
Change-Point Detection using Krylov Subspace Learning

Tsuyoshi Idé ∗ and Koji Tsuda †

Abstract

We propose an efficient algorithm for principal component

analysis (PCA) that is applicable when only the inner

product with a given vector is needed. We show that Krylov

subspace learning works well both in matrix compression

and implicit calculation of the inner product by taking

full advantage of the arbitrariness of the seed vector. We

apply our algorithm to a PCA-based change-point detection

algorithm, and show that it results in about 50 times

improvement in computational time.

Keywords: PCA, Krylov subspace, inner product,
change-point detection

1 Introduction

Principal component analysis (PCA) is widely used
feature extraction technique in data mining. Recently,
PCA has been found to be useful also in the change-
point (CP) detection task for real-valued time-series
data. In the PCA-based CP detection algorithm named
singular-spectrum transformation (SST [8, 6]), PCA
is performed at each point of time on subsequences
taken from both the past and present domains (see
Fig. 1). The principal components are then compared
to compute the degree of change, or the CP score.

Since SST does not employ any specific generative
models, it is relatively robust and flexible against het-
erogeneities of the input signal. In spite of this useful
feature, however, SST has a difficulty for practical use:
The computational cost of singular value decomposition
(SVD) is too high to be repeated over all of the time
points.

To speed up PCA (or SVD), there have been a num-
ber of attempts so far. Recent studies include sampling-
based techniques [11, 4] and online SVD algorithms [12].
However, these techniques are not useful in SST, since
the matrix in SST is generally dense, and the number of
subsequences is too small to use sampling-based tech-
niques. Also, most of the online SVD algorithms implic-
itly assume the continuity with the past, which is not

∗IBM Research, Tokyo Research Laboratory. E-mail: good-
idea@jp.ibm.com

†Max Planck Institute for Biological Cybernetics,
koji.tsuda@tuebingen.mpg.de

t time

Figure 1: Overview of SST.

acceptable in the CP detection task.
In SST, the CP score is computed based on the

inner product

(1.1) K(i, µ) ≡ µ>u(i),

where µ is the highest principal component of the
present state, and the u(i)s are principal components
in the past, as shown in Fig. 1. In later sections, we
will show that K can be calculated without performing
SVD for the u(i)s, based on our implicit Krylov approx-
imation.

In machine learning, the Krylov subspace method
has mainly been used as a black-box numerical solvers
in the form of the conjugate gradient and the Lanc-
zos methods [5], which are known to work quite well in
sparse systems. Few attempts have been made to in-
corporate the concept of Krylov subspace into machine
learning algorithms, except for a very recent study [3],
where the Gaussian transform is simply combined to
speed up vector-matrix multiplications. The essential
idea of the present work is to take full advantage of
the “seed” vector of the Krylov subspace. To the best
of the authors’ knowledge, this is the first work which
shows that the Krylov subspace learning enables us to
do an implicit inner product calculation via an appro-
priate choice of the seed vector. Using real-world data,
we will show that our new method makes the SST about
50 times faster.

Layout of this paper is as follows: Section 2 briefly
reviews the SST. Our implicit Krylov approximation is
introduced in Section 3, and is incorporated into SST in
Section 4. Experimental results are given in Section 5.
Section 6 concludes the paper.

2 Change-point detection algorithm

For the time-series data {st ∈ R | t = 1, 2, ...}, define a
subsequence of length w as

s(t) ≡ (st−w+1, ..., st−1, st)> ∈ Rw

where the superscript > represents transpose. We
assume that the data points are collected at constant
intervals. At each time t, let H1 and H2 be matrices
containing n subsequences defined as

H1(t) ≡ [s(t− n), ..., s(t− 2), s(t− 1)]
H2(t) ≡ [s(t− n + γ), ..., s(t− 1 + γ)],

where γ is a positive integer. Fig. 1 shows an example
where three subsequences are taken both in the vicinity
of the present time and in the past.

The column space of H1(t), the space spanned by
the column vectors, should contain the information
about the patterns appearing on the past domain of the
time series. The SST utilizes the principal components
as typical representative patterns of the column space:
Find the r (< w, n) top left singular vectors of H1(t),
u(1),u(2), ..., u(r). We assume these are orthonormal.
Hereafter, we omit the argument t unless confusion is
likely. Let the subspace spanned by these vectors be

(2.2) Hr ≡ span{u(1), u(2), ..., u(r)}.

Similarly, we can get the representative patterns
around the present time t by performing the SVD of
H2. We use the top principal component µ of H2 as the
representative pattern (for extension to include more
principal components, see Appendix A).

Unlike [6], we define the CP score z at time t as

(2.3) z ≡ 1−
r∑

i=1

K(i, µ)2,

which can be interpreted as the distance between the
subspaces. Appendix A explains the detail.

Since it is empirically true that the score is not very
sensitive to the choices of n and γ [6], we set n = w and
γ = w/2. For w, a value less than 100 typically works.
An appropriate preprocess (e.g. down-sampling) can be
used to adjust w to this range. Empirically, a value of
three or four works well for r even when w is on the
order of 100.

3 Implicit Krylov approximation

In this section, we introduce a matrix compression
algorithm to compute K(i, µ). By definition, the
singular vectors u(i) are in the column space of H1.
Instead of using the full column space, we attempt

to use a k-dimensional subspace Vk, and to reduce
the original eigen problem to a k × k matrix problem
(assuming r < k < w). Notice that what we want is
not singular vectors themselves but the inner product
w.r.t. a given vector µ. Thus we take full advantage of
µ for constructing Vk, as suggested in Fig. 2. Details
are explained below.

3.1 Implicit calculation of K. Let q1, ..., qk be
orthonormal bases of Vk. Suppose that q1 = µ. The
u(i)s were originally defined as the eigenvectors of C ≡
H1H1

>. In Vk, the eigen equation formally reads

(3.4) Q>k CQkx = λx,

where Qk ≡ [q1, ..., qk]. If k = w, we see that this eigen
equation is exactly the same as the original problem,
and Qkx corresponds to the original eigenvector. If
k < w, on the other hand, this equation will give an
approximated solution.

Although we have not yet specified qαs except for
q1, imagine that we have found the r top eigenvectors
x(1), ..., x(r) ∈ Rk somehow by solving Eq. (3.4). Then
a u(i) is approximately given by

(3.5) u(i) '
k∑

α=1

x(i)
α qα,

where x
(i)
α is the α-th element of x(i). Then, thanks

to the orthogonality of the qαs and the fact that
q1 = µ, computing µ>u(i) reduces to taking the first
element of the x(i)s. Explicitly, the kernel function is
approximately given by

(3.6) K(i, µ) ' x
(i)
1 ,

which means that the inner product can be computed
directly from x(i)s without explicitly using u(i)s.

Now our problems are: How to find Vk so that the
overlap between Hr and Vk is as large as possible, and
how to efficiently find the eigenvectors of Q>k CQk. These
problems will be discussed in the next subsections.

3.2 Krylov subspace. To answer the first question,
let us consider the following problem:

Given an s-dimensional subspace Vs ⊂ Rw,
construct a subspace Vs+1 by adding a vector
to Vs so that the increase of the overlap be-
tween Vs+1 and {u(1), ..., u(s)} is maximized.

Let us start with V1 spanned by µ. Recall that
solving the eigen equation for C is equivalent to the
maximization problem of the Rayleigh quotient [5],
which is given by

R(u) = (u>Cu)/(u>u).

…
Figure 2: Krylov subspace construction with the seed
vector µ.

To satisfy the requirement, when we construct V2 =
span{µ,∆} by adding ∆ ∈ Rw, the added vector should
contain the steepest ascent direction of R given by

d

du
R(u)

∣∣∣∣
u=µ

=
−2

µ>µ
[R(µ)µ− Cµ] .

Thus, if we choose Cµ as ∆, span{µ, Cµ} contains this
steepest direction.

Continuing this procedure, we see that a k-
dimensional space

Vk(µ,C) ≡ span{µ,Cµ, ..., Ck−1µ}

is the best k-dimensional subspace in terms of maxi-
mization of R, given µ. In other words, there are many
choices 1 of a k-dimensional subspace over the entire col-
umn space of H1, among all of the choices, the subspace
which has the largest weight of u(1), ..., u(r) is Vk(µ,C),
under the constraint that µ is the starting base.

In mathematics, Vk(µ, C) is called the Krylov sub-
space induced by µ and C [5]. Alternatively, one may
say that µ is the seed of the Krylov subspace.

Figure 2 illustrates the construction procedure for
Vk(µ, C). Since Vk(µ,C) is a subspace that condenses
the information we want as densely as possible, reducing
the problem within this space should be a good approx-
imation.

3.3 Finding the orthonormal bases. To reduce
the original eigen problem of C to the smaller problem
defined in Vk(µ, C), it seems that we would need to
find q1, ..., qk explicitly (as will be shown, not necessary
in fact). For that purpose, we can use the Gram-
Schmidt orthogonalization or, equivalently, the (thin-)
QR factorization of the Krylov matrix defined as

Vk(µ, C) ≡ [
µ, Cµ, ..., Ck−1µ

]
.

Due to the nature of these methods, the constraint
q1 = µ is automatically satisfied. In addition and
fortuitously, in the QR factorization of the Krylov
matrix, a special and helpful property holds:

1For example, a matrix compression technique in [2] produces
another subspace, which is suboptimal in terms of the overlap
with Hr.

Theorem 1. The orthogonal matrix Qw ∈ Rw×w given
by the QR factorization of Vw(µ, C) tridiagonalizes C.

Proof (outline). Suppose that we have an orthogonal
matrix Qw which tridiagonalize C. Explicitly, Tw ≡
Q>wCQw is tridiagonal. Since QwQ>w is the identity
matrix, and Q>wµ = e1, where e1 ∈ Rw is a unit vector
corresponding to the first base, we see that

Q>wVk =
[
e1, Twe1, ..., Tw

k−1e1

]
,

which is an upper triangular matrix. Thus, if we have
a matrix which makes C tridiagonal, it must be a Q-
factor of the QR factorization of Vr. Since the QR
factorization is essentially unique [5], the Q-factor must
tridiagonalize C. ¤

Therefore, if q1, ..., qk are to be computed via the
QR-factorization of Vk(µ, C), then Eq. (3.4) is an eigen
equation for a tridiagonal matrix. Let α1, ..., αw and
β1, ..., βw−1 be the diagonal and subdiagonal elements
of Tw ≡ Q>wCQw. If we consider the s-th column of the
equation CwQw = QwTw, it follows that

Cqs = αsqs + βs−1qs−1 + βsqs+1,

where qs is the s-th column vector of Qw. Using the
orthogonal relation q>i qj = δi,j , we immediately have
αs = qs

>Cqs. In this way, it is easy to construct
an algorithm to find αs and βs sequentially from this
recurrent equation:

Subroutine 1. Lanczos(C,µ, k) Input C ∈ Rw×w,
µ ∈ Rw, and a positive integer k (< w). Initialize as
r0 = µ, β0 = 1, q0 = 0, and s = 0. Repeat

qs+1 = rs/βs

s ← s + 1
αs = qs

>Cqs

rs = Cqs − αsqs − βs−1qs−1

βs = ||rs||
until s = k. Return {α1, .., αk} and {β1, .., βk−1}.

By running this procedure up to k < w, we obtain
Tk (= Q>k CQk) directly. Notice that we do not need
to explicitly compute q1, ..., qk. This tridiagonalization
procedure is called the Lanczos algorithm.

3.4 Diagonalizing Tk. Now the first problem de-
scribed at the end of Subsection 3.1 has been answered.
Regarding the second problem, which is how to find the
eigenvectors of the tridiagonal matrix Tk, fortunately
there are extremely fast and stable algorithms. One of
the best ways is to use the QL iteration (see, e.g. the
tqli routine in [9]), which preserves the tridiagonal
structure throughout the entire iteration process.

Notice that we do not need to explicitly compute
either the u(i)s or the inner product to get K. We call

t time
F/B to (t +1)

Figure 3: Overview of IKA-based SST.

this approach the implicit Krylov approximation (IKA)
hereafter.

4 IKA-based change-point detection

4.1 Algorithm summary. The IKA needs µ as
input (the top singular vector of H2). Since the largest
singular value does not have multiplicity 2, it can be
computed very efficiently using iterative methods such
as the power method [5].

We summarized the IKA-based SST method in
Fig. 3. At each t, we first compute µ. Then we
run Lanczos(C, µ, k) to have Tk. Based on the r top
eigenvectors x(1), ..., x(r) of Tk, the CP score is given by
z ' 1−∑r

i=1 x(i)2. In the Figure, we also put the idea
of feedback (to utilize the result at t − 1 for the initial
vector at t). While the feedback speeds up the algorithm
to some extent, the improvement is much smaller than
that by the IKA.

For the dimension of the Krylov subspace Vk(µ,C),
one reasonable choice is

k =
{

2r r ∈ even
2r − 1 r ∈ odd .(4.7)

The rationale of this rule is that the Krylov subspace is
also the best one for the smallest eigenstates as well as
for the largest [5], so k should be about twice r. Note
that the IKA is independent of the choice of the SST-
native parameters n and γ.

4.2 Remarks. The Lanczos algorithm is known to
be numerically unstable in nature. In fact, if we ex-
plicitly compute the u(i)s using Eq. (3.5), the resulting
u(i)s would suffer from pathological phenomena such as
pseudo-degeneracies, especially in dense matrices (see,
e.g., § 9.2 of [5]). In that case, we will have unreliable
Hr, resulting in an erroneously fluctuating z. The IKA

2 We assume the input signal has been preprocessed so that it
takes positive values in the majority of observations.

Table 1: Tested methods.
symbol — feedback {u(i)} kernel

1 OI power no OI explicit

2 EM EMPCA no EMPCA explicit

3 OI FB power yes OI explicit

4 EM FB EMPCA yes EMPCA explicit

5 IKA power yes - implicit

0 1000
50
60
70

0 1000

40
50
60
70

0 1000
0

100
200
300

0 1000
0

50
100
150

0 1000
0

100
200
300

0 1000

0

200

400

0 1000

0

200

400

0 1000
52

56

60

(a) X_Acc

(b) Y_Acc

(c) Light1

(d) Light2

(e) Touch

(f) Microp1

(g) Microp2

(h) Temp

Figure 4: The phone1 data.

is carefully designed to avoid such difficulties which are
very likely to occur in dense matrices.

5 Experiment

We implemented five different types of SST algorithms
in Java as shown in Table 1. The first four explicitly
compute the singular vectors using different routines:
power (the power method), OI (orthogonal iteration [5]),
and EMPCA (EM-PCA algorithm [10]). These were com-
pared to our IKA-based SST algorithm. All calculations
were done in a Java 1.4.2 virtual machine on a modest
workstation (Pentium 4, 2.0 GHz, 1 GB memory). In
the iterative algorithms, the convergence threshold was
set to be 10−5 for the norm of the residual vectors.

The data used was the phone1 data (Fig. 4) con-
taining eight time series of various types measured by
embedded sensors in a mobile phone [1, 7]. Each of the
variables consists of 1,708 data points, but information
about the sampling rate is not given. From the title at-
tached to the data file, it seems that the data represents
the actions of picking up the phone and laying it down.

5.1 Computational cost. We measured the compu-
tational times of these five SST algorithms. As a pre-
process, the original signals were scaled to have unit
variance and a mean of three. We imposed a periodic
boundary condition on the data in performing SST. This

110
100100010000100000

10 25 50 75 100 250window size
total calc. tim
e [s] 1: OI, 2: EM, 3: OI_FB, 4: EM_FB, 5: IKA1 2 3 45

Figure 5: Total computation time of SST.

0 1000

0 1000

0 1000

0 1000

0 1000

0 1000

0 1000

0 1000

(a) X_Acc

(b) Y_Acc

(c) Light1

(d) Light2

(e) Touch

(f) Microp1

(g) Microp2

(h) Temp

EM

IKA

EM
IKA

EM
IKA

EM
IKA

EM
IKA

EM

IKA

EM
IKA

EM

IKA

Figure 6: CP score of the phone1 data (w = 50, r = 3).

is to keep the number of data points the same over dif-
ferent ws. We used (r, k) = (3, 5).

Figure 5 compares the computational times of the
different algorithms on a logarithmic scale, averaged
over five trials. We see that the improvement by the
IKA-SST is drastic. It is about 50 times faster than the
conventional SST methods for each w.

5.2 Numerical Errors. Notice that this was accom-
plished with no substantial approximation error. To see
this, Fig. 6 compares the CP scores between EM and
IKA for w = 50. As shown, the overall fit between the
EM and IKA results is very good, although there are
a few peaks which are not reproduced by IKA as indi-
cated in Figs. 6 (b) and (g). Again, it is surprising that
the IKA almost perfectly reproduces the results of EM,
since IKA solves only 5×5 problems while EM performs
the complete SVD for 50× 50 matrices.

6 Concluding remarks

We have proposed a new PCA algorithm named the
implicit Krylov approximation that is applicable when
one is interested only in the inner product with a given
vector. We showed that Krylov subspace learning ac-

complishes both matrix compression and implicit inner
product calculation at the same time. We applied the
IKA to the change-point detection task, and demon-
strated that the IKA made the conventional SST algo-
rithm about 50 times faster. Application of the IKA to
other areas would be interesting feature work.

A Appendix: Distance between subspaces

In this Appendix, we explain why the definition
Eq. (2.3) is consistent.

A.1 Projection operators. In SST, the CP score
is generally defined as the distance between the feature
spaces in the past and present domains. Defining this
distance is nontrivial because the dimensions of the
subspaces can be different. Let Sh be the feature space
in the present domain. As Eq. (2.2),

Sh ≡ span{µ(1), µ(2), ..., µ(h)},
where µ(i)s are the top h singular vectors of H2. Notice
that we are extending the theory to include h > 1.

Let P1 and P2 be the projection operators onto Hr

and Sh, respectively. Using the singular vectors, these
can be written as

(A.8) P1 =
r∑

i=1

u(i)u(i)> and P2 =
h∑

i=1

µ(i)µ(i)>.

Let x ∈ Rw be a vector in Hr. Since similar
subspaces should yield similar projections, it is natural
to focus on comparing P1x (= x) and P2x. Clearly,
if Sh is perpendicular to Hr, P2x vanishes (see Fig. 7
(a)). In contrast, if Sh is contained in Hr, P2x can
have a nonzero norm, depending on how x is chosen
(see Fig. 7 (b)). To remove the arbitrariness, we specify
the distance to be zero when Sh ⊂ Hr, i.e. take the x
of case 1 in Fig. 7 (b). Based on these observations, we
define the squared distance between the two subspaces
as

(A.9) d(Hr,Sh)2 ≡ min
x∈Hr, ||x||=1

||(P1 − P2)x||2.

A.2 Interchangeability of subspaces. One inter-
esting question here is whether the dual definition

(A.10) d(Sh,Hr)2 = min
x∈Sh, ||x||=1

||(P2 − P1)x||2

gives the same value as d(Hr,Sh). Notice that x ∈ Hr

in Eq. (A.9) while x ∈ Sh in Eq. (A.10).
To study the duality of the distance, first we express

(P1 − P2)2 with the bases of Hr. With Eq. (A.8), the
(i, j) element is calculated directly as

u(i)>(P1 − P2)2u(j) = δi,j −
r∑

l=1

Ki,lKl,j ,

P2 x

Hr

Sh

P1 x

(a)

Hr

(b)

case 1

case 2

P2 x
P1 x

Sh

Figure 7: Comparison between Sh and Hr using the
projection operators when h = 1.

where δ is Kronecker’s delta, and K ∈ Rr×h is the Gram
matrix whose (i, j) element is defined by

Ki,j ≡ u(i)>µ(j).

In the matrix notation, we have (P1−P2)2 = Ir−KK>,
where Ir is the r-dimensional identity matrix. Thus
Eq. (A.9) becomes

(A.11) d(Hr,Sh)2 = 1− max
ξ∈Rr, ||ξ||=1

ξ>KK>ξ.

Similarly, if we express (P2 − P1)2 with the base of
Sh, the matrix representation will be

(P2 − P1)2 = Ih − K>K,

so that Eq. (A.10) becomes

(A.12) d(Sh,Hr)2 = 1− max
η∈Rh, ||η||=1

η>K>Kη.

It is interesting to compare these two expressions.
In Eq. (A.11), the maximizer is the top eigenvector of
KK>, and is the same as the top left singular vector
of K. In Eq. (A.12), the maximizer is the largest
eigenvector of K>K, or the top right singular vector of K.
Therefore, whether the left or right singular vector is the
maximizer, the maximum value is the largest singular
value of K. Thus we have proved the following theorem.

Theorem 2. For Hr ⊂ Rw spanned by {u(1), ..., u(r)},
and Sh ⊂ Rw spanned by {µ(1), ..., µ(h)},
(A.13) d(Hr,Sh)2 = d(Sh,Hr)2 = 1− σ2

max,

where σmax is the largest singular value of K.

If h = 1, σmax is trivially computed as

(A.14) σmax =
r∑

i=1

K(i, µ)2.

From Eqs. (A.13) and (A.14), we see that the CP score
in Eq. (2.3) was defined as z ≡ d(Hr,Sh)2. It is easy to
verify 0 ≤ z ≤ 1.

In closing Appendix, we explain why we chose the
dimension of the feature space to be one (see Section 2).
For example, consider the case h = 2. Suppose that S2

is spanned by µ(1) and µ(2), and that µ(1) = u(1) and
µ(2) ⊥ Hr. In this case, the first column of K has a
single one and r−1 zeros, and the second column is the
zero vector. Therefore, σmax is one, giving the distance
zero. However, the zero distance in this case is quite
misleading since it does not at all mean either Sh = Hr

or Sh ⊂ Hr. Indeed, the distance is zero even if one
of the bases is completely missing. If h = 1, this type
of ambiguity does not appear. This is why we set the
dimension of the test space to be one.

References

[1] Esprit Project 26900, Technology for Enabling Aware-
ness (TEA). 1998. [http://www.omega.it/tea/].

[2] C. Chennubhotla and A. D. Jepson. Hierarchical
eigensolver for transition matrices in spectral methods.
In Advances in Neural Information Processing Systems,
volume 17, pages 273–280, 2005.

[3] N. de Freitas, Y. Wang, M. Mahdaviani, and D. Lang.
Fast krylov methods for N-body learning. In Advances
in Neural Information Processing Systems, volume 18,
pages 251–258, 2006.

[4] C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spec-
tral grouping using the Nyström method. IEEE Trans.
Pattern Analysis and Machine Intelligence, 26(2):214 –
225, 2004.

[5] G. H. Golub and C. F. van Loan. Matrix computations
(3rd ed.). Johns Hopkins University Press, Baltimore,
MD, 1996.

[6] T. Idé and K. Inoue. Knowledge discovery from
heterogeneous dynamic systems using change-point
correlations. In Proc. SIAM Intl. Conf. Data Mining,
pages 571–575, 2005.

[7] E. Keogh and T. Folias. The UCR time se-
ries data mining archive [http://www.cs.ucr.edu/
∼eamonn/TSDMA/index.html]. 2002.

[8] V. Moskvina and A. Zhigljavsky. An algorithm based
on singular spectrum analysis for change-point detec-
tion. Communications in Statistics—Simulation and
Computation, 32(4):319–352, 2003.

[9] H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.
Vetterling. Numerical Recipes. Cambridge University
Press, 1989.

[10] S. Roweis. EM algorithms for PCA and SPCA. In
Advances in Neural Information Processing Systems,
volume 10, pages 626–632, 1998.

[11] C. K. I. Williams and M. Seeger. Using the Nyström
method to speed up kernel machines. In Advances
in Neural Information Processing Systems, volume 13,
pages 682–688, 2001.

[12] H. Zha and H. D. Simon. On updating problems in
latent semantic indexing. SIAM Journal on Scientific
Computing, 21(2):782–791, 1999.

