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Recent Advances and Trends in Large-Scale Kernel Methods

Hisashi KASHIMA†a), Tsuyoshi IDÉ†, Tsuyoshi KATO††, and Masashi SUGIYAMA†††, Members

SUMMARY Kernel methods such as the support vector machine are
one of the most successful algorithms in modern machine learning. Their
advantage is that linear algorithms are extended to non-linear scenarios in
a straightforward way by the use of the kernel trick. However, naive use
of kernel methods is computationally expensive since the computational
complexity typically scales cubically with respect to the number of training
samples. In this article, we review recent advances in the kernel methods,
with emphasis on scalability for massive problems.
key words: kernel methods, support vector machines, kernel trick, low-
rank approximation, optimization, structured data

1. Introduction

Kernel methods are a family of machine learning algorithms
that can handle non-linear models as if they are linear mod-
els. The key technique is the use of similarity functions
called kernel functions. Thanks to this, the kernel meth-
ods possess favorable characteristics, and in particular, their
computational complexity is independent of the dimension-
ality of the feature space.

One of the most famous kernel methods is the sup-
port vector machine (SVM) [1]. Since Vapnik’s seminal
work, many linear supervised and unsupervised learning al-
gorithms have been kernelized [2], [3], including ridge re-
gression, perceptrons, Fisher discriminant analysis, princi-
pal component analysis (PCA), k-means clustering, and in-
dependent component analysis (ICA). These kernelized al-
gorithms have been shown to perform very well in many
real-world problems. However, naive use of these kernel
methods is computationally expensive since the computa-
tional complexity typically scales cubically with respect to
the number of training samples.

Recently, considerable effort has been devoted to im-
proving the computational efficiency of the kernel meth-
ods [4]. The purpose of this paper is to review various tech-
niques for accelerating the kernel methods. After briefly
reviewing the basic ideas of kernel methods in Sect. 2, we
review recent advances in the kernel methods for large
scale problems. One of the computational bottlenecks of
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the kernel methods is the computation of the kernel ma-
trix. In Sect. 3, we review how the kernel matrix can
be approximated by low-rank matrices, considering incom-
plete Cholesky decomposition, the Lanczos approximation,
the Nyström method, and the fast Gaussian transform. In
Sect. 4, we review supervised kernel methods. For regres-
sion problems, we show how the low-rank approximation
techniques can be used to speed up the kernel algorithms
such as ridge regression, partial least-squares, and Gaussian
processes. For classification problems, we show how the
optimization problem involved in the support vector algo-
rithm can be solved efficiently by using the cutting-plane
or dual coordinate descent techniques. In Sect. 5, we focus
on unsupervised methods and show how the dimensionality
of sparse data can be efficiently reduced by the Laplacian
eigenmap. This can be employed naturally in the spectral
clustering algorithm. In Sect. 6, we address how the ker-
nel functions themselves can be computed efficiently when
dealing with structured data. Section 6 also considers how
to learn a kernel from multiple kernels. Finally we conclude
in Sect. 7.

2. Basics of Kernel Methods

In order to briefly explain how linear algorithms can be non-
linearized by using kernel functions, let us consider the lin-
ear parametric model

f (x; w) ≡ 〈w, x〉, (1)

where x ∈ Rd is an input variable, w ∈ Rd is a parameter vec-
tor, and

〈·, ·〉 denotes the inner product. Given input-output
training data {(xi, yi) | xi ∈ Rd, yi ∈ R}�i=1, the parameter w is
determined so that the linear sum of an empirical risk term
(or a “goodness-of-fit” term for the training data) and a reg-
ularization term is minimized:

J(w) ≡ Remp(w) + λΩ(w),

where λ > 0 is the regularization parameter that controls
the balance between goodness-of-fit and regularization. For
ridge regression, the squared loss function is used for mea-
suring the risk and the squared regularization function is
adopted as the regularizer:

Remp(w) ≡
�∑

i=1

(yi − f (xi; w))2 , (2)

Ω(w) ≡ ‖w‖22, (3)
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where ‖ · ‖2 denotes the 2-norm. We denote the matrix con-
sisting of all input samples by

X = (x1|x2| · · · |x�).
Then the ridge regression solution is given analytically as

ŵ = (X�X + λI)−1X�y, (4)

where I denotes the identity matrix, � indicates the trans-
pose, and

y ≡ (y1, y2, . . . , y�)
�.

This implies that the computational complexity of comput-
ing the ridge regression solution is O(d3) and that it explic-
itly depends on the input dimensionality.

Suppose the parameter w is written as the linear com-
bination of the training samples {xi}�i=1 as

w ≡
�∑

i=1

αixi =Xα, (5)

where

α ≡ (α1, α2, . . . , α�)
�

is an �-dimensional vector of the parameters. Then Eq. (1)
can be expressed using the inner product as

f (x;α) =
�∑

i=1

αi
〈
xi, x

〉
.

Now let us define the kernel function as

k(x, x′) ≡ 〈x, x′
〉
.

Then the parametric model is expressed as

f (x) =
�∑

i=1

αik(xi, x). (6)

With this kernelized model, the training objective func-
tion of ridge regression can be rewritten as

J(α) = ‖y −Kα‖2 + λα�Kα,
where K is the �× � matrix called the kernel matrix defined
as

Ki, j ≡ k(xi,x j).

The solution α̂ can be obtained as

α̂ = (K + λI)−1y. (7)

This implies that the computational complexity is O(d�3),
where the factor d comes from the computation of the ker-
nel function values and the cubic factor �3 is the computa-
tional complexity of inverting the kernel matrix. Therefore,
now the dependency of the computational complexity on the

number � of training samples is more significant than the in-
put dimensionality d. Note that in this kernel formulation,
the data samples are accessed only through the kernel func-
tions both in the training and test phases; the input vectors
are not directly handled.

The above formulation is based on the fact that the pa-
rameter vector w is expressed by a linear combination of
training samples (see Eq. (5)). This can be justified by the
representer theorem [5]. In order to highlight an advantage
of the kernel formulation, let us consider the transformation

φ : Rd → Rd′ .

We assume d′ 	 d and learning is carried out with the trans-
formed samples {φ(xi)}�i=1. In the primal formulation (4),
computing the solution for {φ(xi)}�i=1 may be intractable due
to high dimensionality d′. In contrast, in the kernel formu-
lation (7), the input samples are dealt with only through the
kernel function evaluation

k(x, x′) ≡ 〈φ(x),φ(x′)
〉
.

Denoting by t the computational complexity for computing
the kernel function value, we can compute the solution with
computational complexity O(t�3). Thus if the kernel func-
tion can be computed efficiently (which means, indepen-
dently of d′), the kernel formulation allows us to efficiently
compute the solution even when d′ is large. This computa-
tional trick is called the kernel trick.

Conversely, if there exists a kernel function which cor-
responds to the inner product between φ(x) and φ(x′), then
the use of the kernel formulation would be beneficial. The
existence of such an inner product is guaranteed when the
kernel function is positive semi-definite. Such a kernel func-
tion is called a Mercer kernel or a reproducing kernel [6],
[7]. There are many kernel functions whose computational
complexity is independent of d′. A typical example would
be the polynomial kernel (of order c):

k(x, x′) =
(〈

x, x′
〉
+ 1

)c
.

The dimensionality d′ of the polynomial feature φ(x) will be
very large if c is large. However, the value of the polynomial
kernel can still be computed with computational complexity
O(d), which is independent of d′. A more striking example
is the Gaussian kernel (with width σ),

k(x, x′) = e−‖x−x′‖2/σ2
.

For the Gaussian kernel, the dimensionality d′ is actually
infinite. Therefore, computing the solution within the primal
formulation of Eq. (4) is no longer possible. In contrast, the
kernel formulation of Eq. (7) still allows us to compute the
solution.

Through the kernel trick, non-linear learning can be
performed without regard to the input dimensionality. How-
ever, it still greatly depends on the number of training sam-
ples. The ridge regression described above requires the
computational complexity of O(�3). Thus, when the num-
ber of training samples is large, the kernel methods are still
computationally expensive.
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3. Kernel Matrix Approximation

The learning algorithms of kernel machines are generally
designed so that they do not depend on the dimensionality
of the feature space. Given an efficient way to compute the
kernel function itself, most of the kernel methods require
O(�3) cost in naive implementations. However, this can be
prohibitive when � is large. This difficulty leads us to the
idea of first performing feature extraction to produce a rel-
atively small number of features based on the kernel matrix
and then tackling the learning task using the extracted fea-
tures. If the extracted features contain rich information on
the nonlinearities of the data, the simple linear learning al-
gorithms will be useful for the learning tasks.

In this section, we review various approaches to build-
ing a low-dimension feature space through feature extrac-
tion.

3.1 Spectral Decomposition

Perhaps the most direct method for nonlinear feature extrac-
tion is spectral decomposition. Any real symmetric matrix
A ∈ S� can be expanded with eigenvectors as

A =
�∑

i=1

μ(i)u(i)u(i)�,

where μ(i) and u(i) are the i-th eigenvalue and the i-th eigen-
vector of A, respectively. We assume that the eigenvalues
are always sorted in descending order. This type of expan-
sion is called the spectral expansion [8]. If A is positive
definite, it is easy to see that this expansion can be written
as

A = UU�,

where

U ≡ (
√
μ(1)u(1)|

√
μ(2)u(2)| . . . |

√
μ(�)u(�)).

If we regard A as the kernel matrix K, by Mercer’s The-
orem there exists a basis function φ such that Ki, j =

〈φ(xi),φ(x j)〉. In matrix notation, we have

K = Φ�Φ, (8)

where Φ ≡ (φ(x1)|φ(x2)| . . . |φ(x�)). This means that each
column vector of U� corresponds to a feature vector.

If we use the kernel PCA [9], the small eigenvalues will
correspond to noise, and the larger eigenvalues will domi-
nate the distribution of the data. This leads us to an approx-
imation using the first r terms of the expansion. In this case,
the feature vectors are represented with u(1), . . . ,u(r). If one
uses an iterative method such as the power method [10], the
computational cost of this approximation is O(r�2) if the
power iteration is terminated witha finite number of repe-
titions.

3.2 Incomplete Cholesky Decomposition

Another useful method for extracting feature vectors in the
feature space is incomplete Cholesky decomposition. Let us
look at the original Cholesky decomposition first. Cholesky
decomposition factorizes a positive definite matrix into the
product of lower triangular matrices. For a kernel matrix K,
the decomposition is written as

K = LL�, (9)

where L is a lower triangular matrix in which Li, j = 0 for i <
j. Note that Cholesky factorization amounts to implicitly
finding the basis functions of the kernel. Comparing Eqs. (8)
and (9), we see that L corresponds to the data matrix Φ� up
to an arbitrary orthogonal matrix. This means that Cholesky
factorization essentially finds the basis function apart from
the arbitrary orthogonal matrix. Cholesky factorization is
quite useful not only for numerical efficiency but also for
theoretical interpretation.

The numerical computation of a Cholesky factorization
is very easy. Direct elementwise comparison between both
sides of Eq. (9) leads to

Li,i =

√√√
Ki,i −

i−1∑
k=1

L2
i,k,

Li, j =
1

Li,i

⎡⎢⎢⎢⎢⎢⎢⎣Kj,i −
j−1∑
k=1

Li,kL j,k

⎤⎥⎥⎥⎥⎥⎥⎦
for j = i+1, i+2, . . . , �, from which the entries of L are com-
puted. Note that L−1 and thus K−1 can be easily computed
once L has been obtained [10]. As suggested by these sim-
ple equations, Cholesky factorization is numerically very
stable, although it requires �3/6 operations.

The incomplete Cholesky decomposition [11], [12]
truncates this procedure at a pre-determined number d̃ < �,
which amounts to explicitly generating a d̃-dimensional fea-
ture space. At each step of incomplete Cholesky decompo-
sition, one column of the matrix is chosen and added so that
the truncation error is minimized for the current number of
columns. It is important to note that we do not need an � × �
memory space to store the Gram matrix, and that only the
diagonal elements are needed to compute the off-diagonal
elements. The computational cost is only O(d̃2�), which
means that the computation can be carried out without ac-
cessing all of the elements. Although incomplete Cholesky
factorization is less popular than the original Cholesky fac-
torization, good performance has been reported in an SVM
classification task [11] and kernel ICA [12].

3.3 Tridiagonalization

In this subsection, we consider a feature extraction method
via tridiagonalization. Tridiagonalization is an orthogonal
transformation of a symmetric matrix A ∈ S� such that
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Q�AQ = T , (10)

where Q and T are orthogonal and tridiagonal matrices,
respectively. A symmetric tridiagonal matrix is a matrix
whose entries are all zero except for diagonal and subdi-
agonal elements, i.e.,

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ1 β1 0
β1 γ2 β2

β2
. . .

. . .

. . . γ�−1 β�−1

0 β�−1 γ�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

By setting the number of columns in Q to be smaller than
�, this transformation can be viewed as a low-rank approxi-
mation of A. Note that tridiagonalization is not unique. The
key fact is that there exists an algorithm which allows us to
find an optimal Q in that T reproduces extremal eigenvalues
such as the largest and smallest eigenvalues with high preci-
sion. This is in contrast to the spectral low-rank approxima-
tion, where smaller eigenvalues are simply truncated. This
subsection focuses on a useful tridiagonalization algorithm
called the Lanczos algorithm, and briefly discusses its con-
nection to the well-known conjugate gradient (CG) algo-
rithm.

The derivation of the Lanczos algorithm is very sim-
ple. Consider a tridiagonal transformation as in Eq. (10).
Let γ1, . . . , γ� and β1, . . . , β�−1 be the diagonal and subdiag-
onal elements of T , respectively. If we directly record the
s-th column of the equation AQ = QT , we have

Aqs = γsqs + βs−1qs−1 + βsqs+1,

where qs is the s-th column vector of Q. Using the or-
thogonal relation q�i q j = δi, j, we immediately have γs =

qs
�Aqs. In this way, it is easy to construct an algorithm

to find γs and βs sequentially from this recurrent equa-
tion:

1: Input r0.
2: β0 ← ‖r0‖;
3: repeat
4: qs+1 ← rs/βs;
5: s← s + 1;
6: γs ← qs

�Aqs;
7: rs ← Aqs − γsqs − βs−1qs−1;
8: βs ← ‖rs‖;
9: until s = �;

10: return {γi}, {βi}, and {qi}.
This procedure needs an initial vector r0 and its norm β0 =

‖r0‖. This tridiagonalization procedure is called the Lanczos
algorithm [13].

By running this procedure up to r < �, we obtain an
r × r tridiagonalized matrix Tr with calculated {γi} and {βi}.
This matrix can be thought of as a low-rank approximation
of the original matrix, but its nature is quite different from
the spectral low-rank approximations in that the spectrum
of Tr reproduces the extremal eigenvalues to a very high

accuracy [13].
One useful application of the Lanczos algorithm is

(kernel) PCA. As shown in [14], the eigenspace projection
of a given vector can be computed directly from the eigen-
vectors of the truncated tridiagonalized matrix Tr. The com-
putational cost to diagonalize Tr is only O(r) when r 
 �. A
similar idea is used in [15] to accelerate a Markov decision
process.

The Lanczos algorithm has a close relationship with
the CG method for solving linear equations. Consider a
linear equation Ax = b, for A ∈ S�+. In the CG algo-
rithm, we first initialize a residual vector r0 as b − Ax0

using an initial estimate of the solution x0. Then we re-
peat the following procedure until the residual rs+1 is small
enough.

1: Input: x0, ε
2: r0 ← b −Ax0;
3: repeat
4: γs ← ‖rs‖2/(p�s Aps);
5: xs+1 ← xs + γsps;
6: rs+1 ← rs − γsAps;
7: βs ← ‖rs+1‖2/‖rs‖2;
8: ps+1 ← rs+1 − βsps;
9: s← s + 1;

10: until ‖rs+1‖ < ε;
11: return the solution xs+1.
This algorithm solves Ax = b by iteratively minimizing

1
2
x�Ax − x�b.

One major advantage of CG is that it gives a very accu-
rate approximate solution with the number of iterations far
smaller than the size of the matrix. It can be shown that the
residual vectors generated in the CG procedure are essen-
tially the same as the Lanczos vectors {qi} (for a proof, see
Sect. 10.2 in [13]), which means that the excellent conver-
gence properties of CG are due to the low-rank approxima-
tion by Lanczos tridiagonalization.

3.4 The Nyström Method

When � is very large, directly handling the kernel matrix K
is inconvenient. The Nyström method allows us to approxi-
mate K and its eigenvectors with a smaller kernel matrix of
a subset of the samples.

Suppose we have a data set D = {xi|i = 1, . . . , �} with
a very large �, and let the corresponding kernel matrix be
K ∈ S�+. Without loss of generality, let a subset of D be
D̃ = {xi|i = 1, . . . ,m} with m < �. Corresponding to this,
we partition K as

K =

(
K̃ L�
L ∗

)
, C ≡

(
K̃
L

)
, (11)

where K̃ ∈ Sm
+ , and we also define a matrix C ∈ R�×m.

The Nyström approximation relates the eigenvalues
and eigenvectors of K with those of K̃ as (for a proof, see
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Sect. 8 in [16])

μ(i) ≈ �
m
μ̃(i) and u(i) ≈

√
m
�

1
μ̃(i)

Cũ(i), (12)

where (μ(i),u(i)) are the i-th eigenvalue and eigenvector of
K, and (μ̃(i), ũ(i)) are those of K̃. Since K̃ is an m × m
matrix, i runs from 1 through m.

These expressions lead to a rank-m approximation of
the kernel matrix K as

K ≈
m∑

i=1

μ(i)u(i)u(i)� = CK̃−1C�,

where the final equality is easily verified by plugging in
Eq. (12). This type of approximation was used in Gaussian
process regression for large data sets [17]. However, apply-
ing the Nyström method to real-world problems is some-
times tricky, since it is extremely sensitive to the choice of
the parameters (how to choose D̃) [18].

3.5 The Fast Gauss Transform

In iterative algorithms such as CG, the computational cost
is bounded by the cost of the matrix-vector products such as
Kα, which scales as O(�2) in a naive implementation. If
the kernel is Gaussian, the product is reduced to computing
the Gaussian transform as

G(x) ≡
�∑

n=1

αne−‖xn−x‖2/σ2
.

In this case, an algorithm called the Fast Gauss Transform
(FGT) significantly reduces the computational costs [19].
The idea of the original FGT, which is a special case of
multi-pole expansion, a standard technique in physics, is to
utilize a truncated form (up to the first p terms) of the Her-
mite expansion of the Gaussian. When d = 1, the truncated
Hermite expansion reads

e−‖x−xn‖2/σ2 ≈
p−1∑
s=0

1
s!

( xn − x∗
σ

)s
hs

( x − x∗
σ

)
,

where hs is the Hermite polynomial of order s [20]. Notice
that x and xn are separated in each term by introducing the
expansion center x∗, which is treated as a parameter deter-
mined from the data. By inserting this expansion, G(x) can
be written as

G(x) =
p−1∑
s=0

Cshs

( x − x∗
σ

)
,

where

Cs =

�∑
n=1

αn

s!

( xn − x∗
σ

)s
.

Since Cs is independent of x, the computational cost for es-
timating G(x) over the � different locations is just (� + �)p,
which is linear with respect to �. When d > 1, the cost
scales as O(pd�). The FGT is further accelerated by using
the Taylor expansion and spatial partitioning [20], [21].

4. Supervised Methods

In this section, we briefly address computational issues of
the supervised kernel methods.

4.1 Regression

We begin with the regression methods including kernel ridge
regression [22], partial least squares [23], the Lasso [24],
Gaussian process regression [24], relevance vector ma-
chines [25], and support vector regression [2].

4.1.1 Kernel Ridge Regression

Kernel Ridge Regression (KRR) (e.g., Sect. 2.2 in [22]) is a
widely used regression technique that is useful even when
K is numerically rank deficient. Solving KRR amounts to
solving the following linear equation (cf. Eq. (7)):

(K + λI�)α = y,

where I� denotes the �-dimensional identity matrix. Since
K is a dense matrix in general, a common approach to
solving this equation is Cholesky factorization followed by
forward-backward substitutions [10], which costs O(�3). If
the CG method is used to solve this equation, the cost be-
comes O(r�2), where r is the number of CG iterations. Al-
though the numerical stability of CG is not necessarily guar-
anteed for dense matrices due to the nature of the Krylov
subspace [13], it generally works well in many practical
cases. If the kernel function is Gaussian, the computational
cost of CG can be reduced to O(�), as mentioned in the pre-
vious section.

To determine the regularization parameter λ, a theoret-
ically valid approach would be leave-one-out (LOO) cross
validation (CV). In KRR, a closed-form solution of the
LOOCV score is available as

gLOO(λ) = ‖H−1(y −Kα)‖2,
where

H ≡ IN − diag(K(K + λI�)
−1),

and α is the solution of KRR under λ in H . The symbol
‘diag’ is an operator for setting all of the off-diagonal ele-
ments to zero. For a proof, see [5], [26] and use the Wood-
bury identity [2] to get a dual expression for X�(XX� +
λId)−1X . To compute this, however, the inverse of (K+λI�)
is needed, resulting in O(�3) computational costs.

4.1.2 Partial Least Squares

In chemometrics, a class of heuristic iterative algorithms
called partial least squares (PLS) is a popular regression
technique. In recent years, many attempts have been made
in the machine learning community to investigate and im-
prove the PLS procedures, e.g., kernelized PLS [23]. For a



KASHIMA et al.: RECENT ADVANCES AND TRENDS IN LARGE-SCALE KERNEL METHODS
1343

general description on PLS, see, e.g., Sect. 6.7 in [3].
Although PLS is usually introduced as an itera-

tive procedure without explicit objective functions, it was
shown [27] that kernel PLS minimizes the same objective
function as ordinary least squares, but the solution is re-
stricted within a subspace spanned by Ky,K2y, . . . ,Kry,
where r is a given integer representing the number of PLS
components. This type of subspace is called the Krylov sub-
space. It can be shown that the solution is found by solving

K2α =Ky

using CG with the initial estimate of α = 0. To deter-
mine r, see [27] for a comparison among various criteria.
In all kernelized PLS algorithms known so far, the com-
putational cost is dominated by the matrix-vector products.
While naive implementations require O(�2) computational
cost, FGT reduces the cost to linear time when the kernel
is Gaussian (see Sect. 3.5). The Lanczos approximation can
also be used for speeding up kernel PLS [28].

Since kernel PLS gives a dense solution in general,
great efforts have been made to sparsify PLS. For exam-
ple, an ε-insensitive loss function is adopted in the objective
function [29], a smaller Gram matrix via a random selection
of samples is used [30], and a fixed threshold on α is intro-
duced to force many components to have the zero values in
a graph regression task [31].

4.1.3 Lasso

The least absolute shrinkage and selection operator
(Lasso) [24] is a shrinkage and selection method for linear
regression. It minimizes the sum of a squared loss function
(Eq. (2)) with the �1 regularizer

Jlasso(w) =
1
2

�∑
i=1

(yi − 〈xi,w〉)2 + λ‖w‖1, (13)

where ‖w‖1 = ∑d
i=1 |wi|. The �1 regularizer allows us to au-

tomatically prune irrelevant features, so the Lasso solution
tends to be sparse.

The lasso optimization problem can be reformulated as
a linear program by doubling the number of parameters, so
the solution can be obtained using a standard optimization
software. Using the fact that the solution path of Lasso is
piecewise linear with respect to λ, least angle regression
(LARS) [32] allows us to obtain the Lasso solution for all λ
(the technique is called parametric optimization [33]). How-
ever, when computing the solution for a single λ, a simple
coordinate descent algorithm is much faster [34].

Let us briefly look at how the algorithm coordinate de-
scent proposed in [34] works. Consider minimizing the con-
vex objective function using Eq. (13) with respect to w using
the subgradient method. Differentiating the objective func-
tion, we have

∂g
∂wi
=
∑

m

Wi,mwm − si + λ sign(wi)

= Wi,iwi +
∑
m�i

Wi,mwm − si + λ sign(wi),

where W ≡ XX� and s ≡ Xy. By considering the equa-
tion ∂g/∂wi = 0 separately for wi > 0 and wi < 0, it is
straightforward to derive the following update rule:

wi ←
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(Ai − λ)/Wi,i for Ai > λ,
0 for − λ < Ai < λ,

(Ai + λ)/Wi,i for Ai < −λ,
(14)

for each i = 1, . . . , d. Here we define

Ai ≡ si −
∑
m�i

Wi,mwm. (15)

This algorithm is in particularly useful in structure learning
since structure learning requires to solve a series of regres-
sion problems [35]. For recent work, see [36], [37].

Although the Lasso is a linear method, it can be ker-
nelized in a straightforward way in [38], [39]. Some authors
have focused on how to compute the regularization path of
nonlinear versions of the Lasso [40].

4.1.4 Gaussian Process Regression

Gaussian Process Regression (GPR) is a popular Bayesian
regression method due to its good generalization ability and
simple closed-form equations to give the global solutions.
The predictive mean (m) and variance (s2) for a test input x
are given as follows [16]:

m = k�C−1y, (16)

s2 = σ2 + k(x,x) − k�C−1k,

where k and C are defined as

k = (k(x1,x), . . . , k(x�,x))�,

C =K + σ2I�.

σ2 denotes the variance of the observation noise. From
Eq. (16), we see that the computational cost to calculate m
is the same as that for KRR: O(r�2) to compute C−1y with
the use of CG [41]. For computing s2, one needs to compute
C−1k in making predictions for each input x, which costs
O(�2) with the use of CG at every trial of a prediction. This
can be problematic for repeated predictions, making the pre-
computation of C−1 via (incomplete) Cholesky factorization
a useful approach in practice.

For choosing hyperparameter values such as the noise
variance σ2 and the kernel parameters, a common ap-
proach from a Bayesian perspective is evidence maximiza-
tion. More specifically, the hyperparameters are chosen so
that the marginalized log-likelihood

−1
2

ln det(C) − 1
2
y�C−1y
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is maximized (for a derivation, see [16]). Unlike KRR,
no closed-form solution is known for σ, and currently,
gradient-based methods are the only practical methods to
learn the hyperparameters. At each update step of the search
direction, O(�3) computations are needed to compute the in-
verse of C. This can be prohibitive for large datasets.

Speeding up GPR is an active research area, and many
approaches have been proposed to date. One popular ap-
proach is to reduce the size of the problem in some way.
The Nyström method [17] was a popular approach until it
was shown to be extremely sensitive to the parameter choice
and thus impractical [18]. A recent research trend is to use
pseudo-inputs, rather than to use a subset of samples [42],
[43]. However, these methods are not mature enough for use
in critical applications since most of them require solving a
complicated non-convex optimization problems.

4.1.5 Relevance Vector Machines

The Relevance Vector Machine (RVM) [25] is a Bayesian
regression method that is capable of producing sparse solu-
tions. While the Lasso uses �1 regularization for sparsity,
RVM utilizes the automatic relevance determination mech-
anism to obtain sparse solutions. RVM assumes the linear
regression model as in Eq. (6) (for centered data), but treats
the coefficient α as a random variable with a prior

p(α|θ) ≡
N∏

i=1

N(αi|0, θ−1
i ),

where N(α|0, θ−1
i ) denotes a Gaussian density with mean 0

and variance θ−1
i . If we also assume Gaussian observation

noise with mean 0 and variance σ2, we have a Gaussian pos-
terior distribution for α with mean and covariance given by

ᾱ = σ−2ΣKy,

Σ =
(
Θ + σ−2K2

)−1
,

respectively, where Θ is the matrix whose diagonal ele-
ments are {θi}Ni=1 and all the off-diagonal elements are zero.

To determine {θi}Ni=1 and σ, RVM uses evidence
approximation to obtain the following simple updating
rules [25]:

θnew
i ← γi/ᾱ

2
i ,

σ2
new ←

‖y −Kᾱ‖2
� −∑i γi

,

where γi is defined as 1 − θiΣii. While updating the pa-
rameters by the above equations require O(�3) computa-
tional costs in naive implementations, an efficient algorithm
is known [44]—this requires only O(M3), where M is the
number of relevance vectors included at an update round.
For detailed discussions on the RVM, see [2].

4.1.6 Support Vector Regression

Support vector regression (SVR) [2] is formulated as a min-
imization problem of the following objective function:

JSVR(w) =
C
�

�∑
i=1

lε (yi − 〈xi,w〉) + 1
2
‖w‖22, (17)

where lε is called the ε-insensitive loss function defined as

lε(η) ≡
⎧⎪⎪⎨⎪⎪⎩0 if |η| < ε,
|η| − ε otherwise.

A standard approach to obtaining the SVR solution is to
solve a quadratic programming problem derived as the dual
problem of Eq. (17). Recently, it was shown that linear SVR
can be efficiently solved with the bundle methods for regu-
larized empirical risk minimization [45]. For this approach,
see Sect. 4.2.1.

4.2 Classification

In this subsection, we turn our focus to classification by sup-
port vector machines (SVMs). More specifically, we review
recent approaches to SVM learning from huge datasets, in
which both the number of examples and the number of di-
mensions are extremely large. Such massive problems are
found, e.g., in document or compound classification and lin-
ear SVMs are often preferred to nonlinear SVMs in this con-
text. There are mainly two reasons for this: One is that lin-
ear SVMs performs as accurate as non-linear SVM in these
extremely high-dimensional problems; and the other reason
is that the feature vectors are typically sparse, which can be
utilized for developing computationally efficient training al-
gorithms. Here we review two state-of-the-art approaches:
a cutting plane algorithm [45] and a coordinate descent al-
gorithm [46].

Note that these methods are specialized to linear
SVMs. One might consider employing these approaches
in non-linear kernel methods by extracting feature vectors
from a kernel matrix using eigenvalue decomposition. How-
ever, the feature vectors extracted as such are typically dense
and therefore advantages of these approaches cannot be en-
joyed.

4.2.1 Cutting Plane Algorithm

We begin with a cutting plane algorithm called the bundle
methods for regularized risk minimization (BMRM) [45].
BMRM is applicable to general linear learning machines.

As seen in Sect. 2, many learning machines are trained
by minimizing the objective function consisting of the em-
pirical risk Remp(w) and a regularization function Ω(w):

J(w) ≡ Ω(w) +CRemp(w), (18)

where w ∈ Rd is the model parameters and C ∈ R is a
positive constant. For simplicity, we here focus on binary
classification, and we assume to be given � labeled training
examples (xi, yi) ∈ Rd × {±1} (i = 1, . . . , �). The empirical
risk is expressed as
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Remp(w) ≡ 1
�

�∑
i=1

l(xi, yi; w),

where l(·, ·; ·) is a loss function; we assume the loss function
is nonnegative and convex.

The linear SVMs use the �2-norm of w as the regular-
ization function Ω(·) and the hinge loss for l(·, ·; ·). Namely,

Ω(w) ≡ 1
2
‖w‖2,

l(x, y; w) ≡ max(0, 1 − y 〈w, x〉).
Note that the bias term is not used here (i.e., we set b = 0 in
the linear scoring function 〈w, x〉 + b).

Solving the learning problem directly is often compu-
tationally intractable for large datasets. BMRM tackles this
issue by using the cutting plane algorithm as follows. For
any set of the model parametersW ⊆ Rd, the empirical risk
can be bounded from below as

Remp(w) ≥ 〈a(w̄),w〉 + b(w̄), ∀w ∈ W, (19)

where

a(w̄) ≡ ∂wRemp(w̄),

b(w̄) ≡ Remp(w̄) − 〈a(w̄), w̄〉 .
The plane 〈a(w), x〉 + b(w) = 0 is called the cutting plane.
For example, in the case of the hinge loss, the parameters of
the cutting plane is expressed as

a(w̄) = −1
�

�∑
i=1

ciyixi, b(w̄) ≡ 1
�

�∑
i=1

ci,

where

ci ≡
⎧⎪⎪⎨⎪⎪⎩1 if yi(w̄�xi) < 1,

0 otherwise.

We can easily see that the parameters of the cutting
plane can be computed with the order of the number of non-
zero values in the whole training set. This bound can be
utilized to develop the BMRM algorithm [45]:

R(w;W) ≡ max
w̄∈W

(〈a(w̄),w〉 + b(w̄)) ,

BMRM is summarized as below:
1: Input: {xi, yi}�i=1.
2: t ← 0; wt ← 0; W← ∅;
3: repeat
4: W←W∪ {wt};
5: Compute the parameters of the cutting plane, a(wt)

and b(wt) to compose R(w̄;W);
6: wt+1 ← argmin

w̄
Ω(w̄) +CR(w̄;W);

7: t ← t + 1;
8: until converged;
9: return w.

The algorithm is guaranteed to converge to the optimum so-
lution [45]. In the case of linear SVM, it is shown [47] that
the algorithm terminates at the optimum after a limited num-
ber of iterations; thus the time complexity for training is
a linear function of the number of non-zero values in the
whole training set.

The following two modifications have been proposed
to further speed-up BMRM [48]:

• A new step is inserted after Step 6. This step searches
for a new solution wb

t that minimizes the original ob-
jective function in Eq. (18) by the following line search:

wb
t ← min

β≥0
J((1 − β)wb

t−1 + βwt).

• The cutting plane is constructed from interpolation be-
tween wt and wb

t .

The modified algorithm is called the optimized cutting plane
algorithm (OCAS) [48], and it was shown that the number of
iterations needed for convergence is the same order as that
in [47]. On the other hand, OCAS is reported to be much
faster in numerical experiments than the algorithm proposed
in [47].

4.2.2 Dual Coordinate Descent Algorithm

Another type of popular techniques for training linear SVMs
is the dual coordinate descent algorithm (DCDA) [46].
While the cutting plane methods [47], [48] reviewed above
solved the primal problems DCDA solves the dual problem:

Problem 1.

min
1
2
α�Qα−‖α‖1 wrt α ∈ R�+ subj to α≤ C

�
1�,

The matrix Q ∈ S�+ has elements

Qi j ≡ yiy j

〈
xi, x j

〉
.

Below, we describe the detail of DCDA. Let us de-
note the dual objective function by Jdual(α). Note that Prob-
lem 1 has no equality constraint, which comes from the ab-
sence of the bias term in the primal problem (i.e., b = 0
in 〈w, x〉 + b). DCDA repeats the outer loop until α be-
comes optimal. Each outer iteration has � inner iterations.
The ith inner iteration optimizes αi fixing the other vari-
ables. Namely, the inner iteration minimizes the following
quadratic function with respect to a scalar δ:

Jdual(α
old + δei) ≡ 1

2
Qiiδ

2 + ∂αi Jdual(α
old)δ + const.,

subject to the following box constraint:

0 ≤ αi + δ ≤ C
�
.

The solution can be obtained analytically. If Qii > 0,
the new value of αi is given by
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αnew
i ← min

(
max

(
αold

i −
∂αi Jdual(αold)

Qii
, 0

)
,

C
�

)
,

where αold is the old value of α. The current value of the
model parameters can be written as

wold ≡
�∑

i=1

yiα
old
i xi.

This allows us to express the gradient as

∂αi Jdual(α
old) = yi

〈
wold, xi

〉
− 1.

This can be computed with O(s), where s is the average
number of non-zero elements. To compute the gradient in
each iteration, DCDA also updates the model parameters by

wnew ← wold + (αnew
i − αold

i )yixi.

This update takes O(s). Totally, the computational cost of
the inner loop is O(s). It was shown [46] that the series of
the solutions generated by DCDA converges to the optimum
solution.

Sequential minimal optimization (SMO) [49], [50], is
also well-known as an efficient algorithm for training SVM.
SMO breaks the original quadratic programming (QP) prob-
lem into a series of smallest possible QP problems (i.e., with
two parameters). These small QP problems can be actually
solved analytically and therefore we can avoid employing a
numerical QP optimization as an inner loop. SMO is more
general than DCDA in that linear/non-linear SVMs with the
bias term can be dealt with, while DCDA would be faster
than SMO but is specialized to linear SVMs without the bias
term.

5. Unsupervised Methods

In this section, we give a review of unsupervised methods
that could be applied to large-scale datasets.

5.1 Dimensionality Reduction

The goal of dimensionality reduction is to reduce the di-
mensionality of samples while most of the ‘intrinsic’ infor-
mation contained in the data is kept. Let {xi}�i=1 be the orig-
inal samples of d-dimension and we would like to reduce
the dimensionality of these samples to r (1 ≤ r ≤ d); let
{zi}�i=1 be the dimension-reduced expressions of {xi}�i=1. In
the case of linear dimensionality reduction, the dimension-
reduced sample zi is given by using a transformation matrix
T (∈ Rr×d) as

zi ≡ T xi.

Otherwise zi is obtained by a non-linear transformation of
xi.

Principal component analysis (PCA), which finds the
subspace that retains the maximum variance of the data,
would be one of the most fundamental methods of linear

unsupervised dimensionality reduction [51]. A PCA solu-
tion can be computed through eigendecomposition of the
sample-covariance matrix, which is a d × d matrix. Thus
even when � is huge, PCA may still be computationally
tractable as long as d is not too large.

A non-linear variant of PCA has been investigated in
the context of neural network learning [52]. However, since
neural network learning involves non-convex optimization,
it is hard to obtain a good solution in a systematic way. Af-
ter emergence of support vector machines [53], the kernel
trick has been applied in PCA and a non-linear variant called
kernel PCA has been developed [9]. However, for comput-
ing a kernel PCA solution, the � × � kernel matrix needs
to be eigendecomposed which requires O(�3) computational
costs; this may be infeasible when � is huge.

In the last decade, various types of non-linear unsuper-
vised dimensionality reduction methods have been proposed
and their properties have been studied [54]–[59]. Among
them, we briefly review a scalable method called the Lapla-
cian eigenmap [56] below.

First, we give a brief review of a linear version of the
Laplacian eigenmap called the locality preserving projec-
tion (LPP) [60]. The basic idea of LPP is to seek a transfor-
mation matrix T such that nearby data pairs in the original
space Rd are kept close in the embedding space Rr. Thus,
LPP tends to preserve local structure of the data.

Let A be an affinity matrix, i.e., the � × � matrix with
Ai, j being the affinity between xi and x j. We assume that
Ai, j ∈ [0, 1]; Ai, j is large if xi and x j are ‘close’ and Ai, j is
small if xi and x j are ‘far apart’. There are several different
manners of defining A. Among them, we adopt the nearest
neighbor method here, i.e., Ai, j = 1 if xi is a k-nearest neigh-
bor of x j or vice versa; otherwise Ai, j = 0. This definition is
advantageous in that the affinity matrix A becomes sparse if
k is not so large. Let D be the � × � diagonal matrix with

Di,i ≡
�∑

j=1

Ai, j,

and letL be the �×�matrix called the Laplacian matrix [61]
defined by

L ≡D −A. (20)

Note that L is sparse if A is sparse. Then the LPP transfor-
mation matrix TLPP is defined as

TLPP ≡ argmin
T ∈Rr×d

tr(TXLX�T �(TXDX�T �)−1).

Let {ϕt}dt=1 be the generalized eigenvectors associated
with the generalized eigenvalues {μt}dt=1 of the following
generalized eigenvalue problem:

XLX�ϕ = μXDX�ϕ.

We assume that the generalized eigenvalues are sorted as

μ1 ≤ · · · ≤ μd,
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and the generalized eigenvectors are normalized as

ϕ�t XDX�ϕt = 1 for t = 1, . . . , d.

Note that this normalization is often automatically carried
out by an eigensolver. Then a solution TLPP is given analyt-
ically as

TLPP = (ϕ1| · · · |ϕr)
�.

XLX� and XDX� are d × d matrices and L and D are
sparse; so even when � is huge, LPP may still be computa-
tionally tractable as long as d is not too large.

By an application of the kernel trick, LPP can be non-
linearized in a straightforward manner. That is, the above
generalized eigenvalue problem can be kernelized as

KLKα = μKDKα,

where Kα corresponds to X�ϕ. Since KLK and KDK
are � × � matrices, this generalized eigenvalue problem may
not be computationally tractable when � is large. How-
ever, if we only reduce the dimensionality of training sam-
ples {xi}�i=1, the solution of the above generalized eigenvalue
problem can be obtained by solving the following sparse
generalized eigenvalue problem.

Lα = μDα.
More specifically, a solution is given by

(z1| · · · |z�) = (α2| · · · |αr+1)�,

where {αt}�t=1 are the generalized eigenvectors of the above
generalized eigenvalue problem associated with the general-
ized eigenvalues μ1 ≤ · · · ≤ μ�. Note that μ1 is always zero
so α1 is discarded. As long as A is sparse, the above gen-
eralized eigenvalue problem may be solved efficiently even
when � is huge.

5.2 Spectral Clustering

The goal of data clustering is to group a given set of samples
so that samples in the same group are ‘similar’ to each other.
Let {xi}�i=1 be the original samples of d-dimension and we
would like to group the samples into k disjoint groups. We
assume that the number of clusters k is fixed in advance.

The k-means clustering algorithm would be one of the
most fundamental clustering algorithms. Let Ct be the set of
samples assigned to the cluster t. Every sample belongs to
one of the clusters without overlap, i.e., {Ct}kt=1 satisfies

k⋃
t=1

Ct = {xi}�i=1 and Ct ∩ Ct′ = ∅ for t � t′.

If the similarity of samples within the same class is mea-
sured by the variance, the optimal solution may be given as
the minimizer of the following optimization problem:

min
{Ct}kt=1

k∑
t=1

∑
x∈Ct

‖x − μt‖2,

where μt is the ‘center’ of the cluster t defined by

μt =
1
|Ct |

∑
x′∈Ct

x′.

However, this discrete minimization problem is known to
be NP-hard and thus may not be exactly solved in practice.
A local optimal solution may be obtained by the following
algorithm called k-means clustering:

1. Randomly initialize the cluster partition {Ct}kt=1.
2. For i = 1, . . . , �, assign xi to the cluster which has the

closest center, i.e, to the cluster Ct̂ where

t̂ = argmin
t
‖xi − μt‖.

3. Repeat this until convergence.

The k-means clustering algorithm corresponds to max-
imum likelihood estimation of a Gaussian mixture model, so
the ‘shape’ of clusters is limited to be convex. This limita-
tion could be mitigated by the use of the kernel trick, which
results in kernel k-means [62]: the sample xi is assigned to
the cluster Ct̂, where

t̂ = argmax
t

∑
x′∈Ct

k(x, x′) − 2
|Ct |

∑
x′,x′′∈Ct

k(x′, x′′).

However, the kernel k-means algorithm tends to suffer from
more serious local optimum problems than the plain k-
means algorithm due to non-linearity introduced by the ker-
nel function k(·, ·).

Another idea for clustering is to group the data sam-
ples so that the sum of the similarity values among different
clusters is minimized [63]:

argmin
{Ct}kt=1

k∑
t=1

∑
x∈Ct

∑
x′�Ct

A(x, x′)∑
x′′∈Ct

∑�
i=1 A(x′′, xi)

,

where A(x, x′) denotes the affinity value between x and
x′. Note that this is equivalent to finding the minimum
normalized-cut in graph theory if the affinity matrix A is
regarded as the adjacency matrix of a graph. It was shown
that the above normalized-cut criterion is equivalent to a
weighted variant of the kernel k-means criterion [62]. Thus
a slightly modified kernel k-means algorithm could be used
for obtaining a local optimal solution of the normalized-cut
criterion. However, the problem of frequently trapped by a
local optimum still remains.

Instead of learning the cluster assignment {Ct}kt=1, let
us learn the cluster indicator matrix W , which is the k × �
matrix defined by

Wt,i =

{
1 if xi ∈ Ct,
0 otherwise.

Then, it is known that the solution of the following optimiza-
tion problem agrees with normalized-cut clustering [62]:

argmin
A∈B

tr(ALA�) subject to ADA� = I ,
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where B is the set of all k × � matrices such that one of the
elements in each column takes one and others are all zero.
This problem is again NP-hard so we may not be able to ob-
tain the optimal solution. A relaxation approach is to allow
A to take real values, i.e., A ∈ Rk×�. Then the solution of
the relaxed problem is shown to agree with the solution of
the Laplacian eigenmap [62]. This implies that the embed-
ded samples by the Laplacian eigenmap has ‘soft’ cluster
structure.

Based on this finding, a clustering algorithm called
spectral clustering has been developed [64]:

1. Apply the Laplacian eigenmap algorithm to the orig-
inal d-dimensional samples {xi}�i=1 and obtain their
(k − 1)-dimensional expressions {zi}�i=1.

2. Apply the plain k-means clustering algorithm to {zi}�i=1
and obtain the clustering result {Ct}kt=1.

Thanks to the soft clustering property of the Laplacian
eigenmap, the local optimum problem tends to be mitigated
in the above spectral clustering algorithm.

6. Kernel Functions

In this section, we consider computational issues for the ker-
nel functions themselves.

The first part of this section is on designing kernel func-
tions for complex data structures such as sequences, trees,
and graphs. The second part of this section is on the auto-
matic selection of informative kernels when we have multi-
ple kernel functions for different information sources.

6.1 Kernels for Structured Data

In Sect. 2, we have seen the Gaussian kernel and the poly-
nomial kernel as examples of kernel functions where their
computational costs are much smaller than the dimension of
the feature space.

Here, we consider more complex data structures, such
as sequences, trees, or more general graph-structured data,
and efficient kernel methods for handling such data. When
we consider structure in data, we have two types of struc-
tures, external structures and internal structures. Graph
structures formed by relationships among data are called ex-
ternal structures, meaning that the feature spaces are given
as graph structures. On the other hand, graph structures ob-
served inside each data sample are called internal structure.

6.1.1 Externally Structured Data

When we consider an external structure, our main concern
is how to define a kernel function between arbitrary two
nodes (representing two data instances) in a given graph
G = (E,V) representing the feature space. The diffusion
kernel [65] defines similarity among nodes by a diffusion
process over the graph. Let us denote the Laplacian ma-
trix of the given graph by L. Then the kernel matrix for the
diffusion kernel is defined as

K ≡ exp(−tL) = I + (−tL)+
(−tL)2

2!
+

(−tL)3

3!
+ · · · .

(21)

The naive computation of the diffusion kernel is time-
consuming, but diagonalization of L makes the computa-
tion efficient. Let us consider a diagonalization of L as
L = U−1DU , where D is a diagonal matrix and U is a
non-singular matrix. Then Eq. (21) becomes

K = U−1 exp(tD)U .

Since D is a diagonal matrix, exp(tD) is also a diagonal
matrix whose i-th diagonal element is exp(tDii).

In contrast to the diffusion kernel where the task is to
predict the characteristics of the data in a network-structured
feature space, we can consider the different problem of pre-
dicting the external structure (meaning the network struc-
ture) from the given feature spaces. In that case, the task is
to predict pair-wise relationships (such as the existence of
links) among data. The pair-wise kernel [66]–[68] is can be
used for such purposes. Let us denote by K̃ a kernel matrix
defined by a given feature space. Then the pair-wise kernel
K is defined as

K ≡ K̃ ⊗ K̃, (22)

where ⊗ is the Kronecker product of two matrices. The pair-
wise kernels are understood as inner products in the product
space of the two feature spaces of the given (element-wise)
kernels. Since K is an �2 × �2 dense matrix, it is not real-
istic to store the whole matrix in memory (especially when
we want to consider relationships that are more complicated
than pairs) and sub-sampling or sequential learning is used.
Instead of Eq. (22), The Kronecker sum pair-wise kernel has
been proposed [69], [70]:

K ≡ K̃ ⊕ K̃ = K̃ ⊗ I + I ⊗ K̃,

where ⊕ indicates the Kronecker sum. This is much sparser
than the (Kronecker product) pair-wise kernel and easier to
compute for large-scale data sets.

Note that, in the case of external structure with bipartite
graphs between two distinct sets, the pair-wise kernel matrix
is defined as K ≡ K̃1⊗K̃2, where K̃1 and K̃2 are the kernel
matrices for the two sets.

6.1.2 Internally Structured Data

Now we turn to designing kernel functions for internally
structured data. It seems natural to consider that the charac-
teristics of internally structured data can be represented by
substructures such as subsequences for sequences, subtrees
for trees, and subgraphs for graphs. The idea of the con-
volution kernels [71] is to construct feature spaces by using
the substructures. The challenge is to efficiently compute
the inner products in a feature space defined by the sub-
structures since there exist a enormous number of possible
substructures and explicit construction of feature vectors is
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prohibitively expensive.
For sequential data where elements are connected by

linear structures, a sequence kernel has been constructed
based on subsequences [72]. The algorithm is based on
dynamic programming, and can be computed in quadratic
time. A simpler but more efficient kernel called the spec-
trum kernel uses (contiguous) substrings and can be com-
puted in linear time [73], [74]. The spectrum kernel with
gaps [75] was proposed as an intermediate variation of these
two string kernels.

For tree-structured data, dynamic programming-based
kernels were extended for trees by using subtrees as fea-
tures [76], [77]; a spectrum kernel for trees which can be
computed in almost linear time has also been proposed [78].

For graph-structured data, graph kernels for labeled
graphs have been proposed [79], [80]. Since subgraph-based
graph kernels are still prohibitively expensive, paths gen-
erated by random walks were used as features. A re-
cursive formulation similar to those of the other dynamic
programming-based kernels results in a system of linear
equations, and allows us to efficiently compute the graph
kernels. Several approaches to accelerating the computation
are discussed in [81].

6.2 Multiple Kernels

Recently, multiple kernel learning has received considerable
attention in the field of machine learning. Multiple kernel
learning involves training a learning machine from multiple
kernels instead of selecting a single kernel used for learn-
ing. In the early years, the multiple kernels were simply
integrated as sums or averages [82], but the research focus
has shifted to automatic selection of the optimal combina-
tions of kernels [83], [84]. A formulation for multiple ker-
nel learning based on semidefinite programming (SDP) has
been presented in [83]. This section begins by reviewing
this formulation.

Given � labeled training examples (xi, yi) ∈ Rd ×
{±1} (i = 1, . . . , �), the regularized risk of an SVM is given
by

J ≡ min
w

1
2
‖w‖2 + C

�

�∑
i=1

max(0, 1 − yi(〈w, φ(xi)〉 + b))

= max
α∈S
‖α‖1 − 1

2
α�Qα,

where the matrix Q ∈ S�+ has elements

Qi j ≡ yiy j

〈
φ(xi), φ(x j)

〉
.

The set S is defined as

S ≡ {α ∈ R�+ | y�α = 0, α ≤ C
�
1�}.

φ is a map from an input space to an embedding space on
which the learning machine operates. Learning the map φ is
equivalent to learning the kernel matrix K int ∈ S�+ in which

Kint
i j =

〈
φ(xi), φ(x j)

〉
. Learning the optimal kernel matrix

from a subset of a semidefinite cone K ⊂ S�+ has been con-
sidered in [83]. Typical multiple kernel learning algorithms
assume that the subset K is the set of weighted averages of
p given kernel matrices Kk ∈ S�+, (k = 1, . . . , p). When we
use multiple kernel learning, we often normalize each ker-
nel matrix so that every diagonal element is one. We here
impose this assumption for simplicity. Then we can write
the problem for learning the kernel matrix which minimizes
the regularized risk as

Problem 2.

min max
α∈S

J(α; K int) wrt β ∈ Δp

subj to K int =

p∑
k=1

βkKk,

where J(α ; K)≡‖α‖1− 1
2
α� diag(y)K diag(y)α,

Δp ≡ {β ∈ Rp
+ | ‖β‖1 = 1}.

It was shown [83] that Problem 2 is an SDP prob-
lem and can be reduced to second-order cone program-
ming (SOCP), which can be solved more efficiently than
SDP. However, the problem is still intractable when the
number of training examples is large. A smoothed version
of the problem so that SMO [50] is applicable has been in-
troduced in [85].

Another efficient algorithm for solving Problem 2 with-
out modification has been presented in [86]. This algorithm
is based on the following linear programming problem:

Problem 3.

min θ wrt θ ∈ R, β ∈Δp

subj to ∀α ∈ S′ :
p∑

k=1

βk J(α ; Kk) ≤ θ,

where S′ is a subset of S.

The optimal kernel weights coincide with the solution
of Problem 2 when S′ = S. However, since S is an infinite
set, the problem cannot be solved by general-purpose linear
programming tools. In [86], this is solved iteratively as fol-
lows. Initially set S′ = ∅ and β = 1/p; then repeat the fol-
lowing two steps until convergence:

1: Perform an SVM learning with the kernel matrix inte-
grated with the current kernel weights β and add the
obtained α ∈ S to S′;

2: Solve Problem 3 to get the new kernel weights.
Another algorithm for multiple kernel learning

has been proposed in [87]. This algorithm basi-
cally repeats the following two steps until conver-
gence:

1: Train SVM using the kernel matrix combined with the
current kernel weights β and obtain α ∈ S.

2: Update the kernel weights β by using line search from
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the current weights in the reduced descent direction of
J(α ;

∑
k βkKk).

So far we have focused on binary classification tasks
and used the hinge loss for multiple kernel learning. Mul-
tiple kernel learning methods for other tasks such as multi-
class classification, regression, and one-class classification
has been discussed in [86], [88]. However, the computa-
tional cost for multiple kernel learning is still too large for
learning from large datasets. To cope with this problem, re-
cent work replaces each kernel matrix with an undirected
graph [89], [90]. An efficient algorithm for learning from
multiple graphs in binary classification developed in [89]
has been reported to be approximately 30 times faster than
the algorithm proposed in [86].

7. Conclusions

Optimization theory has been extensively studied in recent
decades and various new techniques have been explored
to exploit the explosive increases of computational power.
The development of optimization methodologies has also
had strong impact on the machine learning community, al-
lowing it to tackle large-scale real-world problems. At the
same time, beyond standard optimization paradigms, ma-
chine learning algorithms have highly intricate structures
and great efforts have been devoted to specific problems of
machine learning, such as improving overall computation
times including model selection by tracking the entire solu-
tion path, reducing the computational costs in the test phases
by sparcifying solutions, and improving the computation of
complicated kernel functions by using special data struc-
tures. Thus, for further improvements to the computational
efficiency of machine learning algorithms, it is important
to have interdisciplinary collaboration between fundamen-
tal mathematical areas such as optimization theory, combi-
natorics, and statistics and various application areas such as
bioinformatics, computational chemistry, robotics, natural
language processing, speech analysis, and image process-
ing.

The kernel methods we have dealt with in this article
are essentially converting linear algorithms to non-linear do-
mains by using the kernel trick. Another movement in the
kernel machine community, which we could not cover in the
current article due to the space limitation, is to use the kernel
trick in the context of statistical tests, including the indepen-
dence test and the two-sample test. These ideas have been
applied in various domains such as independent component
analysis [12], dimensionality reduction [91], feature selec-
tion [92], and non-stationarity adaptation [93]. The compu-
tational issues in this new topic do not seem to have been
extensively explored yet. This may be a challenging new
research topic for kernel method researchers.

A popular classification approach apart from the sup-
port vector machines is boosting [94]–[96], which sequen-
tially combines weak learners to make predictions. Al-
though boosting and the support vector machines are very
different in spirit, recent work has shown that both are im-

proving the margin distribution in some sense [97], [98].
Thus, going beyond computational issues, it would be im-
portant for the kernel method community to systematically
merge the ideas of these two different approaches and de-
velop a more sophisticated approach.
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