less than the nominal dimension N for feature vectors extracted from a computer
system. Also, we demonstrate that anomalies can be detected by comparing with
a given critical probability that is independent of the details of the system.

The rest of this paper is organized as follows: In Section 2, we define the
dependency matrix in computer systems and recapitulate our method of feature
extraction [8]. In Section 3, we define an anomaly metric. In Section 4, a gener-
ative model for the anomaly metric is derived from the vMF distribution, and
introduce the concept of effective dimensions. In Section 5, a novel incremental
algorithm is proposed to estimate the parameter in the model. In Section 6, we
report on experimental results in a benchmark system. In the final section, we
summarize the major results in this paper.

2 Modeling computer systems

2.1 Dependency matrix

To model the behavior of Web-based computer systems at the application layer,
where the interaction between servers is essential, we define a service as a quartet
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of

(Is, Id, P, Q),

where Is and Id represent source and destination IP (Internet Protocol) ad-
dresses, respectively, and P denotes the port number of the destination applica-
tion. We also use an attribute called the transaction type Q. Figure 1 illustrates
a benchmark system. There are four server boxes in this system, and two server
processes with port numbers p1 and p2 are installed on each of the boxes at i2
and i3.

i
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HTTP  p
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1
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Fig. 1. Configuration of benchmark system. IP addresses and port numbers are denoted
by ik (k = 1, .., 4) and pj (j = 1, 2, 3), respectively.

Consider a system with N different services, and imagine a graph each of
whose nodes is one of the services. For the edge weights, we employ the following
quantity [8]:

Di,j = [f(di,j) + f(dj,i)] (1− δi,j) + αiδi,j , (2)

where δi,j is Kroneker’s delta function and the αis are constants introduced to
stabilize the numerical calculations. Considering the bursty nature of Web traffic,
we use f(·) = ln(1 + ·). In principle, the quantity di,j can be measured through
server logs or some estimation algorithm [13, 6]. By definition, D is a square non-
negative matrix. Hereafter, we use a sans serif font to indicate matrices and use
bold italic to indicate vectors. The norm of vectors is defined as the L2-norm.

Figure 2 shows a subgraph of the dependency graph expected in the system
depicted in Fig. 1. We drew links if Is = Id holds between two services, and
services involving only q1 and q2 are shown there. Generally, the dependency
graph of a Web-based system is quite complicated even if the corresponding IP
network is simple. For an instance of services, see Section 6.
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Fig. 2. A part of the dependency graph for the system in Fig. 1. Only services which
have Q = q1 or q2 are shown. Graph edges are drawn if Is = Id holds between two
vertices.

2.2 Definition of feature vector

Let us assume that the data for the dependency matrix D is sequentially obtained
at each time step t=1,2,... with a fixed interval, and that the dependency graph
has a single connected component. We define the feature vector u of D as

u(t) ≡ argmax
ũ

{
ũT D(t)ũ

}
(3)

subject to ũT ũ = 1, where T denotes transpose. Since D is a non-negative
matrix, one can see that the maximum value is attained if the weight of u(t) is
larger for services where Dij(t) is larger. If a service i actively calls other services,
u(t) has a large weight for the i-th element. Following this interpretation, we
call this feature vector an activity vector.

By introducing a Lagrange multiplier λ, Eq. (3) can be rewritten as

d

dũ

[
ũT D(t)ũ− λũT ũ

]
= 0, (4)

so that
D(t)ũ = λũ. (5)

While this equation holds for any of the eigenvectors of D(t), the feature vector
corresponding to Eq. (3) is defined as the principal eigenvector (the eigenvector
whose eigenvalue is the largest). Since Eq. (5) is homogeneous in ũ, the direction
of the activity vector is invariant with respect to D(t) → ηD(t) for any nonzero
real number η. Thereby we can exclude overall traffic changes from analysis. It is
the eigenvalue that is proportional to the global traffic volume. This is important
to abstract a hidden structure from D.

To understand the meaning of u further, one can relate u with a stationary
state of a discrete-time linear dynamical system whose equation of motion is
given by

x(τ + 1) = D(t)x(τ), (6)
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where τ denotes a virtual time being independent of the actual time t, and x is
associated with u by u=x/||x||. Since D(t) is symmetric and of full-rank at least
for α > 0, all eigenvalues are real. Using the eigenvalues, x(0) can be expressed
as a linear combination of the eigenvectors, so that

x(∞) = lim
n→∞

[D(t)]n x(0) = lim
n→∞

N∑

i=1

[λi(t)]nci(t)ui(t),

where the eigenvalues and the normalized eigenvectors are denoted by λi(t)
and ui(t) for i=1, 2, ..., N , respectively, and ci(t)’s are coefficients of the linear
combination. Evidently, the term of the maximum eigenvalue becomes dominant
as n →∞. Thus, we have

u(t) = x(∞)/||x(∞)||.

Specifically, the state vector approaches u after an infinite number of transitions.
For computer systems, the stationary state can be interpreted as the distribution
of the probability amplitude that a service is holding the control token of the
system at a virtual time point of τ .

2.3 Activity vectors in disconnected systems

In real computer systems, the dependency graph is often disconnected. For such
systems, a permutation matrix P exists such that

PT DP =




D1 0
D2

0 . . .


 ,

where D1, D2, ... are square submatrices. To be concrete, consider the system
shown in Fig. 3. Using

P =




1 0 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0




,

the whole dependency matrix is decomposed into two square submatrices:

D1 =




0 a15 a13 0
a15 0 0 a56

a13 0 0 a36

0 a56 a36 0


 , D2 =

[
0 a24

a24 0

]
. (7)
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Evidently, each submatrix corresponds to a single connected subgraph. Since the
eigenvalue equation is invariant with respect to orthogonal transformations, the
whole eigenvalue equation is written as

0 = det
∣∣D1 − λE(4)

∣∣ · det
∣∣D2 − λE(2)

∣∣ , (8)

where E(n) represents the n-dimensional identity matrix. Consequently, the so-
lution of the whole system can be obtained as the union of the solutions of each
connected component. This fact allows us to analyze each subgraph separately.

For each connected component, the Perron-Frobenius theorem [3], which
holds for non-negative irreducible matrices, guarantees that the principal eigen-
vector is positive, where an eigenvector is said to be positive if all the components
of u or −u are positive and the corresponding eigenvalue is positive. This nat-
urally supports the interpretation of the principal eigenvector as the activity
vector, since the magnitude of the activities should be positive. In addition, the
Perron-Frobenius theorem also guarantees that the principal eigenvalue is real 1

and has no degeneracy. From this, we understand that the activity vector is free
from subtle problems due to level crossings of the eigenstates within a single
connected component in the normal state of the system. If a level crossing easily
occurs due to small fluctuations, the transition from one eigenstate to another
eigenstate may be recognized as an outlier, resulting in a false alert. For more
discussion on the stability of activity vectors, see [8].

1 2

3

46

5

a
a

a

13
36

a15 a56

D D1 2

24

Fig. 3. Example of a disconnected graph.

2.4 Remark

Our feature extraction technique provides a natural way to summarize the in-
formation contained in D. The eigencluster decomposition allows us to analyze
each single eigencluster separately, and the activity vector extraction technique
allows us to further reduce the degrees of freedom. When the set of all services
is unknown, it is practically possible to find the activity vectors by choosing
positive vectors from a set of eigenvectors [11]. Thus, we expect that the de-
grees of freedom of each of subproblems are still moderate even when the whole
degrees of freedom are very large. In addition, the feature vector has a clear
1 In this case, all of eigenvalues are real since Eq. (2) makes D real and symmetric.
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interpretation that is comprehensible to system administrators. Understanding
what is happening is as essential as detection itself in practical situations. These
are advantages over naive approaches such as defining a feature vector simply by
connecting all of the column vectors, where the scalability cannot be achieved
and interpretation of results is often unclear.

For the numerical calculations, an extremely fast and simple algorithm called
the power method [12] is known to find the principal eigenvector. While the
activity vector must be calculated online whenever D is updated in the given
time interval ∆t, typically on the order of a few tens of seconds, our experience
shows that the time to convergence is far less than ∆t even for N on the order
of 103.

3 Anomaly metric

3.1 Definition

Now we consider how to detect anomalous changes from the sequence of activity
vectors {u(t)} for t = 1, 2, .... Since u(t) is normalized, this is a time sequence of
directional data.

To define the anomaly measure, recall the fact that the Fisher kernel func-
tion [9] defines a natural affinity between observables in terms of Fisher’s in-
formation matrix. For the vMF distribution, the Fisher kernel function is given
as

K(ui, uj) = κ−2

[
∂ ln p(ui|κ,µ)

∂µ

]T
∂ ln p(uj |κ,µ)

∂µ
= uT

i uj .

This is nothing but the cosine similarity. Since it takes a value within [0, 1], we
define the anomaly (or dissimilarity) measure z(t) as

z(t) ≡ 1−K (r(t),u(t)) , (9)

where r(t) denotes the past typical pattern defined at t. The value of z(t) is
unity if the present activity vector is orthogonal to the typical pattern, and zero
if the present activity vector is identical to the typical pattern. In the present
context, if z(t) is greater than a given threshold, we infer that an anomalous
situation is occurring in the system.

3.2 Extraction of typical activity pattern

We define a matrix U(t) by

U(t) = [u(t− 1), u(t− 2), · · · , u(t−W )] , (10)

where W is a window size. Clearly, U(t) is an N ×W matrix. We suppose that
the typical pattern is a linear combination of the column vectors:

r(t) = c

W∑

i=1

viu(t− i), (11)
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where c is the normalization constant to satisfy rT r = 1 under the condition of∑W
i=1 v2

i = 1. The easiest way to obtain r(t) is to assume that the vis are inde-
pendent of i. In that case, r(t) is parallel to the mean vector, r(t). Practically,
a good way to reduce the unwanted effects of noisy fluctuations is to optimize
the coefficients vT = (v1, v2, ..., vW ) based on

v(t) ≡ argmax
ṽ

∣∣∣∣∣

∣∣∣∣∣
W∑

i=1

ṽiu(t− i)

∣∣∣∣∣

∣∣∣∣∣

2

= argmax
ṽ

{
ṽT U(t)T U(t)ṽ

}
(12)

subject to ṽT ṽ = 1. It is well-known in the field of pattern recognition that
the solution of this equation is given by the Karhunen-Loève decomposition [5].
Specifically, v(t) is a right singular vector of U(t), and c is the inverse of the cor-
responding singular value. So, we conclude that r(t) is the principal left singular
vector of U(t), where a singular vector is said to be principal if it corresponds
to the largest singular value. Again, the power method [12] is a good way to
perform the singular value decomposition (SVD).

4 Generative model for anomaly metric

4.1 Marginal distribution over z

A conventional method to detect anomalies in a time sequence of multivariate
vectors is to find outliers using a generative model that describes the distribution
of the multivariate vectors [15, 14, 2]. However, as discussed in Introduction, such
approaches have difficulties for high-dimensional data. Instead, we consider a pdf
of the anomaly measure itself, assuming that the distribution of u basically obeys
the vMF distribution given in Eq. (1).

Before plunging into the detail, we summarize our anomaly detection proce-
dure in Fig. 4, where we denote the angle between r(t) and u(t) as θ. As shown,
the basic procedure is to extract a typical pattern from the past activity vectors,
and to calculate the dissimilarity of the present activity vector from this typical
one. We believe that this is reasonable approach if the typical pattern is rela-
tively stable, and it is the case at the application layer of Web-based computer
systems.

Since θ has a one-to-one correspondence to z as z = 1− cos θ, one can derive
the pdf over z through the marginalized distribution with respect to θ, starting
from Eq. (1). We perform a transformation of the variables from u to angular
variables {θ, θ2, ..., θN−1} of the N -dimensional spherical coordinates. By using

dN−1Ω = dθdθ2 · · · dθN−1 sinN−2 θ sinN−3 θ2 · · · sin θN−2,

where dN−1Ω is the area element on the unit sphere in an N -dimensional Eu-
clidean space, the marginalized distribution for θ is written as

∫
dθ2dθ3 · · · dθN−1

[
p(u|κ, µ) sinN−2 θ sinN−3 θ2 · · · sin θN−2

]
. (13)
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Fig. 4. Summary of our anomaly detection procedure.

Since

z(t) ' θ2

2
, cos θ ' 1− θ2

2
, sin θ ' θ

hold for |θ| ¿ 1, we see that the distribution for z is given by

q(z) ∝ exp
[
− z

2Σ

]
z

N−1
2 −1, (14)

where we used θdθ = dz and set 1/2κ to be Σ. Apart from a prefactor and the
scaling factor Σ, this is the same as the χ2-distribution with N − 1 degrees of
freedom.

We have derived this generative model from the vMF distribution of u, which
is the most natural assumption as long as the fluctuations around the mean
direction is relatively small. However, our empirical study shows that the above
model is not consistent with the experimental distribution at all. One reason
can be found in the fact that some of the degrees of freedom happen to be
inactive over some duration of time. In the derivation of the vMF distribution,
an implicit assumption is that all of the degrees of freedom are equally active.
These observations lead us to the concept of the effective dimension.

4.2 Effective dimension

One of the most important steps in our formulation is to replace N in Eq. (14)
with a parameter n, and regard it as a fitting parameter. We call n the effective
dimension of the system. If properly estimated, the effective dimension represents
the active degrees of freedom of the system. We expect that n is much smaller
than N in many application domains. For Web-based systems, the activities of
some of services are much lower than those of others, so that n is much smaller
than N , as shown in Section 6.

Since the function q(z) rapidly decreases as z →∞ for a moderate value of the
degrees of freedom, the normalization constant can be evaluated by integrating
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over [0,∞). Using the definition of the gamma function Γ (·), we have

q(z|n,Σ) =
1

(2Σ)
n−1

2 Γ (n−1
2 )

e−z/(2Σ)z
n−1

2 −1, (15)

where we use the notation of q(z|n,Σ) instead of q(z) to emphasize the effective
dimension as a fitting parameter. We see that the distribution of z ∈ [0, 1] can
be written as the χ2-distribution with n− 1 degrees of freedom.

5 Online estimation of parameters

5.1 Moment-based estimation scheme

To estimate the two parameters n and Σ in Eq. (15), we employ a moment-
based estimation scheme. Note that MLE for the χ2-distribution is intractable
due to the gamma function. Fortunately, analytic formulas about the first (m1)
and second (m2) moments are available for the χ2-distribution. By using the
definition of the gamma function, it is easy to show

m1 ≡
∫ ∞

0

dz q(z|n,Σ)z = (n− 1)Σ

and
m2 ≡

∫ ∞

0

dz q(z|n,Σ)z2 = (n2 − 1)Σ2,

where we again extended the domain of integration to [0,∞). This can be also
justified within the approximation made above. Solving these equation with
respect to n and Σ, we have

n = 1 +
2m1

2

m2 −m1
2

and Σ =
m2 −m1

2

2m1
. (16)

These relations provide a way to evaluate the parameters n and Σ experimen-
tally. For example, if we have T samples {z(t)|t = 1, 2, ..., T}, the experimen-
tal first and second moments can be calculated as m̂1 = (1/T )

∑T
t=1 z(t) and

m̂2 = (1/T )
∑T

t=1 z(t)2, respectively.

5.2 Incremental algorithm

These formulas can be extended to their incremental versions. Using an identity

1
t

t∑

i=1

z(t) =
(

1− 1
t

)
1

t− 1

t−1∑

i=1

z(i) +
1
t
z(t).

and setting 1/t as β, we have

m̂1(t) = (1− β) · m̂1(t−1) + βz(t). (17)
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Similarly for the second moment, we have

m̂2(t) = (1− β) · m̂2(t−1) + βz(t)2. (18)

Naturally, β satisfies 0 < β < 1 and is called the discounting factor.
Since 1/β can be associated with the number of data points, a rough estimate

of β may be β ∼ ∆t/L, where L denotes the time scale we are interested in.
Similarly, W can be estimated as W ∼ L/∆t. In our benchmark system, we
empirically take L on the order of 10 minutes.

Based on the above discussion, we have an online algorithm to calculate a
threshold value to judge whether it is anomalous or not:

1. Give a critical boundary 0 < pc < 1.
2. Calculate m̂1 and m̂2 at t using Eqs. (17) and (18).
3. Calculate n and Σ using Eq. (16).
4. Find zth numerically such that

∫∞
zth

dz q(z|n,Σ) = pc.

5. Emit an alert if z(t) > zth.

The above algorithm includes three parameters, pc, β, and W . Since β and W
can be easily estimated with L and ∆t, the only parameter we must specify is
substantially pc, which is totally independent of the details of the system.

6 Experiment

6.1 Experimental settings

The configuration of our benchmark system is illustrated in Fig. 1. As shown,
the HTTP servers and WASs are doubly redundant. On the WASs, two ap-
plications, “Trade” and “Plants,” are running. Trade is a standard benchmark
application called Trade 3 [7], and Plants is a sample application bundled with
IBM WebSphere Application Server V5.0 and simulates an online store dealing
with plants and gardening tools. For both, the number of clients was fixed to be
16 and the think time was randomly chosen from 0 to 4 seconds.

We generated a matrix D every 20 seconds using a method that evaluates di,j

from captured IP packets. Loopback packets were ignored in the experiments,
so that the services sx and sy in Fig. 2 are not observed for i1 = 192.168.0.53
and i2 = 192.168.0.54. The principal eigencluster is defined in Table 1, and
small perturbations affecting it were ignored. In Table 1, the zeroth service was
introduced to describe the situation where an optimal pair between callee and
caller could not be identified. For example, services triggered by those outside
the intranet will be associated with the zeroth service.

Apart from these, there are other service types, “DB2” and “JMS,” in Ta-
ble 1. DB2 denotes a request for the DB server, and JMS is for communications
related to the Java Messaging Service.
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Table 1. Services appearing in the principal eigencluster

Index Is Id P Q

0 0.0.0.0 0.0.0.0 0 (none)
1 192.168.0.19 192.168.0.53 80 Plants
2 192.168.0.19 192.168.0.54 80 Plants
3 192.168.0.19 192.168.0.53 80 Trade
4 192.168.0.19 192.168.0.54 80 Trade
5 192.168.0.54 192.168.0.53 5558 JMS
6 192.168.0.53 192.168.0.54 9081 Plants
7 192.168.0.53 192.168.0.54 9081 Trade
8 192.168.0.54 192.168.0.53 9081 Plants
9 192.168.0.54 192.168.0.53 9081 Trade
10 192.168.0.53 192.168.0.52 50000 DB2
11 192.168.0.54 192.168.0.52 50000 DB2

6.2 Statistical properties in the normal state

We calculated u and z online over a period when the system exhibited no failures.
The dependency matrix was generated over 52.7 minutes, so we had 158 matrices.
The αi values were taken as small random numbers on the order of 0.01. To see
the fluctuation in D, we show in Fig. 5 the time dependence of d9,11 as an
example. We see that there are approximately 500 calls within 20 seconds under
these experimental conditions and that the amplitude of fluctuation of d9,11 is
almost of the same order as the average. Hence, it makes little sense to place a
threshold value on an isolated di,j .

To experimentally validate the pdf of z, we plotted the frequency distribution
of z in Fig. 6 (a), where the χ2 pdf is also shown. The parameters of the χ2 pdf
were calculated using all of the 158 data points with no discounting. The result
was

n = 4.62 and Σ = 6.79× 10−5.

It is noteworthy that the calculated effective dimension is much less than N = 12.
In spite of the limitation of the number of data points, the frequency distribution
is a good fit to the χ2 pdf. We also drew a quantile-quantile plot in Fig. 6 (b). As
shown, the experimental data is well placed on the 45 degree line. These results
clearly support our formulation.2

6.3 Detection of an application fault

Next, we performed a more realistic experiment: A bug in one of the applications
(“Plants”) only on 192.168.0.54 causes a malfunction of the service of 11 at a time
point. The server process itself continues running, so the network communication
2 We rounded the n− 1 value to be 4 to fit the χ2 pdf because of the limitation of the

numerical library we used. This is the main reason the deviation of the χ2 pdf from
the experimental frequency.
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is normal at the IP layer or below. Since two Web servers are working on the
system, a client may feel no change in response time as long as the overall traffic
is sufficiently small. Although this defect occurs within a single service, it can
cause a massive change in D. In fact, the dependencies of the services directly
related with the service 11 will be considerably changed. What we would like to
detect is a transition of this kind.

Figure 7 shows the generated time-series of the activity vector. We see that
a sudden change in activities is observed at tA and tB , which correspond to the
malfunction of the service 11 and its recovery. From the figure, the activities of
the services 2, 6, and 11 are clearly decreased during this period. This result
demonstrates that the service activity vector actually expresses the activity of
services, and suggests a way to visualize the whole system.

To detect this fault automatically, we calculated z and its threshold value,
following the algorithm explained in Section 5. In Fig. 8, we depicted the z
values with vertical bars and the threshold values with thick gray curves for
W =5, 25, and 50. The discounting factor and the critical boundary were taken
as β = 0.005 and pc = 0.5%, respectively. While the result is considerably af-
fected by the choice of W , we observe clear features at t =35.0 and 45.7 minutes,
which correspond to tA and tB in Fig. 7, respectively. These time points are high-
lighted with dashed vertical lines in Fig. 8. Note that the feature at tB (recovery
from the malfunction) demonstrates the learnability for gradual changes of the
environment. The dependence on W is an inevitable consequence of the choice
of the applications. Since the benchmark applications simulate human behavior,
they must have a characteristic time scale. Comparing Fig. 7 with Fig. 8, we
conclude that an appropriate value of W is about 25 (8.3 minutes). We see that
this value of W allows us to pinpoint the time points tA and tB .

The curves plotted with thin lines (“not SVD”) in Fig. 8 represent the result
using the simple mean vector r instead of r. The trend of z is similar to that of
the SVD-based method, but is blurred out by the noise. This result demonstrates
the effectiveness of the SVD-based pattern extraction technique.

For the limitations of our approach, first, the probability of false alarms will
be finite even if W is set to be the optimal value. As understood from Fig. 8, there
is small finite probability of having outliers beyond a threshold value. Second,
since the basic assumption of our approach is the stability of the direction of the
activity vector, our approach is not appropriate for anomaly detection of rarely
invoked services. Finally, there is much room for improvement in the calculations
of the threshold values since the numerical library we used handles only integer
degrees of freedom in the χ2 pdf.

7 Summary

We have proposed a new framework of statistical anomaly detection for a time-
sequence of directional data. First, we defined an anomaly metric, z, based on
the Fisher kernel function of the von Mises-Fisher distribution, and derived
its probability distribution as the χ2 distribution in an approximated manner.
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Fig. 7. Time dependence of the activity vector. The failure duration starts at tA and
ends at tB , as shown by arrows. The definition of the service indices are shown in
Table 1

Second, we proposed a new concept of the effective dimension, n, and gave its
online estimation algorithm based on the method of moments. Our generative
model of z is the χ2 distribution with n−1 degrees of freedom. Third, we derived
an online algorithm to calculate threshold values of z. Only a value of the critical
probability pc is needed to determine the threshold. Finally, we demonstrated
the utility of our method in a fault detection task in a benchmark computer
system.
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8. T. Idé and H. Kashima. Eigenspace-based anomaly detection in computer systems.

In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2004.

9. T. Jaakkola and D. Haussler. Exploiting generative models in discriminative clas-
sifiers. In Advances in Neural Information Processing Systems, volume 11, pages
487–493, 1999.

10. K. Mardia. Multivariate Analysis. Academic Press, 1980.
11. S. Sarkar and K. Boyer. Quantitative measures for change based on feature organi-

zation: Eigenvalues and eigenvectors. Computer Vision and Image Understanding,
71:110–136, 1998.

12. G. Strang. Linear Algebra and its Applications. Academic Press, 1976.
13. The Open Group. Application response measurement — ARM;

http://www.opengroup.org/tech/management/arm/.
14. K. Yamanishi and J. Takeuchi. A unifying framework for detecting outliers and

change points from non-stationary time series data. In Proceedings of the Eighth
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pages 676–681, 2002.

15. K. Yamanishi, J. Takeuchi, G. Williams, and P. Milne. On-line unsupervised outlier
detection using finite mixtures with discounting learning algorithms. In Proceedings
of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 320–324, 2000.


