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Abstract

Most of the stream mining techniques presented so far have

primary paid attention to discovering association rules by

direct comparison between time-series data sets. However,

their utility is very limited for heterogeneous systems, where

time series of various types (discrete, continuous, oscillatory,

noisy, etc.) act dynamically in a strongly correlated manner.

In this paper, we introduce a new nonlinear transformation,

singular spectrum transformation (SST), to address the

problem of knowledge discovery of causal relationships from

a set of time series. SST is a transformation that transforms

a time series into the probability density function that

represents a chance to observe some particular change. For

an automobile data set, we demonstrate that SST enables

us to discover a hidden and useful dependency between

variables.

Keywords: time-series, change-point detection,
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1 Introduction

The frontiers of data mining research are being extended
to include knowledge discovery from nontraditional data
types such as statically [7] and dynamically [6] struc-
tured data. However, little attention has been paid to
heterogeneous dynamic systems, where time series of
various types (discrete, continuous, oscillatory, noisy,
etc.) act dynamically in a strongly correlated manner.

Generally, in strongly correlated dynamic systems,
the behavior of the whole system can often be extremely
complicated even if the mechanism of correlation be-
tween each pair of variables is relatively simple. There-
fore knowledge discovery in such systems can be far
more difficult than expected. For instance, in an au-
tomobile, the individual states of the variables such as
engine RPM (revolutions per minutes), engaged gear,
fuel flow rate, throttle position (TP) sensor, and air
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intake oxygen density have almost an infinite number
of combinations depending on the environment around
the car and human actions. Therefore, it is generally
impossible to find a rule like “if variables x1, x2, ... have
a certain combination of values, then the system would
be faulty.”

In this paper, we address the issue of discovering
causal dependencies hidden deep within the heteroge-
neous time-series data. We assume that we are not pro-
vided with detailed prior knowledge of dependencies. In
addition, we assume that each variable exhibits sudden
and steep changes in a heterogeneous manner so that
traditional approaches that attempt to separate trend
and noise components are difficult to use.

Note that this problem setting is different from tra-
ditional stream mining. An implicit assumption of Das
et al. [2], which is known as a seminal work in this
field, was that subsequences of individual variables can
be clustered into one of a small numbers of patterns.
Except for parts of the data which may exhibit rela-
tively simple behaviors, the utility of their approach is
very limited in heterogeneous dynamic systems. Also,
Keogh-Lin-Truppel [9] recently pointed out that it is
theoretically questionable whether or not one can fit an
arbitrarily chosen subsequence into one of the patterns.

In this paper, we tackle this issue by introducing a
new nonlinear transformation, singular spectrum trans-
formation (SST) for a set of time series data. SST is a
transformation that converts an original time series into
a new time series based on change-point scores. The
resultant time series can be interpreted as the probabil-
ity distribution that some change occurs. Since change
points in a mechanical system are expected to be caused
by a well-defined mechanism, if the score simultaneously
has a high value at some time for two different variables,
then a causal relationship is likely between them.

The essence of our idea is illustrated in Fig. 1, where
two artificially generated heterogeneous data sets (see
Subsection 3.2 for details) and their SSTs are shown.
While it is difficult to infer any dependency between
the two original variables, SST clearly reveals a hidden
dependency between them in terms of synchronization
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Figure 1: Example of SST in a heterogeneous system.
Original time-series in (a) and (c) are transformed into
change-point scores in (b) and (d), so that a hidden
similarity is revealed.

of their change points. Note that the results in Figs. 1
(b) and (d) were obtained using a common algorithm
and a common parameter set. Therefore, we see that,
by performing SST, the problem of data mining in het-
erogeneous systems can be reduced to mining in homo-
geneous systems without using any detailed knowledge
on the behavior of data. To the best of the authors’
knowledge, this is the first work that uses change-point
correlation in the context of knowledge discovery from
dynamic systems with strongly-correlated and hetero-
geneous natures.

2 Change-point detection

2.1 Extraction of past patterns. Consider a time
series T = {x(1), x(2), ..., x(t), ..} and its consecutive
subsequence with length w as {x(t−w), ...x(t−2), x(t−
1)}. We define a column vector corresponding to this
subsequence as

s(t− 1) = (x(t− w), ..., x(t− 1))T
,

where the superscript T represents transpose. We
construct a matrix, which is often called a Hankel
matrix, using column vectors of this kind as

H(t) = [s(t− n), ..., s(t− 2), s(t− 1)] .

We call this w × n matrix a trajectory matrix at t,
following Moskvina-Zhigljavsky [11]. By definition, the
trajectory matrix is defined over w+n−1 elements from
x(t− 1) to x(t−w−n+1). We denote w +n− 1 as W .
We illustrate the setting in Fig. 2.

The trajectory matrix H(t) can be viewed as a
record that contains various change patterns within the
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Figure 2: Summary of parameters used in SST. From
m and n subsequences at both sides of a time point (t),
representative patterns are calculated.

range of the past W points under the length constraint
w. Now let us extract the representative patterns from
H(t). We write a representative pattern as u. It is
natural to suppose that this is expressed as a linear
combination of s(tj)s:

u = c

n∑

i=1

vis(t− i),

where c is a normalization constant to satisfy uT u = 1.
If we define an n-dimensional vector as v = (v1, ..., vn)T ,
this equation is simply expressed as u = cH(t)v.
We determine the representative by majority voting
among the observed patterns. In particular, we want
the direction that produces the strongest constructive
interference between ss. Mathematically, this direction
will be found as

(2.1) v(t) ≡ argmax
ṽ
||H(t)ṽ||2 ,

where we impose a constraint of vT v = 1. Introducing
a Lagrange multiplier λ, this equation is reduced to

∂

∂ṽ

[
ṽT H(t)T H(t)ṽ − λṽT ṽ

]
= 0.

From this, we immediately see that v is the normalized
solution of an eigenvalue equation

H(t)T H(t)v = λv.

Also, u is the normalized solution of the eigenvalue
equation of H(t)H(t)T , i.e.

(2.2) H(t)H(t)T u = λu.

These results show that the representative pattern u
and its coefficient vector v are the left and right singular



vectors of H(t), respectively. The singular value is equal
to
√

λ.
Let us denote the singular values and the left singu-

lar vectors as {(σ1,u1), (σ2,u2), ..., (σl, ul)} in descend-
ing order of the singular values. The parameter l repre-
sents the number of representative patterns under con-
sideration. The greater the singular value is, the more
dominant the corresponding pattern is. If a singular
value (≥ 0) is small, then the corresponding pattern
can be considered to be a noise component.

As described above, the method to find the dom-
inant components using singular value decomposition
(SVD) on the Hankel matrices is called singular spec-
trum analysis. 1

2.2 Extraction of the current pattern. On the
future side of the trajectory matrix, we again take a
column vector with length w as

r(t + g) = (x(t + g), ..., x(t + g + w − 1))T
.

This is the same as s(t + g + w − 1), but we introduce
this new notation to represent a symmetry between both
sides of t. We again define a Hankel matrix, which we
will call a test matrix at t, using m rs

G(t) = [r(t + g), r(t + g + 1), ..., r(t + g + m− 1)] .

As in Eq. (2.2), the present representative pattern is
given by the solution of

(2.3) G(t)G(t)T u = µu.

We call the normalized largest eigenvector the test
vector, and represent it as β(t).

2.3 Change-point score. We have obtained the
past representative patterns {ui|i = 1, .., l} and the
present representative pattern as β(t). Let us define
an anomaly metric using these patterns. If β(t) is suf-
ficiently similar to some of the frequent patterns, it
should be on the hyperplane spanned by {ui|i = 1, .., l}.
Otherwise, β(t) would be directed outside of the hyper-
plane.

To quantitatively evaluate how far β(t) is from the
hyperplane, let us define a matrix Ul as

Ul = [u1, u2, ..., ul] .

Using this matrix, the normalized projection of β(t)
onto the hyperplane is given by

α(t) ≡ UT
l β(t)∣∣∣∣UT
l β(t)

∣∣∣∣ .

1While it is called “spectrum analysis,” we should emphasize
that it has nothing to do with the classical Fourier analysis.

Now we can define the change-point score as

(2.4) z(t) ≡ 1−α(t)T β(t).

By definition, this quantity is limited to the range
from zero to 1. It is small when there is little change
compared to the past patterns and large when the
present pattern is quite different from the past patterns.

3 Singular spectrum transformation

3.1 Definition. As discussed, the change-point score
can be defined at arbitrary t by calculating representa-
tive patterns for both the trajectory and test matrices.
This can be viewed also as a transformation from an
original time-series T to a new time-series Tc, i.e.

T → Tc(w, l, g, m, n).

We define this transformation as the singular spectrum
transformation (SST). As expressed in the parenthesis,
there are five major parameters in SST. This transfor-
mation defines a nonlinear transformation in that it does
not satisfy the principle of superposition. Hereafter,
the integrated area of the transformed time-series is as-
sumed to be normalized to one. Under this condition,
the transformed time-series is interpreted as the proba-
bility density that some change occurs at time t.

The occurrence of a change-point should be inde-
pendent of any apparent variety such as discrete, con-
tinuous, noisy, oscillatory, etc. Thus, one may think
of the new time-series Tc(w, l, g, m, n) as the signs of
causality hidden behind the apparent variation of the
original time series: If the similarity between a pair of
variables is high for a set of SST series, then some depen-
dency between them is strongly suggested. SST can be
a powerful tool to discover hidden dependencies among
variables.

3.2 Example. An example of SST is shown in Fig. 1.
The time series (a) was generated using three linear
functions with slopes of 1/300, 0, and −1/200. The
other time-series (c) was generated using a sine function
x(t) = sin(2πt/λ), for λ =

√
80,

√
120, and

√
70. In (c),

we also added random fluctuations to the amplitude and
the periods of up to ±7.5% and ±0.5%, respectively, to
simulate fluctuations in realistic observations. For both
data sets, the change points are located at t = 150 and
300. The results of SST in Figs. 1 (b) and (d) was
calculated with w = −g = m = n = 20 and l = 3. In
spite of the apparent differences in the original data, we
see that SST strikingly reveals the similarities without
any ad hoc tuning for individual time series. It is evident
that existing methods such as differentiation [5] and
wavelet-based approaches [8] fail to detect the change
points if a common parameter set is used for both sets.
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Figure 3: The dependence of SST on w for (a) the linear
function and for (b) the oscillatory function shown in
Fig. 1 (a) and (c), respectively.

The dependence on w is of particular interest in
SST. We calculated SST as a function of w under
w = −g = m = n and l = 3. The results are shown in
Fig. 3. It is surprising that the essential features remain
unchanged over a very wide range of w, 6 . w . 40,
while the widths of the major features become broader
as w increases. This robustness is quite suitable for
heterogeneous systems.

4 Experiment

4.1 Data set. The goal of this experiment is to
identify the pair of variables that correlates the most in
terms of causality, without using any prior knowledge
of the variables. The data set used in this section
was generated by a specialized simulator for the power
train control module of a vehicle, and was taken for one
minute with a sampling interval of 0.1 sec. It includes
fuel flow rate (x1), engaged gear (x2), vehicle speed
(x3), engine RPM (x4), and manifold absolute pressure
(x5). Figure 4 (a) shows all five of these time-series. For
visibility, the signals from x1 to x4 are shifted vertically
in the figure.

4.2 Comparison between raw and SST time-
series. SST was done with the parameters w = m =
n = −g = 25 (2.5 sec) and l=2 for the five time series.
Since SVD is not invariant with respect to translation
of the origin of the column vectors in the matrix, we
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Figure 4: (a) Time-series data from an automobile and
(b) the resulting SST series.

standardized the time series so that each of the averages
is three times the standard deviation. The result is
shown in Fig. 4 (b).

By comparing (a) with (b), we see that each feature
in Fig. 4 (b) corresponds to a change in the original data.
Interestingly, the SST series of x2 and x4 exhibit some
similarity in terms of the synchronization of the change-
points, in spite of the fact that they seem to behave
totally differently in the original series. Similarly,
x1 and x3 seem to have some in common in Fig. 4
(b) while the original data are quite different. This
result demonstrates that SST can make the variables
of different types be comparable with each other. In
other words, SST converts a heterogeneous system into
a different “homogeneous” system.

4.3 Visualization via MDS. To compare the inter-
dependencies of the variables, we used the classical so-
lution of multidimensional scaling (MDS) [10]. For the
definition of the distance matrices, we took the L1 and
L2 distances for SST and the raw time series, respec-
tively. Each of the time series was normalized in ad-
vance so that

∫
dtx(t)2 = 1 or

∫
dtz(t) = 1 holds. To

remove the unwanted effects of noisy fluctuations of the
signals, we performed Gaussian convolution with the
standard deviation of 1.5 seconds before computing the
distance matrix for SST.

The results of MDS are shown in Fig. 5. Since the
definition of the distance metrics are not common in the
raw and SST cases, only the relative locations within
each plot are meaningful. In Fig. 5 (a), the variables
x1, x4, and x5 can be attributed to one cluster. We
see that they are actually similar in shape in Fig. 4 (a).
Similarly, the variables x2 and x3 form the other cluster
due to the similarity in their increasing trends in Fig. 4
(a).



On the other hand, the two clusters collapse in
Fig. 5 (b). Specifically, the closest pair is x2 and
x4. This is very interesting because they have totally
different trends in the original sequences shown in Fig. 4
(a). This result is due to the synchronizations of
the change points in both data sets. In reality, the
variables x2 and x4 are the engaged gear and the engine
RPM, respectively. The close dependency of x2 and x4

corresponds to “the value of engine RPM increased after
shifting to a lower gear.” It is worth noting that we could
discover a part of the causal relationships without using
any prior knowledge. This result demonstrates that SST
can reveal the signs of causality hidden deep inside of
the heterogeneous correlated systems.
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Figure 5: Two dimensional MDS plot for (a) raw data,
and (b) SST data.

5 Related work and our contribution

The problem of change detection has been studied for
a long time, and various methods such as CUSUM (cu-
mulated summation) [1], wavelet analysis [8], inflection
point search [5], and Gaussian mixtures [13] have been
proposed. These existing methods, however, are not ap-
plicable to our task without using ad hoc tuning for in-
dividual signals. Similarly, time-series correlation meth-
ods based on these techniques in a few application do-
mains [5, 4, 12] are inapplicable to our task.

Moskvina-Zhigljavsky [11] used the singular spec-
trum analysis technique [3] for change detection, based
on SVD of the Hankel matrix. Mathematically, SVD
can be performed for almost any kind of matrix. Thus,
the method can be applicable to various sorts of time
series without any ad hoc tuning. Our contribution is to
have defined the problem of knowledge discovery from
heterogeneous dynamic systems and to have proved that
their method is one of the most suitable solutions for
this problem. Theoretically, our contribution is to have
adopted a dimensionless definition of the score, and to
have given an algorithm that is pseudo-invariant with
respect to time inversion. In other words, our algorithm
is invariant with respect to t → −t for l = 1 and m = n.
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