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Abstract. Data mining and machine leaning communities were sur-
prised when Keogh et al. (2003) pointed out that the k-means cluster
centers in subsequence time-series clustering become sinusoidal pseudo-
patterns for almost all kinds of input time-series data. Understanding
this mechanism is an important open problem in data mining. Our new
theoretical approach (based on spectral clustering and translational sym-
metry) explains why the cluster centers of k-means naturally tend to form
sinusoidal patterns.

1 Introduction

Subsequence time-series clustering (STSC) is one of the best-known pattern
discovery techniques from time series data. In STSC, a time series data is repre-
sented as a set of subsequence vectors generated using the sliding window (SW)
technique (see Fig. 1 (a)), and the generated subsequences are grouped typically
using the k-means clustering technique. The cluster centers (the mean vector of
the cluster members) are thought of as representative patterns of the time series.

STSC-based stream mining methods enjoyed popularity until a surprising
fact was discovered in 2003 [8]: k-means STSC is “meaningless” as a pattern
discovery technique in that the resultant cluster centers tend to form sinusoidal
pseudo-patterns almost independent of the input time series.

For clarity, we reproduced the result of Ref. [8]. Figsure 2 (a) shows the k-
means cluster centers calculated for the time series in Fig. 1 1. We set the number
of clusters and the window size of SW to be k = 3 and w = 128, respectively. It
is surprising that we have sinusoidal patterns in Fig. 2 (a), which are not similar
to the original patterns in the data at all. Close inspection shows that the three
sinusoids have the same wavelength of w, separated by a phase of 2π/3.

So far, little effort has been made to theoretically pinpoint the origin of the
sinusoidal pseudo-patterns, or the sinusoid effect. Empirical studies are substan-
tially the only way to validate the attempts to improve STSC. It seems that the
lack of theoretical understanding is causing a lack of progress in this area.
1 A long time series (an example segment is shown in Fig. 1 (a)) was made by con-

catenating 90 random instances of the Cylinder, Bell, and Funnel (CBF) patterns,
whose example instances are shown in Fig. 1 (b).
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Fig. 1. (a) Sliding window technique and example segment of the concatenated CBF
data. (b) Instances of the Cylinder(C)-Bell(B)-Funnel(F) data. There are 30 random
instances for each.

This is a theoretical paper. We theoretically show that the SW-based k-means
STSC introduces a mathematical artifact to the data, and, unexpectedly, that
the artifact is so strong that the resulting cluster centers are dominated by it,
irrespective of the details of the data. To the best of the author’s knowledge,
this is the first work that succeeds in theoretically explaining the sinusoid effect.

The layout of this paper is as follows. In Section 2, we summarize the sinusoid
effects and point out a connection to spectral clustering. In Section 3, we present
a new theoretical model for time series, which enables us to easily analyze sym-
metry properties hidden within the problem. In Section 4, we point out that
k-means cluster centers can be found by directly solving an eigen equation. In
Section 5, we explicitly show why the cluster centers in STSC become sinusoids.
In Section 6, we validate our formulation using standard data sets. In the final
section, we summarize the paper.

2 Sinusoid Effect in Spectral Clustering

Recently, spectral techniques have attracted great attention as a powerful method
for clustering. Some authors [10, 9, 2, 3] has shown the theoretical connection
between k-means and certain eigen problems. One interesting question here is
whether or not the sinusoid effect is observed in spectral formulations of STSC.
Experimentally, it seems that the answer is yes [6]. Specifically, if we think of
subsequences generated from a time series as column vectors, and define a ma-
trix H by putting the vectors as columns, the resulting left singular vectors of
H will form sinusoids. We show in Fig. 2 (b) the top three left singular vectors
calculated for the same concatenated CBF data. We see that the first (u(1))
and the second (u(2)) ones are sine waves with wavelength of w, showing clear
similarities to Fig. 2 (a).

To summarize these observations in the CBF data,

Observation 1 The cluster centers of k-means STSC are well approximated by
sinusoids with a wavelength of w. While the additive phases are unpredictable,
each sinusoid is separated by a phase of integer multiples of 2π/k.

Observation 2 The left singular vectors of the subsequence matrix H are well
approximated by sinusoids. A few top singular vectors have the wavelength of w.
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Fig. 2. (a) The k-means cluster centers (k = 3, w = 128). (b) The top three feature
vectors by SVD (w = 128).

These observations suggest that the k-means and singular value decomposi-
tion (SVD) of H has a common mathematical structure, and the commonality
is the origin of the sinusoid effect. Encouraged by this, we will elucidate the
sinusoid effect (1) by reducing the k-means task to that of spectral clustering,
and (2) by focusing on the translational symmetry of the problem. In (1), we
will introduce a new formulation which directly seeks the cluster centers, instead
of the standard formulation based on membership indicators.

3 Preliminaries

3.1 Lattice model for time series analysis

We define a time series Γ as an ordered set of n real-valued variables x1, x2, ..., xn.
Given a Γ , a subsequence sp of length w ≤ n is defined by (xp, xp+1, ..., xp+w−1).
A subsequence sp can be viewed as a w-dimensional column vector sp. In STSC,
sps are thought of as independent vectorial data objects. We focus on SW-based
STSC with unit step size and a fixed window size of w in this paper. The number
of clusters is represented by k. All vectors are column vector hereafter.

Any time series Γ can be represented as a vector Γ in an n-dimensional
space. Consider a vector space H0 spanned by orthonormal bases {e1, ..., en},
and attach each base el to each time point l. By the orthonormality, Γ can be
written as

Γ =
n∑

l=1

xlel (1)

with xl = eT
l Γ . We call this expression the site-representation (SR) because we

can think of our model as the one where each weight xl is associated with each
lattice point or site of a one-dimensional lattice having n lattice points.

3.2 Linear operators in H0

Let L be the set of linear operators which transforms a vector in H0 into another
vector. We distinguish the operators by usingˆhereafter. By definition, ∀ô ∈ L
can be written as a matrix. In particular, it can be written with outer products
of the bases in the SR as

ô =
n∑

l,l′=1

ol,l′ele
T
l′ , (2)



where the superscript T represents transpose.
The translation operator τ̂(l)

τ̂(l) ≡
n∑

l′=1

el′+le
T
l′ (3)

is of particular importance. It is easy to verify τ̂(l)em = em+l and eT
mτ(l) =

em−l
T. The latter suggests

τ̂(l)T = τ̂(−l). (4)

Hereafter, we assume the periodic boundary condition (PBC) to satisfy ∀l, el+n =
el. As long as n À 1, the discrepancies due to this artificial condition will be
negligible.

3.3 Discrete Fourier transformation

Consider a subspace H spanned by {e1, ..., ew} ⊆ H0. Here we do not assume
the periodicity of w in H. For example, e1 6= e1+w unless w = n.

We define an orthogonal transformation from the site basis into the Fourier
basis as

fq =
1√
w

w∑

l=1

eifq(l−l0)el ; el =
1√
w

∑

q∈Df

e−ifq(l−l0)fq, (5)

where l0 is an arbitrary real number. For simplicity, we abuse the notation fq

to represent 2πq/w, which we call the wave number. The subscript q runs over
Df = {−w−1

2 , ..., 0, 1, .., w−1
2 } when w is odd, and over {−w

2 + 1, ..., 0, 1, .., w
2 }

when w is even. It is straightforward to show fT
q fq′ = δq′,q, and thus, {fq} forms

a complete set in H.
For ∀γ ∈ H, the discrete Fourier transformation (DFT) is defined as

γ =
∑

q∈Df

fq〈fq|γ〉 ; 〈fq|γ〉 =
w∑

l=1

〈fq|el〉〈el|γ〉, (6)

where 〈fq|el〉 = 1√
w

e−ifq(l−l0), and we used the bracket notation to represent the
inner product bewtween vectors (〈el|γ〉 ≡ eT

l γ, etc). We call the representation
based on {fq} the Fourier representation (FR). If γ is the expression of real-
valued time series data, the weight on l must be real, so it follows that

〈el|γ〉 =
1√
w

∑

q∈Df

|〈fq|γ〉| cos(fql + φ), (7)

where φ = −fql0 + arg〈fq|γ〉.



4 Density Matrix Formulation of k-Means

4.1 Objective function of k-means

Consider a general k-means clustering task for a set of vectors {sp ∈ H |p =
1, 2, ..., n}. It is well-known that the k-means algorithm attempts to minimize
the sum-of-squared (SOS) error [4]:

E =
k∑

j=1

∑

p∈Cj

∣∣∣
∣∣∣ sp −m(j)

∣∣∣
∣∣∣
2

=
n∑

p=1

〈sp|sp〉 −
k∑

j=1

|Cj |〈m(j)|m(j)〉, (8)

where Cj and |Cj | represent the members of the j-th cluster and the number of
members in the cluster, respectively. The centroid of Cj is denoted by m(j).

The first term does not depend on the clustering. For the second term, E2,
by substituting the definition of the centroid m(j) = 1

|Cj |
∑

p∈Cj
sp, it becomes

E2 = −
k∑

j=1

1
|Cj |

∑

p,r∈Cj

〈sp|sr〉. (9)

To remove the restricted summation, we introduce an indicator vector u(j) ∈ H,
where 〈sp|u(j)〉 = 1/

√|Cj | for sp ∈ Cj and 0 otherwise, to have

E2 = −
k∑

j=1

n∑
p,r=1

〈u(j)|sp〉〈sp|sr〉〈sr|u(j)〉.

Now introduce a linear operator ρ̂ as

ρ̂ =
n∑

p=1

sps
T
p

and call ρ̂ the density matrix, following the statistical-mechanical terminology.
Since the sps are generated by the SW technique, we see

ρ̂
.=

n∑

l=1

τ̂(l)TΓΓ Tτ̂(l) (10)

holds, where “ .=” means “the left and the right sides have the same matrix
elements when represented in H (not H0)”.

Using ρ̂, we get the final form of the objective function as

E2 = −
k∑

j=1

〈u(j)|ρ̂2|u(j)〉, (11)

where 〈·|ô|·〉 is defined as 〈·|ô·〉 for ∀ô ∈ L. The k-means clustering task has now
been reduced to seeking the solution {u(j)} which minimizes E2.



4.2 Connection to eigen problem

To this point, the vector u(j) has been an artificially defined indicator to simplify
the objective in Eq. (9). From the original definition, it is easy to see that {u(j)}
satisfy

n∑
p=1

〈u(i)|sp〉〈sp|u(j)〉 = 〈u(i)|ρ̂|u(j)〉 = δi,j . (12)

Now we relax the original binary restriction, and take this as the new restriction
on the optimization problem, so that the k-means task is reduced to the gener-
alized eigen problem which minimizes E2 subject to Eq.(12). This eigen problem
can be written as

ρ̂u(j) = λju
(j) s.t. 〈u(i)|u(j)〉 = δi,j , (13)

where λj is the eigenvalue corresponding to the eigenstate u(j) labeled in de-
scending order of the eigenvalue. In the SR, 〈el|ρ̂|el′〉 corresponds to the (l, l′)
element of HHT, where H = [s1, ..., sn] (note that H has n columns by PBC).
Thus, Eq. (13) can be written as

HHTu(j) = λu(j).

This equation also shows the u(j)s are the left singular vectors of H.

4.3 Cluster centers and eigenstates

Apart from the formal definition as the (relaxed) indicator, let us further consider
the meaning of u(j). Before the relaxation, the indicator satisfied

m(j) ≡ 1
|Cj |

∑

p∈Cj

sp =
1√|Cj |

n∑
p=1

sp〈sp|u(j)〉.

After the relaxation, u(j) is the eigenstate of ρ̂ =
∑

p sps
T
p . Thus, it follows that

the k-means cluster centers correspond to the eigenstates of ρ̂, or

m(j) ∝ u(j). (14)

Note that our formulation directly seeks the cluster centers as the eigen vectors.
This is in contrast to the standard spectral formulations [3].

Now, we summarize this section as Theorems:

Theorem 1 The eigenstates of ρ̂, which can be computed also as the left singular
vectors of H, minimize the SOS objective.

Theorem 2 The eigenstates of ρ̂ formally correspond to the k-means cluster
centers.



In spite of this, the correspondence between the k-means and our spectral
formulation is not perfect. The major discrepancy comes from the fact that the
eigenstates must be orthogonal to each other. The problem is that the cluster
centers are not necessarily orthogonal in general. One reasonable expectation is
that the top eigenstate u(1) would be a good estimator representing the averaged
direction of a few of the major k-means clusters. For the other eigenstates, the
direction would be more or less influenced by the top one. 2 We will discuss this
topic theoretically and experimentally later.

5 Fourier Representation of ρ̂

5.1 The w = n case

Let us consider the extreme case of w = n. In this case, H ( = H0) can be
thought of as periodic, so that the Fourier state fq is the exact eigenstate of
τ̂(l). Explicitly,

τ̂(l)fq =
1√
w

n∑

l′=1

eifq(l′−l0)el′+l = e−ifqlfq. (15)

Here we used the fact that eifqn = 1 if fq = 2πq/n.
Using Eqs. (10) and (15), we can calculate 〈fq|ρ̂|fq′〉 as

n∑

l=1

〈fq|τ̂(l)T|Γ 〉〈Γ |τ̂(l)|fq′〉 =
n∑

l=1

〈fq|Γ 〉〈Γ |f ′q〉ei(fq−fq′ )l = n|〈fq|Γ 〉|2δq,q′ , (16)

which means the matrix representation of ρ̂ is diagonal in FR. Thus, we conclude
that the Fourier state itself is the eigenstate of ρ̂ completely independently of the
input data. Which fq is chosen depends on the magnitude of |〈fq|Γ 〉|2, the power
of the Fourier component. Note that the eigenstate must be a pure sinusoid
even when the power spectrum does not have any dominant fq. 3 When a q1

was chosen, the resultant distribution is sinusoidal with the wave number fq1

(see Eq. (7)). Thus, based on Theorems 1 and 2, the k-means cluster centers
are expected to be approximated by the sinusoids apart from the orthogonality
problem.

5.2 The w < n case

For w < n, the fqs are not exactly the eigenstates of τ̂(l), since H cannot be
thought of as periodic. As a result, we have the matrix elements like

〈fq|ρ̂|fq′〉 ≈ n|〈fq|Γ 〉|2δq,q′ +
n∑

l=1

eil∆q′qJl(q, q′), (17)

2 The k = 1 case is special. The cluster center is the simple mean vector, and can be
written as |m〉 =

√
wx̄|f0〉, where x̄ denotes the mean of Γ over the whole domain.

This gives a constant distribution, having no relation with u(j)s.
3 This is not the case when some of |fq|s have exactly the same power. But it is unlikely

in real-world time-series data under normal conditions.



instead of Eq. (16). It is straightforward to get the exact expression of Jl(q, q′)
although we do not show it here. However, under normal conditions, we can
assume that the first term is the leading term since n À 1 and phase cancellations
are unavoidable in the second term. In particular, if the power spectrum has a
single-peaked structure at |fq|, which is the case in the CBF data (see the next
section), the top eigenstate will be well approximated by f|q|, irrespective of the
details of the spectrum. Again, Eq. (7) reads

〈el|u〉 ∝ cos(fql + φ). (18)

Since l0 was arbitrary, the real number φ is also arbitrary. From this, we can
naturally understand the unpredictability of the additive phase as stated in
Observation 1. Now we get Theorem 3, which directly explains Observation 2:

Theorem 3 When a |q| is dominant, the singular vectors of H are well approx-
imated by sinusoids with the wavelength of w/|q|, irrespective of the details of
the input time series data.

In addition, by considering Theorems 1 and 2, the k-means cluster centers will
be sinusoidal except for the orthogonality problem. This is a mathematical ex-
planation of Observation 1.

When the power spectrum is almost flat, the eigenvectors will be mixtures
of many fqs, so that the cluster centers will be far from pure sinusoids.

5.3 Optimizing the relative phases

If the data has a dominant q, the subsequences can be approximated as

sp =
∑

q′∈Df

fq′〈fq′ |sp〉 ≈
∑

q′∈Df

eifq′pfq′〈fq′ |Γ 〉 ≈ fq〈fq|Γ 〉eifqp. (19)

Define gq,φ ∈ H by 〈el|gq,φ〉 = cos(fql + φ). Equation (19) means that the k-
means STSC is reduced to that for {gq,φ} with uniformly distributed φ.

Since {gq,φ} consists of sinusoids of fq, the cluster centers must be sinusoids
of fq. Let the cluster centers be gq,φj (j = 1, ..., k). The distribution of φ may be
modeled as a continuous uniform distribution over [0, 2π). The SOS objective is
now written as

E(φ1, ..., φk) =
1
2π

∫ 2π

0

dφ

k∑

j=1

θj(φ)e(φ, φj), (20)

where 1/(2π) represents the probability density of φ, and e(φ, φj) ≡ ||gq,φ −
gq,φj ||2 = 4 sin2 φ−φj

2 . The function θj(φ) indicates cluster assignment, and takes
1 when the j-th cluster center is the closest to φ, 0 otherwise. For example, if
we have φ1 < φ2 < φ3 when k = 3, θ2(φ) will be 1 for φ1+φ2

2 ≤ φ < φ2+φ3
2

and 0 otherwise. Solving the minimization problem of E w.r.t. the phases is
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Fig. 3. Power spectra of each instance of the data.

straightforward but tedious. However, it is intuitively clear that the most bal-
anced assignment is optimal. In fact, Eq. (20) is symmetric w.r.t. j. So, the
solution should be also symmetric if it is the unique solution. Now we arrive
at Theorem 4, which summarizes the theoretical proof of the phase issue in
Observation 1:

Theorem 4 If a Γ has a dominant fq, the k-means STSC is reduced to that for
uniformly distributed sinusoids of fq. The optimal cluster centers are separated
by a phase of integral multiples of 2π/k.

6 Experiments

6.1 Cylinder-Bell-Funnel data

The CBF data [7] includes three types of patterns of literal Cylinder, Bell, and
Funnel shapes. We randomly generated 30 instances for each type (examples in
Fig. 1 (b)) with a fixed length of 128 (= w) using the Matlab code provided
by [7]. We also concatenated them in order after standardizing each one (zero
mean and unit variance). We did 100 random restarts and chose the best one in
the k-means calculation.

Figures 3 (a)-(c) show the power spectra of each instance as a function of
the wave number. To handle the variation of the instances, we simply averaged
the resultant spectra of all instances. We see that the most of the weight is
concentrated on the |q| = 1 component in all of the cases. The f0 component is
naturally missing because of the standardization.

The results of k-means and SVD were shown in Fig. 2. The wavelength of
w can be understood from the large |q| = 1 weight in Fig. 3 (a)-(c). Due to the
orthogonality condition, the third singular vector necessarily has a wavelength
of about w/2. This is an example of the difference between the two formulations
in how the calculated cluster centers interact with each other. Apart from this,
our formulation is completely consistent to the results.

6.2 Synthetic Control Chart data

The Synthetic Control Chart (SCC) data [7] consists of six types of 100 instances,
each with 60 data values. Out of the six types, we focus on the Cyclic and



Normal types (Fig. 4), which have very different (averaged) power spectra from
the CBF spectra, as shown in Fig. 3. We see that the weight is concentrated on
the wavelengths of w

4 , w
5 , and w

6 in the Cyclic data (w = 60). In contrast, the
distribution is almost flat for the Normal data, as expected for white noise.

We made a concatenated data set with 100 standardized Normal instances
followed by 100 standardized Cyclic instances. Figures 5 (a) and (b) show the
k-means cluster centers (k = 2, the best one among 100 random restarts) and
the two highest singular vectors, respectively. We set w = 60. Since the sps in the
Normal part do not favor any particular direction, the clustering results seem to
be dominated by the Cyclic part. In both figures, amplitude-modulated sinusoids
with a periodicity of about w/5 are observed instead of pure sinusoids. The
waves are separated by the phase intervals which can be naturally understood
from Theorem 4 for (a) and from the orthogonality condition for (b).

The amplitude modulation can be understood as beat in physics. As shown
in Fig. 3, the Cylinder part is dominated by the f|4|, f|5| and f|6| components.
Since SVD extracts the major direction of {sp}, the top singular vector u will
be approximated as a linear combination of those components like

〈el|u〉 ≈
6∑

q=4

cq cos [fq(l − l0)] .

Within the accuracy up to the order of (2π/w)2, it reads

〈el|u〉 ∝ e−
1
2 ∆2

2(l−l0)
2
cos [(fq −∆1)(l − l0)] , (21)

where ∆ ≡ 2π/w, and

∆1

∆
=

c4 − c6

c4 + c5 + c6
,

∆2

∆
=

√
4c4c6 + c5(c6 + c4)

c4 + c5 + c6
.

To derive this, we used Taylor expansion formulas such as (ε ¿ 1)

ln
(
c5 + c6eiε

) ≈ ln(c5 + c6) +
iεc6

c5 + c6
− ε2

2
c5c6

(c5 + c6)2
.

The line shape in Eq. (21) is known as beat in physics. If we set cq ∝ |〈fq|Γ 〉|
(in the Cyclic part), we get ∆1 = 0.1∆ and ∆2 = ∆/1.3 from Fig. 3 (d). This
leads to a sine wave with wavelength w/4.9 modulated by a beat wavelength of
1.3w. Except for the region where ∆(l − l0) ' 1, Equation (21) fairly explains
Fig. 5.

It is interesting to see what happens when we have only the Normal data.
As expected, the resulting cluster centers are far from sinusoids when w = 60
(not shown). However, STSC produces sinusoids when w = n (=6000), despite
the white noise nature of the data. Our theory clearly explains this counter-
intuitive result. As discussed in Subsection 5.1, the top singular vector must be
the pure sinusoid of the largest power. In this case, we have the largest power at
|fq| = 0.358 in Fig. 6 (a) (marked by the triangles). Thus, the wavelength must



0 20 40 600 20 40 60
time

(b)(a)

time

Fig. 4. Examples of (a) Cyclic and (b) Normal instances in the SCC data.

0 20 40 60
−0.5

0

0.5

0 20 40 60
−0.2

0

0.2(a) k−means (b) SVD

1st 2nd

Fig. 5. (a) The k-means cluster centers and (b) the first and second singular vectors
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be 2π/|fq| = 17.6, which is completely consistent with Fig. 6 (c). In addition,
we see that the singular vector is a good estimator of the k-means cluster center
by comparing Figs. 6 (b) and (c).

While some authors attribute the sinusoidal patterns to simple smoothing
effects caused by superposition of slightly shifted subsequences [1], such a dis-
cussion clearly fails to explain the origin of the sinusoidal curves for the Normal
data, and that of the beat waves.

7 Concluding Remarks

We have performed theoretical analysis of the sinusoid effect in STSC. In par-
ticular, we pointed out that the k-means clustering task can be reduced to the
eigen problem of the density matrix ρ̂. Thanks to the translational symmetry of
ρ̂, the eigenstate can be approximated by a Fourier state if a single |fq| forms a
conspicuous single peak in DFT. We also found that the k-means cluster centers
produce beat waves (Fig. 5) when a few neighboring frequencies are dominant.

Mathematically, the sinusoid effect can be understood from the fact that the
Fourier states are the irreducible representations of the translational group. In
another paper [5], we used a point group for pattern discovery. This paper also
can be seen as one of the first studies which introduce the concept of group into
machine learning.

Our theory also provides a practical basis for attempts to make STSC mean-
ingful. As long as the coherent superposition is used to define the cluster cen-
ters, sinusoid pseudo-patterns are more or less unavoidable. One possibility is
to utilize incoherent superposition of subsequences. Medoid-based methods are
perhaps the simplest way to use the incoherence, and are known to give bet-
ter results than the simple STSC. Detailed discussion on this issue will appear
elsewhere.
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