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Problem statement



Tokyo Research Laboratory

© Copyright IBM Corporation 2007|  2007/10/29 | ICDM 2007 | Tsuyo IdéPage 4

Problem statement (1/2): 

We address a task of change analysis between two data sets

data set  A data set  B
… …

x1

x2

xN

Problem 1 (change detection):

Tell whether A and B are different

Problem 2 (change analysis ):

Given A and B, tell which 

variables are responsible for 

the difference between them
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Problem statement (2/2): 

We assume sensor signals of highly correlated and dynamic natures

data set  A data set  B
… …

x1

x2

xN

Typical application

Sensor validation (to identify 

faulty sensors)

Challenges in real data

• dependency between signals

• highly dynamic nature

• heterogeneities

• no supervised information
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Related work: 

Highly dynamic and correlated natures make the problem difficult

… …

Time-series alignment (or DTW)

?

Two-sample test

• hard to handle highly 

dynamic natures

• capable of handling change detection

• but hard to do change analysis

PCA-based approach

• doesn’t work since no stable latent structure 

in this case

→ see Experiment

[Friedman 79, Henze 88, Gretton 07, …]

[Berndt 94, Keogh 00, …]

[Papadimitriou 05, Idé 05, …]
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Neighborhood preservation principle
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Our goal: to compute the anomaly score of each signal

data set  A data set  B

t = (time index) t = (time index)

variable

anomaly score
test data reference data



Tokyo Research Laboratory

© Copyright IBM Corporation 2007|  2007/10/29 | ICDM 2007 | Tsuyo IdéPage 9

Reducing the problem to graph comparison

data set  A data set  B

variable

anomaly score
test data reference data

x1 x2
..

x1
0 0.2 ..

x2
0.2 0 ..

.. .. .. ..

dissimilarity graph

Problem

Which nodes are responsible for the 

difference between the two graphs?

Simplest choice of dissimilarity:

Correlation coefficient between 

the i- and j-th signals
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Key observation: 

Globally unstable, but locally stable

data set  A data set  B

test data reference data

dissimilarity graph

▪ Global graph structure is unstable 

 due to highly dynamic nature

▪ Highly correlated pairs are relatively 

stable

 even under dynamic fluctuation

▪ Neighborhood Preservation 

Principle

 Under normal system operations, 

“tightness” of highly correlated 

pairs will be unchanged
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High level overview of our approach:

We focus only on local structures of the graph

graph 

decomposition

Evaluation 

of tightness

Comparison to give 

anomaly score

test

reference

dissimilarity 

graph 

k-neighborhood 

graphs
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Stochastic nearest neighbors
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The tightness is defined as the sum of coupling probabilities

• Imagine that graph edges are not static but stochastic

• The definition of tightness

• The anomaly score (E-score) is naturally given by*

* In fact, the algorithm has been designed to be symmetric between the two data sets. For detail, see the paper.

Evaluation 

of tightness

Comparison to give 

anomaly score
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is determined by utilizing a notion of stochastic neighborhood

can be determined by solving the following problem:

“For a given # of edges, minimize the average dissimilarity within the neighborhood graph” 

Solution:

where

Minimum average 

dissimilarity

Constant perplexity 

(Hi: entropy)

Normalization 

condition

This amounts to “softening” neighborhood graphs.

→ c.f. Hinton-Roweis 03

→ constant # of neighboring nodes
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Experimental result and summary
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E-score clearly pinpointed faulty automobile sensors, which were very 

hard to be detected by the human eye

▪ test data includes 3 faulty sensors

 due to mis-wiring error between x-, y-, 

and z-axes of an acceleration sensor

▪ Faulty ones were clearly identified

reference test
… …

x1

x2

x61
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Summary

▪ We formalize the task of change analysis

▪ We proposed the neighborhood preservation principle for change analysis
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Thanks !


