

Tokyo Research Laboratory

Knowledge Discovery from Heterogeneous Dynamic Systems using Change-Point Correlations

IBM Research, Tokyo Research Lab Tsuyoshi Ide

井手 剛

SDM 05 | 2005/04/21 |

© Copyright IBM Corporation 2005

Data streams in the real world are full of intractable features How can we discover knowledge on system's mechanism?

Tackling the heterogeneity using a nonlinear transformation – "Correlate by features, not by values"

Singular spectrum transformation (SST) — transforms an original time series into a time-series of the change-point scores using SVD

- 1. For each of reference and test intervals, construct a matrix using subsequences as column vectors
- 2. Perform SVD on those matrices to find representative patterns
- 3. Compute dissimilarity between the patterns

Surprisingly, SST removes the heterogeneity with a *single* parameter set. No ad hoc parameter tuning is needed.

- recordings taken from a car
- quite heterogeneous

- comparable to each other
- existing clustering techniques are applicable

SST is robust over a very wide range of parameters Dependence on the pattern length, *w*

robust over a very wide range of w

Application to an automobile data set. SST effectively detects changepoints irrespective of the heterogeneous behavior

Data

- powertrain control module
- sampling rate = 0.1 sec

Variables

- x1: fuel flow rate
- x2: engaged gear
- x3: vehicle speed
- ▶ x4: engine RPM
- x5: manifold absolute pressure

IBM

Application to an automobile data set.

SST is useful for discovering hidden structures among variables

- x_2 and x_4 behave quite differently in the original data
- However, after the SST, they forms the nearest pair in the MDS plot.

Multidimensional scaling method for retrieving the coordinates from a distance matrix

 This result can be naturally understood by the mechanism of the car

Backup

Looking for a change-point detection method applicable to heterogeneous systems *without any ad hoc parameter tuning*

Existing methods

- CUSUM (cumulated sum)
 - Suitable only for such a data that distributes around a constant.
- Autoregressive models
 - Cannot be used for streams with sudden & unpredictable changes.
- Wavelet transforms
 - Essentially the same as differentiation. Applicable to a very limited class of variables. Otherwise, fine parameter tuning for individual variable is needed.
- Gaussian mixture models
 - Cannot be used for streams with sudden & unpredictable changes.

A new "nonparametric" approach

Singular Spectrum Transformation

Note: The original inspiration for this approach was based on an aspect of [Moskvina-Zhigljavsky 2003]

SST needs only two parameters in a standard setting: the pattern length and the number of patterns

Computing the distances between variables and visualize them using multidimensional scaling

Normalization policies and distance metrics

	original time series	change-point score
normalization	$\int dt x_i(t)^2 = 1$	$\int dt x_i(t) = 1$
distance between xi & xj	$\sqrt{\int dt \left(x_i - x_j\right)^2}$	$\int dt x_i - x_j $

* SST series are nonnegative by definition, so they are naturally interpreted as the probability densities of changes

- Multidimensional scaling
 - retrieves the coordinates from a distance matrix
 - eigenvalue analysis shows d = 2 is sufficient

Summary and future work

Summary

- We proposed a new framework of data mining for heterogeneous dynamic systems
- The SST is a robust and effective way to remove the heterogeneity
- An experiment demonstrated the utility of SST in discovering hidden structures

Future work

- Speed up and sophisticate SST
- Develop methodologies for causality analysis

