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Hiroaki Etoh Takeshi Fukuda

IBM Tokyo Research Laboratory
1623-14 Shimo-tsuruma, Yamato-shi, 242-8502 Kanagawa, Japan.

{hkashima, dashi, goodidea, nogayama, rhirade, etoh, fukudat}@jp.ibm.com

Abstract

We introduce a network-based problem detection frame-
work for distributed systems, which includes a data-mining
method for discovering dynamic dependencies among dis-
tributed services from transaction data collected from net-
work, and a novel problem detection method based on the
discovered dependencies. From observed containments of
transaction execution time periods, we estimate the proba-
bilities of accidental and non-accidental containments, and
build a competitive model for discovering direct dependen-
cies by using a model estimation method based on the on-
line EM algorithm. Utilizing the discovered dependency
information, we also propose a hierarchical problem de-
tection framework, where microscopic dependency infor-
mation is incorporated with a macroscopic anomaly metric
that monitors the behavior of the system as a whole. This
feature is made possible by employing a network-based de-
sign which provides overall information of the system with-
out any impact on the performance.

1 Introduction

Today’s typical e-business infrastructure consists of dis-
tributed heterogeneous components such as web servers,
application servers, database servers, storage servers, and
network devices, each of which provides various different
functions asservices. The services have complex interde-
pendency that one service uses others to fulfill its functions.
For example, a Web server provides clients with Web pages
as services each of which is identified with a universal re-
source locator (URL). When a user requests a Web page on
the server using a Web browser, then the server receives an
HTTP request for the page. If the requested page contains
a servlet, the Web server calls an application server to exe-
cute the servlet. Therefore we say that request for the Web
page depends on the servlet. Likewise, if the servlet calls
an EJB, the servlet depends on the EJB, and if the EJB is-

Figure 1. Example of dependencies in a dis-
tributed computer system

sues queries to a database, the EJB depends on the database.
Figure 1 shows an example.

The dependency information can be considered as a
graph in which services are represented as nodes and de-
pendencies among services are represented as arcs. The
dependency information is useful for understanding system
behaviors that are sometimes not noticed by system admin-
istrators. Also in the case of system failures, it is useful
for failure detection, impact analysis and root cause anal-
ysis. When one service goes wrong because of hardware
malfunctions or software bugs, the dependency informa-
tion tells us impacted services that will not work correctly
due to the problem. In the previous example, if some er-
ror occurred during the execution of a database query, from
the dependency information we can see that the Web page
that indirectly depends on the database query would not be
shown to the client correctly. Inversely when a user ob-
serves a problem at a Web page and the Web server does
not have any problem, then at least one of the services that
the Web page directly or indirectly depends on must have
the root cause. There are several papers on problem deter-
mination and root cause analysis using dependency graphs
[27, 8, 12].

It is very difficult even for the system designers and



system administrators to totally understand the dependency
information in a distributed computer system, since many
components dynamically bind with each other at runtime,
and the dependencies often change over time as the envi-
ronment changes. Therefore it is natural to consider that
data mining techniques can be useful to discover dynamic
dependencies from the running computer system.

In [13], Guptaet al. addressed the problem of automat-
ically discovering dependencies among services from his-
torical execution time period data collected by common
performance monitoring instrumentation that many exist-
ing components are already equipped with. They presented
an on-line algorithm that efficiently discovers all dependen-
cies from a given execution time period data. However, the
algorithm may generate many false positives as workload
becomes higher. In addition, their method does not distin-
guish direct dependencies and indirect dependencies. For
instance in Figure 1, although HTTP requests do not call
EJBs directly, their method extracts this indirect relation im-
plied by the chain of calls as a dependency. This property
complicates dependency graphs, which is an obstacle to un-
derstand the target system, and makes root cause analysis
more difficult. In contrast, direct dependencies form a very
simple graph, and therefore we claim that direct dependen-
cies are more suitable for these purposes.

In this paper, we propose a method that solves the above
problems by using two ideas. First, we mitigate false depen-
dencies by introducing a statistical model that takes into ac-
count of false positive rates estimated from the arrival times
and the response times of services.

Next, we propose a competitive model for inferring the
parent service that directly calls a service, and a model esti-
mation method based on EM algorithms [9]. Moreover our
method can estimate the number of times a particular ser-
vice directly calls another service. This is a generalization
of the task defined by Guptaet al. that aims to infer if there
exists a dependency between two services.

Utilizing the dependency information, we also propose a
hierarchical fault detection framework, where microscopic
dependency information is incorporated with a macroscopic
anomaly metric that monitors the behavior of the whole sys-
tem. This feature is made possible by employing a network-
based design which can provide overall information of the
system without any impact on the performance.

The rest of the paper is organized as follows. Section
2 gives preliminaries necessary for describing the problem
and our approaches to it. Section 3 describes the network-
based architecture of our monitoring system. Section 4 out-
lines Gupta’s algorithm and points out its limitations. Sec-
tion 5 gives an improved method for estimating strength of
dependencies. Section 6 describes our anomaly detection
framework. Section 7 experimentally evaluate our depen-
dency discovery algorithm and demonstrate the utility in de-

tecting application faults. Section 8 refers to related work.
Finally, Section 9 concludes the paper.

2 Dependency discovery problem

In Section 1, we motivated ourselves to use dependency
information to detect and analyze system failures. In this
section, we define the problem of finding dependencies
from running systems.

Let Σ be a set ofservicesof interest in a computer sys-
tem. S ∈ Σ represents a service such as a Web page, a
servlet, an EJB method, or a database query. A transac-
tion T is a tuple(S, [s, t]) which represents an instance of
execution of a serviceS ∈ Σ that begins at times and
completes at timet. We call [s, t] an execution period of
T = (S, [s, t]).

A transaction historyD is a historical sequence of
transactions obtained by the monitoring instrumentation
installed in the computer system. Many instrumentation
methods can collect some kind of data that can be modeled
asD. We assume thatD is sorted in the order of completion
time.

If the execution period of a transactionT1 =
(S1, [s1, t1]) contains that of another transactionT2 =
(S2, [s2, t2]), namely,s1 ≤ s2 ≤ t2 ≤ t1, then we say
thatT1 containsT2 and denote this byT1 º T2. If a trans-
actionT1 calls another transactionT2 then we say thatT1

directly depends onT2, and denote this byS1 ⇒ S2. We
also say thatT1 is a parent ofT2 andT2 is a child ofT1.
Note that each transaction has (at most) one parent. IfT1

directly depends onT2 or T1 is a parent of another transac-
tion T3 that depends onT2 (a recursive definition), we say
thatT1 depends onT2 and denote this byT1 → T2

We say that a serviceS1 directly depends on another
serviceS2 and denote this byS1 ⇒ S2 if there exist
T1 = (S1, [s1, t1]) andT2 = (S2, [s2, t2]) in D such that
T1 directly depends onT2. Also, we say that a serviceS1

depends onS2 and denote this byS1 → S2 if there exist
T1 = (S1, [s1, t1]) andT2 = (S2, [s2, t2]) in D such that
T1 depends onT2.

A dependency may beconditional, that is, even ifS1 de-
pends onS2, not all transactions ofS1 in D have to depend
on a transaction ofS2, and there may be some transaction
T = (S1, [s, t]) ∈ D such thatT does not depend on any
transaction ofS2. In addition, a transaction ofS1 may call
another serviceS2 more than once. We will later define a
strengthof S1 ⇒ S2 orS1 → S2 by using the probability or
the number of times a transaction ofS1 calls transactions of
S2. G(D) is a set of all dependencies that can be observed
in a given transaction historyD. Since a dependency is a bi-
nary relationship,G can be represented as a directed graph.
We assume that transactions aresynchronous, that is, ifT1

callsT2, T1 must wait untilT2 completes. ThusT1 º T2 if
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T1 → T2. Furthermore, ifT1 callsT2 = (S2, [s2, t2]) and
T3 = (S3, [s3, t3]), then the execution period ofT2 andT3

must not overlap. In other words,T3 must begin afterT2

completes orT2 must begin afterT3 completes. Therefore,
[s2, t2] ∩ [s3, t3] = ∅ holds.

Let us review the above notions by using an example
shown in Figure 2, in which services are represented as
nodes and dependencies are represented as arcs. There are
two servlets{S1, S2}, three EJB methods{E1, E2, E3},
and three database queries{Q1, Q2, Q3}. Thus Σ =
{S1, S2, E1, E2, E3, Q1, Q2, Q3}. There are arcs fromS1

to E1 andE2, which implies thatS1 directly depends on
(i.e. calls)E1 andE2. On the other hand, there is a path
from S1 to Q1, but there are no edge fromS1 to Q1, which
implies thatS1 depends onQ1, butS1 does not directly de-
pend onQ1.

Suppose thatS1 andS2 are invoked by different clients
independently and concurrently as shown in Figure 3. A
transactionT1 = (S1, [s1, t1]) is an execution of the servlet
S1 which begins at times1 and finishes at timet1. SinceS1

callsE1 andE2, T1 invokesT2 = (E1, [s2, t2]) andT3 =
(E2, [s3, t3]). Likewise,T3 invokesT4 = (Q1, [s4, t4]) and
T5 = (Q2, [s5, t5]); andT6 = (S2, [s6, t6]) callsT7 = (E3,
[s7, t7]) which callsT8 = (Q3, [s8, t8]). Since transactions
are synchronous,T1 º T2, T3; T3 º T4, T5; and T6 º
T7 º T8. In this figureT6 º T3, T4, T5 andT7 º T5 but
those just happened by chance.

So far we have considered as if we know which trans-
action calls which ones. If we know such information, it

is straightforward to obtain dependencies among services.
For example, ARM [21] is a set of APIs that allows users
to capture the behaviors of applications, and we can know
true pairs of a parent transaction and a child transaction by
using correlation IDs given by ARM. However, ARM loads
systems much since the target applications must call ARM
APIs several times for each transaction. Also, we need
changes in source code of the target applications to enable
ARM. Therefore, monitoring such dependencies between
individual transactions is too costly and infeasible in most
cases. Instead, monitoring execution time period of each
transaction, in other words, obtaining a transaction history
D is rather easy and practical. In this paper, we take the
approach of inferring dependencies fromD. In the follow-
ing sections, we introduce our network-based approach for
obtainingD in a distributed environment, and then propose
a plausible estimation of dependency relationshipsG(D).

3 Network-based transaction monitoring

In this section, we discuss how to collect a transaction
historyD from a running distributed system. In [13], Gupta
et al. proposed a host-based approach to obtain execution
time periods of transactions, in which performance metrics
managed by common performance monitoring instrumenta-
tion are periodically polled. The proposed method is very
effective for discovering dependencieswithin a node(i.e., a
server machine). However, to extend the method to discover
dependenciesacross distributed nodes, we have to synchro-
nize the clocks of nodes with very high precision and we
need to gather data from nodes to a single node to apply a
dependency discovery algorithm.

Usually, components in an enterprise system are often in-
stalled on distinct nodes, and communication among them
is done via network. Therefore we take a network-based
approach, in which we monitor network data at a network
device to obtain transaction execution time periods. Many
modern network devices (routers, switches, or hub) are ca-
pable of configuring a mirror port that receives all (or de-
fined part of) network traffic passing through the device
with no or little performance overhead. By analyzing cap-
tured network traffic, we can restore start and stop times of
transactions. For instance, we can extract the start time of an
HTTP transaction from a packet including ‘GET’ method,
and the end time from the packet including the message
‘HTTP/1.1 200 OK’. Since we can observe data for multi-
ple nodes at a single node attached to a mirror port, no time
synchronization is necessary. In addition, a network packet
contains the IP address of a node that submits a transaction
request, which can be a clue to restrict candidates of par-
ent transactions (i.e., the parent transaction must run on the
node). A limitation of this approach is that we may not be
able to capture all the data passing through the network de-
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Figure 4. A prototype system

vice when the total traffic volume exceeds the capacity of
a mirror port (e.g., 1 Gb/s). Although we have to design
dependency discovery algorithms to be tolerant to packet
losses, this property can be considered as an adaptive sam-
pling method that regulates the volume of input data for the
dependency discovery algorithms.

We have developed a prototype system to demonstrate
effectiveness of our approach as illustrated in Figure 4. The
current prototype supports only a few protocols including
HTTP, DRDA (used by DB2), DNS, and LDAP, but the ar-
chitecture allows us to add protocol analyzers to extend the
system to support other transaction types.

4 An existing method for discovering depen-
dencies

Guptaet al.presented in [13] an on-line dependency ex-
traction algorithm (ODEA) that efficiently discovers depen-
dencies (defined below) from a given transaction history.
ODEA measures the strength of dependencyS1 → S2 by
the probabilityp with which a transaction ofS1 contains
at least one transactions ofS2. More formally, for a given
transaction historyD, the strengthp (or p-value) of the de-
pendencyS1 → S2 is defined asp = ](S1|S1 º S2)/](S1),
where](S1) is the number of transactions ofS1 in D, and
](S1|S1 º S2) is the number of transactions ofS1 in D that
contains at least one transaction ofS2. Note that one trans-
action ofS1 contributes to](S1|S1 º S2) by just one even
if it contains more than one transactions ofS2. ODEA is an
on-line algorithm that efficiently discovers every pair of ser-
vices(S1, S2) such that thep-value ofS1 → S2 is non zero
(or large). If there is atruedependency betweenS1 andS2,
that is,S1 directly or indirectly callsS2, then there must be
transactions ofS1 in D that containS2’s transactions, and
p-value ofS1 → S2 is non zero, and hence, ODEA is able
to discover all true dependencies. However, even ifS1 does
not directly or indirectly callS2, a transaction ofS1 may

contain that ofS2 by chance. Therefore ODEA may dis-
coverfalsedependencies. To cope with this problem, [13]
introduces another measurer (calledr-value) forS1 → S2

which is the probability with which a transaction ofS2 is
contained by at least one transactions ofS1, that is defined
as

r =
](S2|S1 º S2)

](S2)
, (1)

where](S2|S1 º S2) is the number of transactions ofS2

that is contained by at least one transaction ofS1. Then [13]
usesmax(p, r) + pr as a heuristic to prioritize discovered
dependencies. The rationale of this heuristic given in [13] is
that the a dependency is more likely to be true if (i) at least
one ofp andr is high (expressed as the first term) and (ii)
both of p andr are high compared to the case when only
one of them is high (as the second term).

ODEA is a simple but powerful tool to automatically ex-
tract dependencies only from transaction histories. How-
ever, we point three drawbacks in the method.

1. The higher the workload intensity becomes, the higher
the probability of accidental containments becomes.
which results in overestimating dependencies.

2. Direct dependencies and indirect dependencies are not
distinguished. This property complicates dependency
graphs, which is an obstacle to understand the target
system, and makes root cause analysis more difficult.

3. The measure for the strength of dependency is de-
signed in an ad hoc manner. We want more quantitative
measures for dependencies.

In the next section, we introduce a novel method that miti-
gates these problems.

5 An accurate direct dependency estimation
method

5.1 Estimating false dependencies

Let us start with the first problem that we mentioned in
the last section. Suppose that we have two servicesS1 and
S2 that do not depend on each other at all. In other words,
the probability with which a transaction ofS1 calls at least
one transactions ofS2 is zero. Similarly, the probability
with which a transaction ofS2 is called by any transaction
of S1 is zero.

As workload intensity becomes higher, the probability
that a transaction ofS1 contains at least one transactions
of S2 by chance and the probability that a transaction of
S2 is contained by any transaction ofS1 by chance become
larger, which leads to more false positive dependencies.



Figure 5. Estimating the probability of acci-
dental containments

For compensating them, we first try to estimate the prob-
abilities of such accidental containments.

Let us assume that requests forSi arrive randomly ac-
cording to a Poisson process with workload intensityλi

(i = 1, 2). Then the time intervalXi between start times
of two consecutive transactions ofSi follows an exponen-
tial distribution with meanE[Xi] = 1/λi and cumulative
probability functionFi(t) = Pr[Xi ≤ t] = 1 − e−λit.
Also, let us assume thatτi follows an exponential distri-
bution with meanE[τi] = 1/µi and cumulative probability
functionTi(t) = Pr[τi ≤ t] = 1−e−µit for i = 1, 2. These
assumptions are very common in standard performance an-
alyzes [3].

Under these assumptions, we estimateψ(S1, S2), the
probability with which a transactionT2 of S2 is contained
by at least one transactions ofS1 by chance.1

Let the start time ofT2 be t = 0, and the number of
transactions ofS1 that are being executed at timet = 0
be N . Then, the probability distribution ofN becomes a
Poisson distributionPo(λ1/µ1),

Pr[N = n] =
λn

1

µn
1n!

e−
λ1
µ1 .

Suppose that there aren transactions ofS1, and let the start
time of one of the transactions bet1, and its end time beu1

(see Figure 5). Then,u1 follows an exponential distribution
with mean1/µ1, and the probability ofT1 not containing
T2 is written as

fail(τ2) =
∫ τ2

0

µ1e
−µ1u1du1 = 1− e−µ1τ2 .

Therefore, since the end times of then transactions are
independent of each other, the probability with whichn
transactions ofS1 exist and all of them do not containT2

is

xn =
∫ ∞

0

λn
1

µn
1n!

e−
λ1
µ1 fail(τ2)nµ2e

−µ2τ2dτ2.

1We can also estimate the probability with which a transactionT1 of
S1 contains at least one transactions ofS2 by chance, but we omit its
derivation since it is not used in the following arguments.

Finally, we obtain

ψ(S1, S2) = 1−
∞∑

n=0

xn, (2)

where

xn =
λn

1 e−
λ1
µ1∏n

k=1(kµ1 + µ2)
=

λ1

nµ1 + µ2
xn−1.

ψ(S1, S2) has an infinite sum, but it is enough to evaluate
the sum up to moderaten in practical use.

5.2 Competitive modeling for discovering direct
dependencies

In this subsection, we tackle the second problem of the
last section by using the result of the previous subsection.
The reason why indirect dependencies are extracted is that
the previous method [13] does not consider an important
constraint that a transaction has at most one parent.

Therefore, we propose a competitive model that takes
into account of the constraint explicitly, which is expressed
as ∑

i

ρ(Si, Sj) = 1 (0 ≤ ρ(Si, Sj) ≤ 1), (3)

whereρ(Si, Sj) is the probability that a transaction ofSj is
directly depended on by a transaction ofSj .2

Given a transaction historyD, we estimate this model
by maximum likelihood approach. Let us first consider
by using an example. Suppose that there are four ser-
vices Σ = {S1, S2, S3, S4}, and that a transactionT1

of S1 is contained by at least one transaction of each of
S2 and S3, and is not contained by any transaction of
S4. Then the probability that this situation happens is
the sum of the probabilities of the following two possi-
ble cases; (i)T is directly called by a transaction ofS2,
and is contained by transactions ofS3 by chance, and is
not contained by any transactions ofS4 by chance; (ii)
T is directly called by a transaction ofS3, and is con-
tained by transactions ofS2 by chance, and is not con-
tained by any transactions ofS4 by chance. Therefore,
the probability isρ(S2, S1)ψ(S3, S1)(1 − ψ(S4, S1)) +
ψ(S2, S1)ρ(S3, S1)(1−ψ(S4, S1)), whereψ(Si, Sj) is the
probability of a transactionT of serviceSj is contained by
transactions of serviceSi by chance.

Generally, the sum of the log-likelihood for a given
transaction historyD is

L =
∑

T∈D

log
∑

S∈C(T )

ν(S, C(T )|T ), (4)

2To incorporate services depended on by no other services, we suppose
a virtual transactionT0 = (S0, [−∞,∞]) of a virtual serviceS0.



whereC(T ) ⊆ Σ is the set of services of transactions by
which a transactionT is contained,

ν(S, C(T )|T ) = ρ(S, S(T ))
∏

S′∈C(T )\S
ψ(S′, S(T ))

·
∏

S′′ 6∈C(T )

(1− ψ(S′′, S(T ))),

andS(T ) is the service of a transactionT .
Our goal is to computeρ(Si, Sj) that maximizes the like-

lihood L subject to the constraint (3). Since it is difficult
to solve this optimization problem analytically, we propose
an iterative method based on the Expectation Maximization
(EM) algorithm [9] to guarantee that each iteration makes
the likelihood better. SinceL has no local maxima, it is
guaranteed that we can always find the optimal solution.
Theorem: The sum of the log-likelihood (4) for the trans-
action historyD has no local maxima.
Proof: The Hessian ofL is negative semi-definite. See Ap-
pendix A for details.¤

The parameter estimation is performed as follows. In the
expectation step, based on the currentρ, the probability that
transactionT is directly called by transactions of serviceSi

is computed by

Pr(Si|C(T ), T )
=Pr(Si, C(T )|T )/Pr(C(T )|T )

=
δ(Si ∈ C(T ))ρ(Si, S(T ))

∏
S′∈C(T )\Si

ψ(S′, S(T ))∑
S∈C(T ) ρ(S, Sj)

∏
S′∈C(T )\S ψ(S′, S(T ))

,

(5)

whereδ is a function that returns1 when its argument is
true, and returns0 otherwise. Therefore,service call fre-
quencŷ](Si ⇒ Sj), the expected number of times transac-
tions ofSi called transactions ofSj , is obtained by

]̂(Si ⇒ Sj) =
∑

T∈D(Sj)

Pr(Si|C(T ), T ). (6)

In the maximization step, the next maximum likelihood es-
timation of the parameters are computed by

ρ(Si, Sj) =
]̂(Si ⇒ Sj)

](Sj)
. (7)

Getting these steps together, the update rule forρ(Si, Sj)
becomes

ρ(Si, Sj) ← ρ(Si, Sj)
1

](Sj)
∂L

∂ρ(Si, Sj)
, (8)

since

∂L

∂ρ(Si, Sj)
=

∑

T∈D(Sj)

δ(Si ∈ C(T ))
∏

S′∈C(T )\Si
ψ(S′, Sj)∑

S∈C(T ) ρ(S, Sj)
∏

S′∈C(T )\S ψ(S′, Sj)
.

Therefore, starting at any initial parameters, optimal param-
eters are obtained by applying (6) and (7) alternatively until
convergence.

Although this update assumes a batch processing of the
whole D, we can also use the on-line EM algorithm [22]
that process one transaction at each update. Receiving a
transactionT , the parent probabilities (5) forT are calcu-
lated based on the currentρ, and then added to (6) to update
the parameters.

In contrast to ODEA considering only whetherSi de-
pendsSj or not, service call frequencŷ](Si ⇒ Sj) indi-
cates the estimated number of calls, and is a quantitative
measure of dependency for understanding the behavior of
the system more deeply. We define the service call fre-
quency matrixF asfij = ]̂(Si ⇒ Sj).

To avoid the unwanted effects of fluctuation of work-
load intensity, a normalized quantityhij(fij) is useful for
problem detection instead offij itself, wherehij(·) is a
monotonic scaling function. One reasonable way is to de-
fine the service call ratio (SCR) matrixC by choosing
hij(·) = 1/](Si). The(i, j) element ofC is given by

cij =
]̂(Si ⇒ Sj)

](Si)
. (9)

Namely, this is the expected number of times thateach
transaction of serviceSi directly calls serviceSj . When
the target system is stable,cij is expected to show a con-
stant value regardless of workload intensity and can be a
powerful tool for root cause analysis. Another way is to de-
fine ascaled service call frequency matrixK by choosing
hij(·) = ln(1+ ·). Empirically, the logarithmic transforma-
tion is known to be effective in eliminating the bursty nature
of traffic. Note that this scaling function does not depends
on (i, j), so that the balance between services is conserved.
This property is preferable to global anomaly metric watch-
ing the overall state of the system.

Based on these metrics,C and K, we propose an ap-
proach for problem detection in the next section.

6 Problem detection

6.1 Individual dependencies

To pursue a reasonable problem detection method, let us
take a look at the characteristics of dependency matrix. We
conducted a preliminary experiment under the condition de-
scribed in Section 7. By using the algorithm introduced in
the previous section, we calculatedF when the system ex-
hibited no failures. Figure 6 shows an example of the time
dependence ofF. We updated the matrix every 5 minutes.
While the generated matrix was23×23 square matrix, only
seven dependencies out of 253 are plotted. They are such
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Server to application server.
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dependencies that related to the communication between an
HTTP server and an application server. From the figure, we
can see that the matrix elementsfij are quite heterogeneous
and greatly vary over time. Therefore the number of calls
itself is not useful for diagnosing the system.

Then we show the time development of the SCR matrix
C in Figure 7, comparing with that ofF for the same de-
pendency corresponding to a communication between the
HTTP and application servers. Since clients randomly call
the HTTP server, the service call frequencies considerably
vary over time. In contrast, the SCR in this case is relatively
stable because HTTP servers are designed to call applica-
tion servers with a constant number per a client request. In
this case, the constant number is one.

This observation leads us to a simple rule to pick up
anomalies:
Criterion 1: A service dependency is anomalous if the ser-
vice suddenly gets inactive, where active services are de-
fined as those maintain SCR values larger than a threshold
value over a predetermined consecutive period.

We depicted this criterion in Figure 8. For the threshold,

time

SCR failure happend

normal abnormal

Figure 8. Anomaly detection based on Crite-
rion 1.

the value of zero is generally a practical choice since tuning
a threshold value is often a tough task unless one has a de-
tailed model of the system. While simple, this criterion is
useful in many cases and provides a unique feature to our
network-based monitoring system. In fact, a considerable
amount of application faults occurs at a single service and
can be detected by watching the corresponding dependency
irrespective of the complexity of service dependency graph.

However, there is a class of failures that cannot be cap-
tured by Criterion 1. First, some of the SCR dependencies
are unstable and do not take constant values as in Figure 7,
so that the simple thresholding criteria do not work well
for such dependencies. For example, some SCRs directly
depend on parameters randomly chosen by clients, result-
ing in unstable SCR values. Second, as indicated in Fig-
ure 6, some service dependencies may have correlation with
others. This fact suggests another type of failures which
appears themselves in the relationship between services,
maintaining finite values of dependencies. Similarly, one
cannot know how large an observed amount of fluctuation
is through watching a single dependency. The intensity of
fluctuation should be compared with the average scale of
fluctuations in the whole system.

Considering these issues, we propose a hierarchical sce-
nario of problem detection as follows (see Figure 9). First,
we compute an anomaly metric that captures the whole sys-
tem based on an unsupervised learning framework. Once
an anomaly is detected, we step down to a lower layer to
examine each service using a properly defined metric. If
faulty services are identified, we further step down to the
third layer, where SCRs are utilized to localize the fault. We
discuss the first and second layers in the subsequent subsec-
tions.

6.2 Service activities

To extract a feature for individual services, we employ
the framework of Id́e-Kashima [17]. We recapitulate the
essence below. First, we define the feature vectoru of the
dependency matrix as

u(t) ≡ argmax
ũ

{
ũT K̃(t)ũ

}
(10)
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Figure 9. Hierarchical view of problem detec-
tion.

subject toũT ũ = 1, whereT denotes transpose. Here we
used a symmetrized version of the scaled frequency matrix,
K̃, whose(i, j) element is defined askij + kji in order to
maintain the consistency as a dynamical system [17]. Since
K̃ is a non-negative matrix, one can see that the maximum
value is attained if the weight ofu(t) is larger for services
where the(i, j) element of̃K is larger. If a servicei actively
calls other services,u(t) has a large weight for thei-th el-
ement. Following this interpretation, we call this feature
vector anactivity vector[17].

One important experimental fact is that strong random
fluctuations inF are considerably suppressed by putting to-
gether the information in the matrix intou. Encouraged
by this fact, we consider a simple probabilistic model for
individual service activities. We employ a Gaussian model
where each activity independently fluctuates. Generally, the
correlation between elements should be taken into account,
but the SCR matrix well complements the information.

For each servicei, the averagewi(t) and the standard
deviationσi(t) at timet can be updated using well-known
on-line maximum likelihood formula [26] such as

wi(t) = (1− β) · wi(t−1) + βui(t), (11)

whereβ is the discounting factor. Now we have the second
criterion for problem detection.
Criterion 2: A service is faulty if

|ui(t)− wi(t)| > σi(t)xth

holds, wherexth is the solution of
∫ ∞

xth

duN(x) = pc.

Here,pc is the critical boundary (< 1) andN(x) represents
the standard normal distribution.

6.3 Overall state

Next, for a time sequence of the activity vector, we in-
troduce an anomaly metricz(t), defined as

z(t) ≡ 1− r(t)T u(t), (12)

wherer(t) is the typical activity pattern defined att. The
value of z(t) is unity if the present activity vector is or-
thogonal to the typical pattern att, and zero if the present
activity vector is identical to the typical pattern.

To findr(t), let U(t) be

U(t) = [u(t− 1), u(t− 2), · · · , u(t−W )] , (13)

whereW is a window size, and definer(t) as the principal
left singular vector ofU(t), where a singular vector is said
to be principal if it corresponds to the largest singular value.

To relate the value ofz with a universal quantity, we con-
sider a generative model foru. Sinceu is normalized, a
general assumption is that the PDF ofu can be modeled as
the von Mises-Fisher (vMF) distribution. Idé-Kashima [17]
showed that a generative model with respect toz can be de-
rived from the vMF distribution as

q(z|n,Σ) =
1

(2Σ)
n−1

2 Γ(n−1
2 )

e−z/(2Σ)z
n−1

2 −1, (14)

wheren is the effective dimension of the system. The pa-
rameters ofΣ andn in this model can be exactly evaluated
using the first and second moments as

n = 1 +
2m1

2

m2 −m1
2

and Σ =
m2 −m1

2

2m1
, (15)

wheremk is defined as
∫

q(z|n,Σ)zkdz for k = 1, 2. The
moments are easily calculated on-line in a similar manner
to Eq. (11). Now, we have the third criterion:
Criterion 3: The system is anomalous if

z(t) > zth(t)

holds, wherezth(t) is the solution of
∫ ∞

zth

dz q(z|n, Σ) = pc.

The parametersn andΣ are evaluated att.

7 Experiments

In this section, we validate our approach to problem de-
tection in a benchmark system. Our experiment consists of
two parts. Firstly, we evaluate the accuracy of our method
of direct dependencies, and secondly, we demonstrate the
utility of our problem detection framework based on the ex-
tracted dependency information.

7.1 Experimental settings

We built a three-tier Web-based system on Linux (2.4.18-
14arp) using IBM HTTP Server 1.3.26, IBM WebSphere
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Figure 10. Target 3-tier system and services
defined in Trade3 application.

Application Server 5.0.2, and IBM DB2 Universal Database
Enterprise Server Edition Version 8.1, as shown in Fig-
ure 10.

An application called “Trade3” is running on this system.
Trade3 is one of the standard benchmark applications for
end-to-end performance of WebSphere [16], and models an
on-line stock brokerage activity. Receiving a request from a
client, the HTTP server forwards it to the application server.
Servlets and JSPs running on the application server handle
it and invoke methods on EJBs. Invoked EJBs interact with
the database server by making JDBC calls. The application
takes one of 10 values as a parameter: ‘login’, ‘home’, ‘ac-
count’, ‘update profile’, ‘quote’, ‘portfolio’, ‘buy’, ‘sell’,
‘register’ and ‘logout’. Each value corresponds to an action
that a client takes. For example, a client can perform an
operation such as login, buy a stock, get quotes and view
portfolio by sending an HTTP request with one of the pa-
rameters to the HTTP server.

We used the transaction monitor described in Section 3
to extract transactions from network data. A service is
defined as a 4-tuple (“IP address”, “TCP port number”,
“protocol”, “parameter”). For instance, (ip1, 80, HTTP,
/trade/app?action=login) is a service. Running this appli-
cation on our system, the total number of observed services
amounted to 23.

In all the experiments, we generated requests to the
HTTP server using a workload generator that simulates
multiple virtual users concurrently accessing the Web ap-
plication. We control the workload intensity by changing
the number of virtual users.

7.2 Direct dependency discovery

Before proceeding to problem detection, we assess the
quality of discovered dependencies used in problem detec-
tion.

First, we take independent service pairs and compare
estimated accidental containment probabilityψ defined in
Eq.(2) with observed containment probabilityr defined
in Eq.(1). Note that ther-value is equal to thetrue
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Figure 12. SCRs between two services

accidental containment probability for independent ser-
vices. Figure 11 shows the result of a case whenS1=(ip1,
80, HTTP, /trade/app?action=portfolio) andS2=(ip2, 9081,
HTTP, /trade/app?action=home), which are known to be in-
dependent of each other. We can see the probability of acci-
dental containments (i.e., false positive dependency) rapidly
increases as the workload intensity increases. Our estima-
tion fits well even when the workload intensity is high.

Next, we investigate the accuracy of SCR estimated by
combining the competitive model with the estimated acci-
dental containment probability. In Figure 12, the line la-
beled ‘independent’ indicates the SCR betweenS1 andS2.
The true value of the SCR is0 because they are indepen-
dent, and we can see that our estimation fits it very well.
The line labeled ‘dependent’ in the figure shows the SCR
betweenS′1=(ip1, 80, HTTP, /trade/app?action=home) and
S2. SinceS′1 directly callsS2 once whenS′1 is called, the
true SCR forS′1 ⇒ S2 is 1, and again, the estimation fits it
very well.

Although we showed only two examples here, the same
trend was observed for the other pairs of services.
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metric and its 0.5% threshold.

7.3 Problem detection and localization

To validate the ability of anomaly detection, we injected
an artificial fault in Trade3 application so that a particular
servlet starts to encounter a runtime exception at a speci-
fied time. The servlet catches the exception and returns a
corrupted HTTP page to the client. This type of failures
are common and hard to detect using existing techniques
that watch the return codes of service calls and event logs
recorded by servers, because each service execution returns
without error, and we see too many runtime exceptions in
a log file even in a normal state. Therefore system admin-
istrators often become aware of such failures by receiving
complaints from the client users. We expect that the pro-
posed method can detect this kind of failures well, since the
servlet changes its internal execution path to handle the ex-
ception, which will affect the frequency of subsequent ser-
vice invocations.

We conducted the on-line problem detection task based
on the scenario shown in Figure 9. We collected data at the
workload intensity of8.28 requests for the HTTP server per
second, and the fault was injected att = 104 minutes. We
generatedC andF every 2 minutes, where the accidental
containment probabilityψ (2) was estimated by the data for
recent 2 minutes.

First, we computedz and its threshold value on-line. For
parameters, we tookW = 10, β = 0.025, andpc = 0.5%.
The result is shown in Figure 13. We see that the value
of z exceedszth at the last three time points, indicating an
anomaly. We also see thatzth increases after experiencing
the highz values because of on-line learning.

To identify faulty services, we examined the service ac-
tivities using Criteria 2. Figure 14 shows the ratio

γi ≡ |ui(t)− µi|
σi(t)xth

at t = 104 minutes for each service. If either upper or
lower threshold is exceeded,γi > 1, otherwise0 < γi <

service index
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Figure 14. The γ value at t = 104.
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the service 19.

1. As clearly shown, the activity of the service 19 exhibits
an anomaly. The time dependence of the activity of this
service is shown in Figure 15, together with upper and lower
thresholds ofpc = 0.5% (dashed curves). We used the same
discounting factor as above. We see thatu19(104) clearly
exceeds the lower threshold whent > 102 minutes. We also
see that the activity is relatively stable during the normal
state of the system in spite of the bursty nature of traffic.
This result well validates our assumption of the individual
Gaussian model.

Finally, we referred to the SCR matrix to identify faulty
components. This anomalous service wasS2 defined in
the previous subsection. Comparing the SCR matrices at
before and after the malfunction and following edges with
larger weight in the dependency graph, it was evident that
the dependency on the service of (ip3, 50000, DRDA,
TRADE3DB) indicates the root cause of the problem be-
cause the SCR value has suddenly decreased from 16.1 to
1. This means the serviceS2 was being executed very little
DB calls with the parameter of “/trade/app?action=home”
due to a fault.

Note that this type of inference could get much difficult
if the service call frequency matrix itself were used since
each value of the elements simply represents the number
of calls, which is strongly traffic dependent. In addition,
the same holds if the dependency matrix includedindirect
dependencies. From a viewpoint of graphical models [19],
our dependency estimation method corresponds to graphi-
cal modeling with only two-way interactions. We will dis-
cuss the detail of inference techniques using the SCR de-



pendency graph in other publications.

8 Related work

Dependency information are categorized into two
groups, static dependencies and dynamic dependencies.
Static dependency discovery relies on a human or static
analysis program to analyze system configuration, instal-
lation data, and application code. Karet al. described a
method for automatically extracting static dependencies be-
tween software components within a given machine from
existing software deployment repositories in [18].

However, this method is not capable of obtaining dy-
namic dependencies that are established during the runtime
operation of the system, where many components dynami-
cally bind with each other at runtime, and the dependencies
often change over time as the environment changes. Dy-
namic dependency discovery operates at runtime and collect
information from the system to derive dynamic dependen-
cies. There are several methods that use special instrumen-
tation to capture dynamic dependencies from the system
[4, 21, 7]. Sometimes, it is desirable to infer dependencies
from data that can be obtained more easily without loading
systems much [13, 10]. Ensel used Neural Networks to au-
tomatically generate dynamic dependencies by looking at
pairs of systems behavior such as CPU load over time [10].
Our approach is also categorized into this group.

In the literature, there are many studies on diagnosis and
root cause analysis using dependency information. Event
correlation systems (e.g., [27, 8, 12]) collect alarms or
events, map them onto corresponding nodes of the depen-
dency graph, and then the dependencies from those nodes
are examined to identify the set of nodes on which the most
nodes having alarms depend. Another technique for using
dependency information for root-cause analysis is to make
use of the dependency graph as a guide for systematic exam-
ination of the system with a set of probes or test transactions
(e.g., [11, 6]).

Hellersteinet al.discussed in [15] how data mining tech-
niques can be used to identify actionable patterns from his-
torical event data collected in computer systems. Maet al.
addressed the system aspect of event browsing and event
mining in [20]. The problem we addressed in this paper
can be considered as a variant of association rules discov-
ery [1] or sequential pattern discovery [2]. In this paper,
we focused on pair-wise dependencies only, the idea may
be naturally generalized to consider dependencies among
more than two service.

Recent studies on signal processing have demonstrated
the utility of change-detection techniques to characterize
anomalies of network traffic [5, 24]. However, most of
those studies address highly aggregated data at the lower
layers. We focus on the problem at the application layer in

Web-based systems, where traditional autoregressive mod-
els with white noise are not appropriate because of the
strong fluctuation and the heavy tail nature of data. Ha-
jji [14] applied a generative model approach of Yamanishi
et al. [26, 25] to a fault detection task in a local-area net-
work. However, it only uses information from a single ob-
servation point, and considers only lower layer quantities.
Thottan-Ji [23] proposes an interesting method to correlate
multiple observation points. However, it is based on the au-
toregressive model and its thresholding policy is not proba-
bilistically consistent. Overall, our contribution is to discuss
the anomaly detection task in terms of a vector space model,
and to give a probabilistically consistent anomaly detection
method.

9 Conclusion

In this paper, we considered automatic detection of prob-
lems in distributed systems. For this goal, we proposed (i) a
network-based method that obtains the execution time peri-
ods from network data without any performance impact; (ii)
a new data mining method for discovering direct dependen-
cies among services in distributed systems from historical
execution time periods; and (iii) a hierarchical problem de-
tection framework using the discovered dependencies.

We also demonstrated that our approach is promising for
problem detection by using a prototype system.
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A Proof of Theorem

We prove thatL has no local maxima by proving that H,
the Hessian ofL, is negative semi-definite.H is written as

[H](i,j),(k,l) =
∂2L

∂ρ(Si, Sj)∂ρ(Sk, Sl)

= −
∑

T∈D(Sj)

δ(Si ∈ P (T ))δ(Sk ∈ P (T ))

·

∏
S′∈P (T )\Si

ψ(S′, Sm)
∏

S′′∈P (T )\Sk

ψ(S′′, Sm)

(∑
S∈P (T ) ρ(S, Sm)

∏
S′∈P (T )\S ψ(S′, Sm)

)2

for j = l := m, and[H](i,j),(k,l) = 0, otherwise. There-
fore,H is negative semi-definite ifHm(T ) is positive semi-
definite for∀m = 1, 2, . . . , |Σ| and∀T ∈ D, where

[Hm(T )]j,l := δ(Si ∈ P (T ))δ(Sk ∈ P (T ))

·
∏

S′∈P (T )\Si

ψ(S′, Sm)
∏

S′′∈P (T )\Sk

ψ(S′′, Sm).

Hm(T ) can be decomposed as

Hm(T ) = hm(T )h>m(T ),
hm(T ) := (h1

m(T ), h2
m(T ), . . . , h|Σ|m (T ))>,

hi
m(T ) := δ(Si ∈ P (T ))

∏

S′∈P (T )\Si

ψ(S′, Sm).

ThereforeHm(T ) is positive semi-definite since

x>Hm(T )x = (x>hm(T ))2 ≥ 0

for ∀x ∈ R|Σ|.


