

Tokyo Research Laboratory

Pairwise Symmetry Decomposition Method for Generalized Covariance Analysis

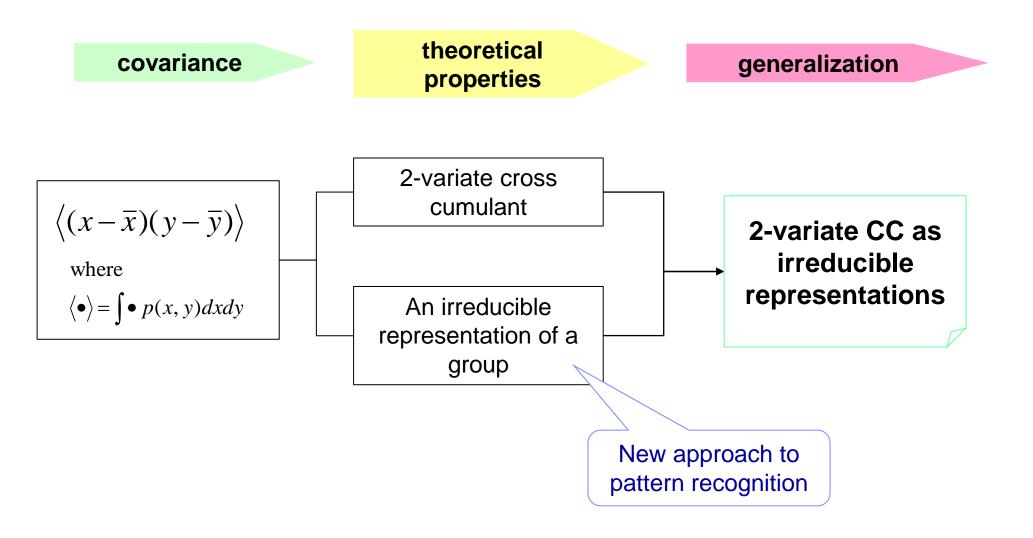
IBM Research, Tokyo Research Lab. Tsuyoshi Idé (井手 剛)

2005/11/30 | ICDM 05

© Copyright IBM Corporation 2005

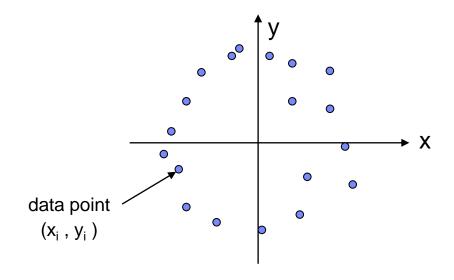
Summary:

We generalize the notion of covariance using group theory.



Motivation.

The traditional covariance cannot capture nonlinearities.



 The traditional covariance cannot capture nonlinearities.

$$C_{xy} = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})(y_i - \overline{y})$$
of data points

- C_{xy} would be *useless* in this case.
- We wish to explicitly define useful metrics for nonlinear correlations.
 - cf. kernel methods are black-boxes

The lowest order cross-cumulant (CC) is identical to the covariance. A generalized covariance could be higher-order CC.

Multivariate systems can be described with PDF.

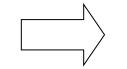
$$p(\mathbf{x}) = p(x_1, x_2, \dots, x_n)$$

The cumulants of p completely characterize p.

By definition,

$$\langle x_i x_j \rangle_{\mathsf{C}} = \langle x_i x_j \rangle - \langle x_i \rangle \langle x_j \rangle$$

2nd order CC is identical to the covariance



Notation of "cumulant average" $\langle x_{i_1}^{a_1} x_{i_2}^{a_2} \cdots x_{i_k}^{a_k} \rangle_{\mathsf{C}}$ $\|$ (a_1, \dots, a_k) -th order cumulant w.r.t. (x_1, \dots, x_k)

principle #1

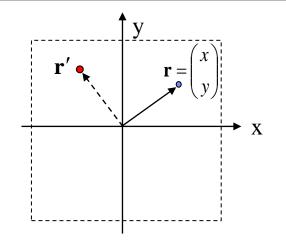
Use higher-order CC for generalizing the covariance

* We assume zero-mean data hereafter.

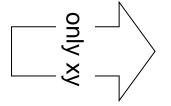
Relation between the covariance and symmetries. The axioms of group can be used to characterize the symmetries. The covariance can be viewed as A collection of such symmetry an inner product of two vectors, operations may be used for $|p\rangle$ and $|xy\rangle$. characterizing the symmetries. symmetric w.r.t. x and y, etc. PDF $|xy\rangle$ has potentially What is the guiding principle to define it? meaningful symmetries Inner product? The axioms of group can be the $\langle p| \cdot |xy\rangle = \langle p|xy\rangle \equiv \int d\mathbf{r} p(\mathbf{r}) xy.$ guiding principle. Closure, Associativity, Identity, Inverse.

The set of OPs is almost unique --- C_{4v} is the most appropriate group for characterizing the pairwise correlations.

- Requirements on the group G
 - G should include OPs describing the symmetries within the xy plane.
 - G should include an OP to exchange x with y.



Point group is a natural choice



Most general one is a group named $C_{4\nu}$

<u>Point group ?</u> only rotations and mirror reflections

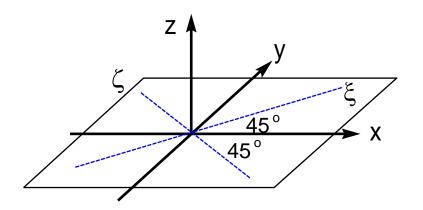
What is the C_{4v} group ?

It contains 8 symmetry operations within the xy space.

♦ C_4 : 90° rotation around the *z* axis ♦ C_4^3 : 270° rotation around the *z* axis ♦ C_2 : 180° rotation around the *z* axis

 $\diamond \sigma_x$: mirror reflection about the zx plane $\diamond \sigma_y$: mirror reflection about the zy plane $\diamond \sigma_{\xi}$: mirror reflection about the ξz plane $\diamond \sigma_{\eta}$: mirror reflection about the ηz plane

 \diamond I: identity operation (do nothing)



For $g \in C_{4v}$, $|f\rangle \in \mathcal{H}$, the operation of g on $|f\rangle$ is defined by

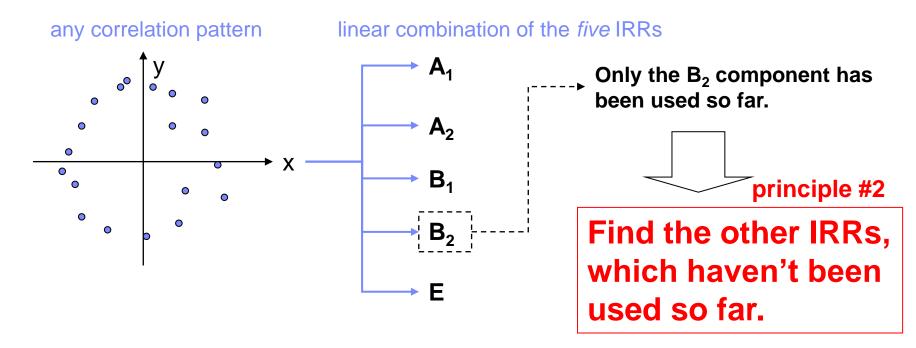
$$egin{array}{rl} g|f
angle &=& \int dm{r} \; g|m{r}
angle f(m{r}) \ &=& \int dm{r}|m{r}
angle f(g^{-1}m{r}) \end{array}$$

Only a single IRR has been used for recognizing correlation patterns. We unveil the other representations !

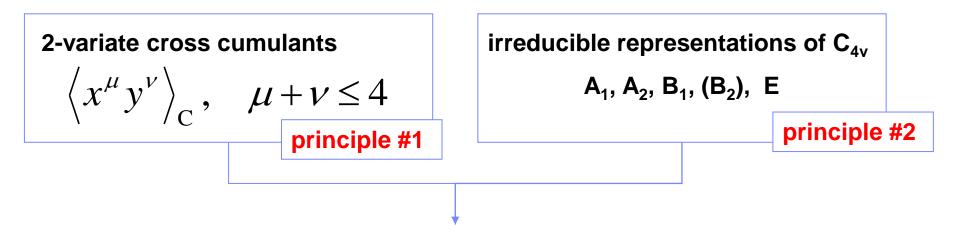
One can easily prove:

 $|xy\rangle$ spans the B₂ irreducible representation (IRR) space of C_{4v}. Thus, $\langle p|xy\rangle$ is a B₂ IRR.

Further, a "symmetry decomposition theorem" holds:



The two consequences lead to the definition of the generalized covariances, which are symmetrized cross cumulants in the C_{4v} sense.



Construct IRRs as linear combinations of CCs

$$C(B_{2}) = \langle xy \rangle_{c}$$

$$C(E_{1}) = [\langle xy^{2} \rangle_{c} + \langle x^{2}y \rangle_{c}] / 2$$

$$\underline{result:} \quad C(E_{2}) = [\langle xy^{2} \rangle_{c} - \langle x^{2}y \rangle_{c}] / 2$$

$$C(A_{1}) = \langle x^{2}y^{2} \rangle_{c}$$

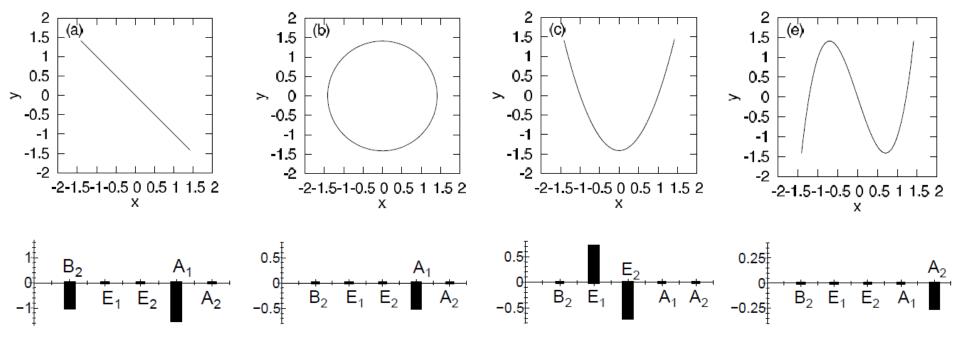
$$C(A_{2}) = [\langle xy^{3} \rangle_{c} - \langle x^{3}y \rangle_{c}] / 2$$

<u>Note</u>

- There is arbitrariness in prefactors
- x and y should be standardized (unit variance) to be scale invariant

Tokyo Research Laboratory

Experiment with Lissajous' trajectories. The generalized covariances detect the nonlinearities while the standard covariance C(B₂) fails.



• C(B₂) should be minus 1 due to the perfect Inverse linear correlation $\cdot C(B_2)$ fails to capture the correlation

 \cdot C(A₁) succeeds to detect the nonlinear correlation

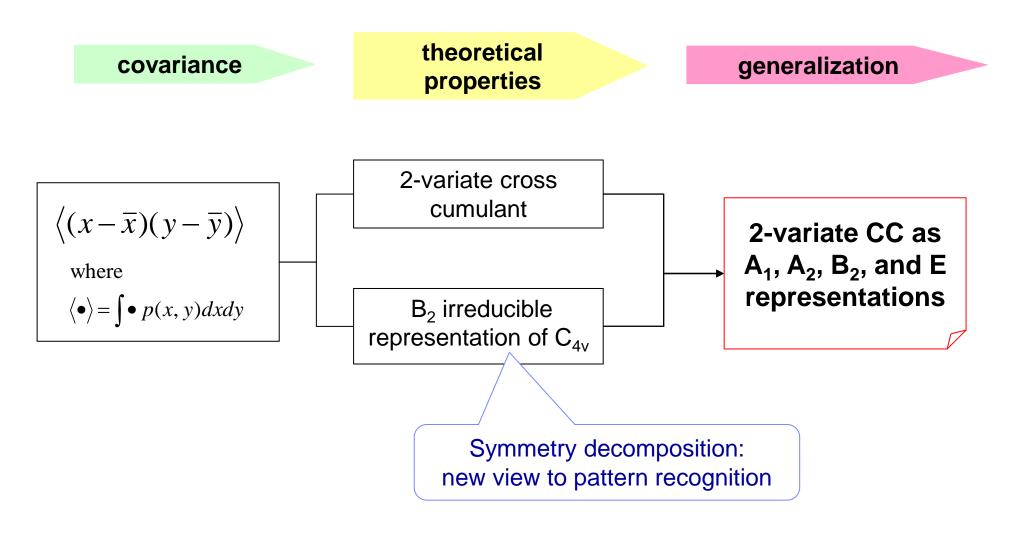
• C(B₂) fails to capture the correlation

• $C(E_2)$ and $C(E_2)$ succeed to detect the nonlinear correlation • C(B₂) fails to capture the correlation

• C(A₂) succeeds to detect the nonlinear correlation

Summary:

We have generalized the notion of covariance using group theory.



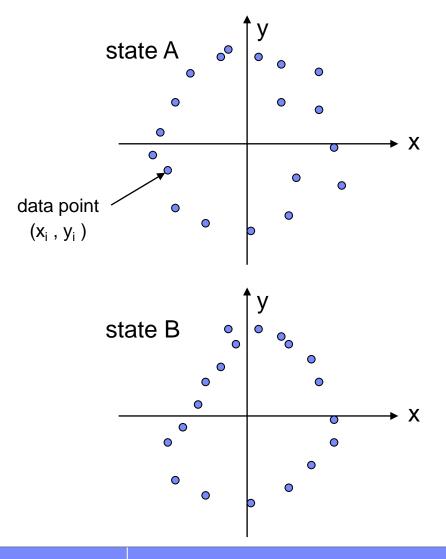
Thank you !!

Page 12

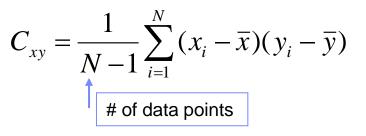
2005/11/30 | ICDM 05

© Copyright IBM Corporation 2005

Background. How can you tell the difference of the two states quantitatively? The traditional covariance is not helpful.

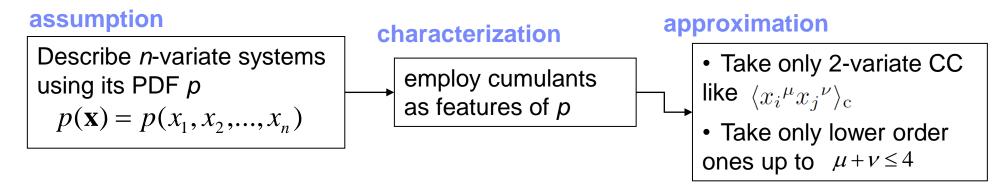


Traditional covariance



- C_{xy} would be *useless* in this case.
- The traditional covariance cannot capture nonlinearities.
- We wish to explicitly define useful metrics for nonlinear correlations.
 - cf. kernel methods are black-boxes

Covariance as the lowest order CC: Summary of this section. We focus on cross cumulants (CC) as a theoretical basis.

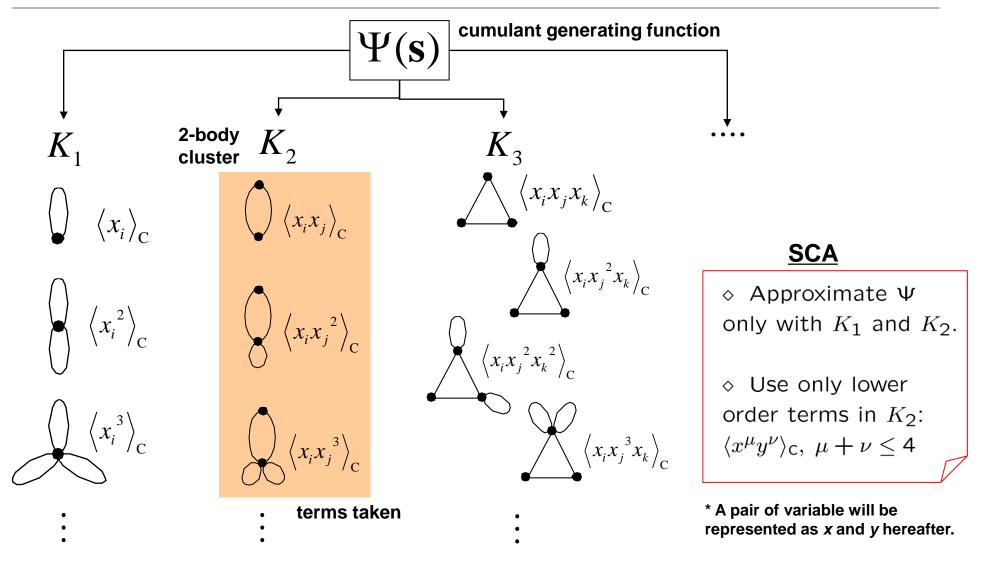


Cumulant generating function

$$\Psi(s) \equiv \ln \int dx \; p(x) \exp(s^{\mathrm{T}}x) = \ln \langle \exp(s^{\mathrm{T}}x)
angle$$

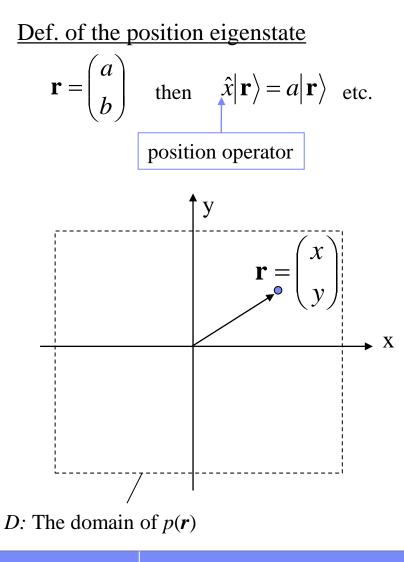
Notation of "cumulant average" $\langle x_{i_1}^{a_1} x_{i_2}^{a_2} \cdots x_{i_k}^{a_k} \rangle$ \downarrow $(a_1, ..., a_k)$ -th order cumulant w.r.t $(x_1, ..., x_k)$

Sparse Correlation Approximation of the cumulant generating function. What kind of terms are omitted?



Tokyo Research Laboratory

Mathematical preliminaries. Position operator, Hilbert space, Dirac's bra-ket notation, and moments in the bra-ket notation



Hilbert space spanned by the position eigenstate

$$H = \left\{ \left| \mathbf{r} \right\rangle | \mathbf{r} \in D \right\}$$

Def. of a state vector
$$|p\rangle$$
: $|p\rangle = \int_D d\mathbf{r} |\mathbf{r}\rangle p(\mathbf{r})$

where $p(\mathbf{r}) = \langle \mathbf{r} | p \rangle$ is the marginal DF wrt (x,y)

```
Def. of a state vector |x^{\mu}y^{\nu}\rangle:
\langle \mathbf{r} | x^{\mu}y^{\nu} \rangle = x^{\mu}y^{\nu}
```

Bra-ket notation of moments

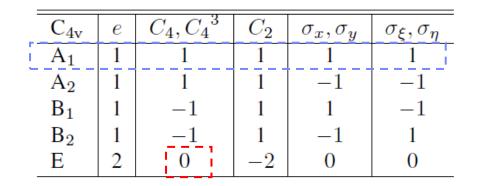
$$\langle p | x^{\mu} y^{\nu} \rangle = \int_{D} d\mathbf{r} x^{\mu} y^{\nu} p(\mathbf{r}) = \langle x^{\mu} y^{\nu} \rangle$$

Verifying the definition of the generalized covariances: a few examples.

(1)
$$|x^2y^2\rangle \in \mathcal{H}$$

For $\forall g \in C_{4V}$, $\langle r|g|x^2y^2\rangle = x^2y^2$.

representation matrices are all 1 → A1 representation



(2)
$$|xy^2\rangle$$
 and $|x^2y\rangle$
 $\langle r|C_4|xy^2\rangle = x^2y$ and $\langle r|C_4|x^2y\rangle = -xy^2$
Thus, the representation matrix of C_4 is

$$D(C_4) = \left(\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array}\right),$$

so that we have $TrD(C_4) = 0$.

You can use the method of projection operators if want to construct IRRs systematically

(See a textbook of group theory)

. . .

Page 17

Experiment : Calculating the generalized covariances for Lissajous' trajectories analytically.

- Model of correlated variables \rightarrow

- assume the uniformly distribution over t
- mean is zero for both x and y
- variance is 1 for both x and y
- Generalized covariances can be explicitly calculated

$$C(B_{2}) = \delta_{\omega_{1},\omega_{2}} \sin \Omega_{1}^{\beta,\alpha}$$

$$C(E_{1}) = -\frac{\delta_{\omega_{1},2\omega_{2}}}{\sqrt{2}} \cos \Omega_{2}^{\alpha,\beta} + \frac{\delta_{2\omega_{1},\omega_{2}}}{\sqrt{2}} \sin \Omega_{2}^{\beta,\alpha}$$

$$C(E_{2}) = -\frac{\delta_{\omega_{1},2\omega_{2}}}{\sqrt{2}} \cos \Omega_{2}^{\alpha,\beta} - \frac{\delta_{2\omega_{1},\omega_{2}}}{\sqrt{2}} \sin \Omega_{2}^{\beta,\alpha}$$

$$C(A_{1}) = -\frac{\delta_{\omega_{1},\omega_{2}}}{2} \left[1 + 2\sin^{2}(\Omega_{1}^{\alpha,\beta})\right]$$

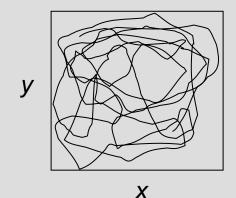
$$C(A_{2}) = \frac{\delta_{\omega_{1},3\omega_{2}}}{4} \sin \Omega_{3}^{\alpha,\beta} - \frac{\delta_{3\omega_{1},\omega_{2}}}{4} \sin \Omega_{3}^{\beta,\alpha},$$

where we used the symbol $\Omega_c^{a,b} = a - bc$.

$$x(t) = \sqrt{2}\cos(\omega_1 t + \alpha)$$
$$y(t) = \sqrt{2}\sin(\omega_2 t + \beta)$$

Cs are zero unless ω_1/ω_2 takes special values.

 $\diamond~$ If not, the xy space will be filled with the trajectory in the limit $t\to\infty$



Detailed summary.

- We generalized the traditional notion of covariance based on the two theoretical properties
 - Standard covariance is the lowest order 2variate cross cumulant
 - 2. Standard covariance is the B₂ irreducible representation of the C_{4v} group.
- Our result suggests a new approach to pattern recognition where patterns are characterized by the irreducible representation of a finite group

- Practically, we found that
 - C(B₂) would be greatly enhanced for linear correlations.
 - C(E₁) and C(E₂) reflect some asymmetries in the distribution.
 - C(A₁) clearly takes a large value when the distribution has a donut-like shape.
 - Finally, C(A₂) would be enhanced by distributions with some Hakenkreuz-like correlations.
- These features can be used in anomaly detection tasks where nonlinear correlations plays some important role