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Abstract

We consider the task of performing anomaly detection A
highly noisy multivariate data. In many applications involv-= ‘
ing real-valued time-series data, such as physical sensor data
and economic metrics, discovering changes and anomalies
in the way variables depend on one another is of particular
importance. Our goal is to robustly compute the “correla

tion anomaly” score of each variable by comparing the test

data with reference data, even when some of the variables

are highly correlated (and thus collinearity exists). To re-

move seeming dependencies introduced by noise, we focus

on the most significant dependencies for each variable. We O

perform this “neighborhood selection” in an adaptive manner

by fitting a sparse graphical Gaussian model. Instead of llr:égure L Pmb"?m sefting. Given noisy sensor data set_s A
ditional covariance selection procedures, we solve this pr@ﬁ'—d B (1) we f|_r st learn sparse structures based on given
lem as maximum likelihood estimation of the precision mgovarnance m"’?t”ces- (2) Next, the two sparse graphs are
trix (inverse covariance matrix) under the penalty. Then compared to give the anomaly scoresatchvariable.

the anomaly score for each variable is computed by evaluat-

ing the distances between the fitted conditional distributiogﬁomaly detection in the following setting [16]: Given two
within the Markov blanket for that variable, for the (two) datg, endency graphs of a multivariate system. identify the
sets to be co.mpared. Using real-world data., we demonstrl% es (variables) which are most responsible for the differ-
that our matrix-based sparse structure learning approach giic-. potveen them, and compute the degree to which each
cessfully detects correlation anomalies under coIIinearitiﬁgde contributes to the difference. We call this problem

and heavy noise. change analysi$o contrast with only detecting the overall
change. Figure 1 summarizes our problem. As shown in the
figure, we focus on dependency graphs typically produced
Knowledge discovery from networks and graphs is one |gf noisy sensor data, and anomalies that occur in the de-
the most exciting topics in data mining. While most of thgendencies (we call themorrelation anomalies This is
existing studies in network mining assume the knowledggcause detecting anomalies that occur only within the in-
of graph structure as input, estimating general depende@fjidual variables is often trivial, while detecting correlation
graphs given multivariate data is also an important profnomalies is much harder and is practically important in fault
lem. In contrast to binary sparse connectivities in e.g. coaihalysis of complicated dynamic systems such as automo-
thor networks, the dependency graph between the varialjgss [16] and computer systems [15]. Starting with dense
in a real-valued multivariate system is in general a colependency graphs that might be contaminated by noise, we
plete graph since two variables are rarely totally indepefirst attempt to find sparse structures by removing the un-
dent. Since real-world data necessarily includes consideraihted effects of noise. Then we compare the learned struc-
amount of noise, however, some of the dependencies mighes to compute the anomaly score for each variable.
very well be due to noise. This motivates us to leasparse In statistics, the problem of structure learning from real-
structurefrom data representing an essential relationship kedued multivariate data has been treated within the frame-
tween the variables that is not an artifact of noise. work of covariance selection, as originally proposed by
We consider the task of performing graph-basesempster [6]. As the name suggests, covariance selection
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assumes the multivariate Gaussian as a generative model,
and fits a precision matrix (the inverse of the covariance ma= _ _
trix) to the data under a sparsity constraint. Recently, sev=AUD | Australian Dollar | NLG |  Dutch Guilder
eral new sparse structure learning algorithms have been pro-SE- CBe@('j"’_m F[r)ar;lc ’\ézsg Neév Ze?'ﬁng Dot”ar
posed [19, 20, 5, 3, 7, 9] to remedy drawbacks of the tradi- anadian Doar panish Feseta

. - . - - FRF French Franc SEK Swedish Krone
tional covariance selection framework. In particular, Mein- :

h d @l 201 f lated the task of German Mark CHF Swiss Franc
shausen and @imann [_ ] formulate e task of sparse- Japanese Yen | GBP UK Pound
structure learning as neighborhood selection of each vari-
able, and proposed a method based on lass@énalized
linear regression) where each variable is treated as the target
and the rest as the predictors. Thanks to thedgularizer, Table 2: Correlation coefficients for the data shown in Fig. 3.
many of the linear regression coefficients become exaciglues in the parenthesis correspond to the bottom plot.

Table 1: Abbreviations idctual spot rateslata.

zero, and predictors with nonzero coefficients are thought of BEE CAD FRE

as the neighbors of the target. _ AUD | 0.31(-0.37)| 0.91 (0.04)| 0.26 (-0.23)
From a practical perspective, one of the most important ggg 0.46 (0.19)| 0.99 (0.97)

merits of the method of [20] is that, in principle, it enables  cap 0.41(0.30)

us to learn a sparse graph structure even when the number
of variables (/) is comparable to the number of samples
(V). This is different from the traditional covariance selec-
tion procedure, where the algorithm cannot give meaningare shown over the last 567 days in tAetual spot rates
results when the sample covariance matrix is rank deficietdta [17]. The original data was collected over the 10 years
as is always the case whaéid > N or when some of the from Oct. 9, 1986 through Aug. 9, 1996. Abbreviations used
variables are highly correlated. in the figure can be found in Table 1. As expected, European
In this paper, we apply 1 penalized sparse structureurrencies such as BEF, FRF, DEM, and NLG are highly cor-
learning to the task of scoring correlation anomalies. Welated. In fact, from Figure 3, which shows a pairwise scat-
assume that some of the variables are highly correlatedaring plot between the first four currencies, we see that BEF
the data, which is quite common in sensor data analytiesid FRF are almost perfectly correlated, while other squares
We experimentally demonstrate that the algorithm of [20] $how more complex trajectories.
instable in such cases, while the graphical lasso algorithm [9] This figure suggests an important starting point for cor-
enjoys robustness against noise. Based on the framewethtion anomaly analysis. If a correlation is far from per-
of graphical Gaussian model, we propose a definition fefct, and if the data is noisy, generated by some complicated
“correlation anomaly score” in an information-theoreticallglynamics, trajectories in the pairwise scattering plots will
consistent manner. be complex and instable. In fact, the corresponding correla-
The rest of the paper is organized as follows. Sectiorti@n coefficients shown in Table 2 demonstrate considerable
illustrates our problem setting in more detail using a motivdtuctuations in the pairs except for (BEF, FRF). Detecting
ing example, and explains the essence of graphical Gaussiaomalies under these circumstances can be challenging un-
models. Section 3 surveys related work including compdess there is some detectable persistent property, motivating
ison with the two-sample problem in statistics. Sectionus to formulate the following assumption.
discusses sparse structure learning algorithms with particular
emphasis on graphical lasso. Section 5 defines the corréi§SUMPTIONL. (NEIGHBORHOOD PRESERVATION If
tion anomaly scores. Section 6 presents experimental restiigs System is working normally, the neighborhood graph
including those with actual car sensor data. Finally, SectioR7€ach node is almost invariant against the fluctuations of
concludes the paper. experimental conditions.

(The definition of a neighborhood graph will be given in
the next subsection, Definition 2). Thus, in the present pa-
In this section, we briefly recapitulate the graphical Gaussig@r, we equate the problem of correlation anomaly detection
model (GGM), and summarize our problem setting. with that of detecting significant changes in the neighbor-
o hood graph of the variables involved. We believe that this
2.1 Motivating example and problem statement.In  assymption is reasonable in many practical situations, in-
many real-valued time-series data such as physical seng@¥ing those in which data are generated by a system with
data and econometrics data, it is usual that some of the V@8mplicated dynamics, and this is the main motivation for
ables are highly correlated. Figure 2 shows such an exajyy graph-based approach to anomaly detection.
ple, where daily spot prices (foreign currency in dollars) Now we state the problem addressed in this paper.

2 Preliminaries



AUDMWMM “““ %

i - ghy g

N

Figure 2:Actual spot rateslata over the 567 days until Aug.
9, 1996.

Suppose that we are given two data sets

= {2 Figure 3: Pairwise scattering plot of four countrieshictual
Dy = {22’ e RM,n = 1,2, N .

a=teajes €RYn =12, Na) spot rategdata. Top: first 500 days. Bottom: last 567 days.
Dp = {20 e RM, n =1,2, ..., Ng}.

Since we are interested mainly in noisy sensor data, the indéxensional Gaussian distribution
n typically runs over discrete values of time.Th, andDg, 12
the number of measuremenf$, and Ny, can be different, 2.1)  N(z[0 /\71) _ det(A) ox (_1$TA33)

but the number of variables and the identity of each variable (2m)M/2
must be the same. For example, if the first dimensian(j’)?
in Dx measures atmospheric pressure, the first dimensio
mg) in Dy also measures the same quantity in some differ
situation.

Now our problem is stated as follows.

\Where det represents matrix determinant, and RMxM
denotes a precision matrix. We denote h{(-|u,Y) a
Whussian distribution with mean vectpr and covariance
matrix ¥. As mentioned above, a precision matrix is the
inverse of a covariance matrix, and vice versa.

DEFINITION 1. (CHANGE ANALYSIS PROBLEM) Given In the GGM, a Gaussian distribution is associated with a
D and Dg, compute the anomaly score of each variab@aph(V, E), whereV is the set of nodes containing all the
representing how much each variable contributes to tdé variables, and® is a set of edges. The edge between
difference between the data. xz; and x; is absent if and only if they are independent

) o conditioned on all the other variables. Under the Gaussian
This problem, as formulatgd, shares some .S|mlllar|ty W'H%sumption, this condition is represented as
the “two-sample problem” in statistics. We will discuss the

relationship between the two problems in the next section(2 2) Nij=0 = z; 1l x;| othervariables

2.2 Graphical Gaussian model.For an M-dimensional wherell denotes statistical independence. Stating formally,
random variablexz < RM, the GGM assumesM- we give the definition of neighborhood as follows.



DEFINITION 2. (NEIGHBORHOOD) We say that a node; similar to neighborhood selection, but it is generally hard

is a neighborhood ofr;, if and only if A;; # 0. A to be applied to dense graphs. Tong et al. [24] addressed
neighborhood graph of; is the graph that contains; and a similar change detection task, but their goal is not to

its neighbors, connected with edges betweernithend its give the anomaly score to the individual nodes. Xuan and

neighbors. Neighborhood selection is the task to enumerMarphy [25] addressed the task of segmenting multivariate

all neighbors of each node. time series. While their task differs from ours, they used L

. . penalized maximum likelihood for structure learning, which
The condition (2.2) can be easily understood by expl|I the same approach as ours.

itly writing down the conditional distribution. Let us denote

T i -
(wi, ;)" by xq, and the resj[ .Of the variables ty. Forc_en 3.2 Structure learning. Covariance selection [6] is a stan-
tered data, a standgrd partltlonm_g formu_la (.)f G_aussuan (Sggrd approach to sparse structure learning. However, it is
e.g. [4], Sec. 2.3) gives the conditional distribution as known that it has several drawbacks in practice such as a high
(2.3)  p(xal@s) = N(@a| — Ao Aapws, AL, computational cost and a suboptimality in terms of statisti-
cal tests. Drton and Perlman [7] addressed mainly the sec-
where, corresponding to the partitioning betwegrandxz,, ond issue, and proposed an algorithm named SIN, although

we put it does not lift the requirement that the sample covariance
matrix must be full rank. Since we are interested in the sit-
(2.4) A= ( //t““ //t“” ) ) uation where measurement systems have some redundancy,
ba  T16b and hence some of the variables are highly correlated, SIN is

In this case/\,, is 2 x 2, S0 the inverse can be analyticallyess useful to our problem. _
calculated, giving the off-diagonal element proportional to !N such cases, {-penalized regression approaches 20,

Aij. ThusiifA; ; = 0, z; andz; are statistically independent® 3, 9] and a Bayesian sparse learning strategy [19] are
conditioned on the rest of the variables. promising. There is no consensus in the literature, however,

Our first goal is to find a sparsd, whose entries On What is the best method to use to learn sparse structures

are nonzero for essentially coupled pairs, and are zero ifythese situations. For the task of causal modeling, A.rnold
weakly correlated pairs that might be induced just by ti§al- [2] compares a number of structure learning algorithms
noise. Such a sparge will represent an essential depenncluding SIN [7] and lasso [20], although their goal is to
dency structure not due to noise, and thus should be uségfn causal graphs itself, and did not address the issue of
for detecting correlation anomalies. In real noisy data, hoflata with highly correlated variables.

ever, every entry in the sample covariance ma#riwill be

nonzero, and the precision matrbcannot be sparse in gens3-3 Two-sample tests.The two-sample test is a statistical
eral. Moreover, if there are highly correlated variablgs, (€St whose goal is to detect the difference between two data
becomes rank deficient, ariddoes not even exist. B is Sets. Formally, it attempts to decide whethar = pp or

full rank in theory, it is sometimes the case that matrix invefa 7 P, Wherep, and pg are probability distributions
sion is numerically unstable whel is more than severallearned fromD, and Dg, respectively. The two-sample
tens. This is an essential difficulty in traditional covariandgSt has a long history in statistics, and a variety of methods
selection procedures [6], where small entried\iare set to Nave been proposed so far, such as the Kolmogorov-Smirnov
be zero step by step. Since our assumption is that the d&#&f [10] and nearest neighbor test [14]. Although the two-
include some highly correlated variables, which holds vef@mple problem is similar to ours, but different in that the
generally in sensor data, such approaches are of little us€%]! is just to tell how much, andpg are different, rather

our context. This motivates us to use anfenalized maxi- than scoring individual variables.

mum likelihood approach, as discussed later. Related to the two-sample test, kernel-based tests for in-
dependence have attracted attention in recent years. Gretton
3 Related work et al. [12, 13] proposed kernel-based metrics for the two-

. sample test and an independence test. Fukumizu et al. [11]
3.1 Anomaly detection from graphs.Anomaly or . :
perosed to use a covariance operator defined on reproduc-

change detection from sequences of graphs [15] is kernel Hilbert spaces to test conditional dependence.

. . . ) n
particular importance in practice. Sun et al. [23] proposedn;w(;iair approach can be viewed as an extension of the GGM

method for identifying anomalous nodes by computing the . . .
I . o and is potentially useful for structure learning from the data
proximities between nodes. Their task is similar to ours, Qut " : P
. . . i . . aving complex correlations as shown in Fig. 3. However,
differs in that they consider a single bi-partite graph rather. "~ . :
. It is still an open problem how to generalize Assumption 1,
than comparing two graphs. Sun et al. [22] also studied. . = " . : .
> which is implicitly based on the notion of linear correlation,

change detection from a sequence of graphs based an a . . . .

i . . _In_accordance with the generalized notion of independence.
clustering technique for graph nodes. Node clustering is



This would be interesting future work that is not covered #h2 Graphical lasso algorithm. Since Eq. (4.7) is a con-

the present paper. vex optimization problem [3], one can use subgradient meth-
ods for solving this. Recently, Friedman, Hastie and Tibshi-
4 Sparse structure learning rani [9] proposed an efficient subgradient algorithm named

This section considers step (1) in Fig. 1. That is, we consid@phical lasso. We recapitulate it in this subsection.

how to learn a sparse structure from the data. Since this step 1ne graphical lasso algorithm first reduces the problem
is common to both the data A and B, we omit the subscripfl- (4.7) to a series of related, Lregularized regression
showing A or B for now, and write either of the data aRroblem by utilizing a block coordinate descent technique [3,
D = {¢™|n = 1,..,N }. We assume thaD has been 8]. Using the formula Eq. (4.6), we see that the gradient of

standardized to have zero mean and unit variance. ThenESe (4.7) is given by

sample covariance matriis given b
P g y (4.9) or = A1 =S — psign(A),
N ON
(4.5) S, . = 1 Z 2 () where the sign function is defined so that tlgj) element
MUN & of the matrixsign(A) is given bysign(A; ;) for A; ; # 0, and

avaluee [—1,1] for A; ; = 0.
which is the same as the correlation coefficient matrix of this To use a block coordinate descent algorithm for solving

data. af /0N = 0, we focus on a particular single variablg and
partition A and its inverse as

4.1 Penalized maximum likelihood. In the GGM, struc- I 1 W ow

ture learning is reduced to finding a precision maftriaf the (4.10) A = ( I ) , T=A1t= ( w' o ) ,

multivariate Gaussian (Eq. (2.1)). If we ignore the regular-
ization penalty for sparsity for now, we can geby maxi- where we assume that rows and columns are always arranged
mizing the log-likelihood so that ther;-related entries are located in the last row and
column. In these expressionsy, L € RM-1)x(M-1)
N N A\, 0 € R,andw,l € RM~1, Corresponding to this;-based
In [NV (z®P]0,A7") = const.+ - {Indet(A) —tx(SA)}.  partition, we also partition the sample covariance marix

t=1 the same way, and write as
where tr represents the matrix trace (sum over the diagopfh S\i s
. . )T (t) _ . 1) S = T L. .

elements), and we used a well-known identity) () = S Sig
tr(:c(t)w.(t)T) {md, (4.5). If we use the well-known formulas  Now let us find the solution of the equatiérf /A = 0.
on matrix derivative Since/A must be positive definite, the diagonal element must

P 9 be strictly positive. Thus, for the diagonal element, the
(4.6) N Indet(A) = A1, 8—Atr(SA) =S, condition of vanishing gradient leads to

(412) 0 = S + P

we readily get the formal solutioh = S—!. However, as . )
mentioned before, this produces less practical information FOr the off-diagonal entries representedibyandl, the
on the structure of the system, since the sample covariaRREMal solution under which all the other variables are kept
matrix is often rank deficient and the resulting precisidgiPnstant s obtained by solving
matrix will not be sparse in general. . [1 1 9

Therefore, instead of the standard maximum likelihod8-13) min {2|W25 —bl["+p ||ﬁ|1} =0,
estimation, we solve an;kregularized version of maximum

likelihood: whereg = W~lw, b = W~'/%s, and||8]l: = 3, 161].
For the proof, see Appendix A.1. This is ap-tegiularized
4.7 A* = argmax f(A; S, p), quadratic programming problem, and again can be solved
A efficiently with a coordinate-wise subgradient method [9].
(4.8) f(N;S, p) = Indet A — tr(SA) — pl|A[]1, The algorithm is sketched in Appendix B.

Now to obtain the final solutio*, we repeat solving
where ||A||; is defined byZ%:l IA; ;. Thanks to the Eq. (4.13) forzy, 2, ..., 0, 21, ... until convergence. Note
penalty term, many of the entries Mwill be exactly zero. thatthe matriX4 is full rank due to Eq. (4.12). This suggests
The penalty weighp is an input parameter, which works as humerical stability of the algorithm. In fact, as shown later,
a threshold below which correlation coefficients are thoughtgives a stable and reasonable solution even when some of

of as zero, as discussed later. the variables are highly correlated.



4.3 Connection to Lasso.The coordinate-wise optimiza-1, resulting neighborhood graphs will be very small, while a
tion problem (Eqg. (4.13)) derived by the graphical lasso algealue close to 0 leads to an almost complete graph where all
rithm has clear similarity to the lasso-based structure leathe variables are thought of as being connected.

ing algorithm. The algorithm of Ref. [20] solves separate This property is very useful given the neighborhood

lasso regression problems for eagh preservation assumption. In Section 2, we saw that the
correlation coefficients are subject to strong fluctuations

(4.14) min{1|Zlﬁ —yil]? +M|5|1}7 in-many highly dynamic systems unless their magnitude
B (2 is close to 1. It is evident, however, that simply letting

some entries be zero with a threshold does not maintain the
where we defineg; = ", and a data matrix mathematical consistency as a graphical Gaussian model. In
Z, =z i(l), ey (N)] with addition, derived results can be sensitive to the threshold
value. Sparse structure learning allows us to reduce the
undesired effects of noise by fitting a sparse model in a
theoretically consistent fashion.
~ Using the definition o6 (Eq. (4.5)), itis easy to see that  \ye should also note that sparse structure learning allows
this problem is equivalent to Eq. (4.13), when us to conduct neighborhood selection in an adaptive manner.
i If a variable is isolated with almost no dependencies on
(4.15) W=S$\ and pocp others, the number of selected neighbors will be zero. Also,
are satisfied. SincéV is a principal submatrix oi\—1, We naturally expect that variables in a tightly-connected
we see that there is a correspondence betw&eand S\? cluster would select the cluster members as their neighbors.
when p is small. It will never be satisfied fop > 0, We will see, however, that the situations when there are

however. In this sense, the graphical lasso algorithm Sohf,‘éghly correlated variables are much trickier than it seems.
an optimization problem similar to but different from the
one in [20]. This fact motivates us to empirically study the Scoring Correlation Anomalies
difference between the two algorithms as shown in the n&uppose that based on the algorithm in the previous section,
section. we have obtained two sparse GGMs,(z) andpp(z). In

this section, we discus how to define the anomaly score for
4.4 Choosingp. We have treated the penalty parametereach variable, given these models.
as a given constant so far. In many regularization-based ma-
chine learning methods, how to choose the penalty pardbrit Expected Kullback-Leibler divergence.Our final
eter is a subtle problem. In the present context, howevgoal is to quantify how much each variable contributes to the
p should be treated as an input parameter since our goalifference betweerD, and Dy in terms of each variable.
not to find the “true” structure but to reasonably select tii&ven the probabilistic models, the most natural difference

(2o a™)

ceey

zi(n) — ( (n) gn)17 Ei)17~~-»$5\3))T c RM-1

neighborhood. measure is the Kullback-Leibler (KL) divergence. Let us fo-
To get insights on how to relajewith the neighborhood cus on a variable; for a while, and consider the following
size, we note the following result: quantity

5

ProPOSITIONL. Ifwe consider & x 2 problem defined only ( (2i|2)
. ., : dAB = [dz, N [ das 121 palTilZzi)

by two variablesz; andz; (i # j), the off-diagonal element @i~ = [ dzi pa(zi) [ dzi pa(zi|zi)In e (2i]zi)

of the optimalA as the solution to Eq4.7)is given by o

Aij = —% for |r[>p This is the expected KL divergence betwee(xz;|z;) and

’ 0 for |r| < p, pe(x;|z;), integrated over the distributiops (z;). By re-
placing A with B in Eq. (5.16), we also obtain the definition
wherer is the correlation coefficient between the two Varbf dAB Since we are Work|ng with Gauss|ans the |ntegra|

ables. can be analytically performed. The result is

For the proof, see Appendix A.2.
Although this is not the solution to the full system, i

AB T o
gives us a useful guide about how to chops&or example, t5'17) 4 = walls —la)

if a user wishes to think of dependencies corresponding to + 1 {lBWAlB _ lAWAlA}
absolute correlation coefficients less than 0.5 as noise, then 2 AA

the inputp should be less than the intended threshold, and 1 AA

possibly a value around = 0.3 would work. If p is close to + 9 {ln g +oalAs — AA)}



where we partitioned , and its inverse& , as (a) Compute correlation matriceés, and Sy using

(5.18) Eq. (4.5).
Ap = ( L¢ La ) ,Ta=A = < W_/? wa ) , (b) Use graphical lasso to obtain precision matrices
Iy Aa W OA A andAg, and also obtain their inverse, and

respectively (see Eq. (4.10)). A similar partition is also 2 as side products.

applied toAg andX. The definition ofdBA is obtained by (c) Compute discrepanciesi*® and dP* using
replacing A with B in the above. The derivation of Eq. (5.17) Eq. (5.17) to obtain anomaly scorg for i =
is straightforward if the standard partitioning formula (see 1., M.

Eq. (2.3)) is used.
The definition (5.17) has a clear interpretation. Bglgo

definition of GGMs, the number of nonzero entrieslin
is the same as the degree of the nade In this sense, mfatrix, the graphical lasso algorithm needéM/?) cost in
i

1 contains the information on the neighborhood graph X . . S
2. Thus the first term mainly detects the change of tr?ée worst case. While the behavior of the algorithm is still

: . npt fully understood, it is known in practice that the cost can
degree. The second term corresponds to the difference in the L X ;
» " . e : be sub-cubic in the sparse case [9]. Systematic analysis on
tightness” of the neighborhood graph. Specifically;ithas ; : :
. . e . . " the complexity of structure learning algorithms would be an
a single link toj, this term is proportional to the difference .
. . g . interesting future work.
between corresponding correlation coefficient, normalize
by the single variable precisionsy and Ag. The third

. T : o Experiments
term is related to the change in single variable precisions (or ~ ) . .
variances). In this section, we first compare different structure learn-

ing algorithms with particular emphasis on the stability un-

sure the change in the neighborhood graph ofittienode. @nomaly metric using real-world car sensor data.

The greater these quantities are, the greater change we have

concerningr;. Thus, given the assumption of neighborhod@l Comparing structure learning algorithms. Consid-
preservation, it is reasonable to define the anomaly scor€Bfgd the fact that the traditional covariance selection proce-

Finally, we briefly examine at the complexity of the
rithm. As shown in Eq. (4.5), the cost to compute the
covariance matrix i€©)(M?2N). For computing the precision

thei-th variable as dures face evident difficulty with data having highly corre-
lated variables, studying the stability of {penalized learn-
(5.19) a; = max{dB, dP*} ing algorithm is of particular interest. We compared the

graphical lasso algorithm (denoted Blasso ) with two

This definition is a natural extension of a prior proposather structure learning algorithms.
of [16]. One of the drawbacks of that approach is that it The first alternative (denoted tasso ) is the method
simply uses the-NN strategy for neighborhood selectiondue to Meinshausen andiBImann [20], where lasso regres-
Also, due to a heuristic definition of the dissimilarity, ition is done for each variable using the others as predictors.
cannot detect anomalies caused by sign changes suclTras/ showed that their approach satisfies a form of statisti-
x; — —x;. In the present study, we propose an informatiooal consistency. In practice, however, it is known that their
theoretic definition of the anomaly score, which detect aajgorithm tends to over-select neighbors [21, 5]. As an al-
type of anomaly that affects the probability distribution, iternative, it has been proposed [5] to use an adaptive lasso
principle. algorithm [26] for sparse structure learning. Adaptive lasso,

denoted byAdalLasso , is a two-stage regression algorithm

5.3 Algorithm summary. Our method for scoring corre-where the results of the first regression is used to improve the
lation anomalies consists of two steps. The first step leagegond stage lasso regression. Here we use a method which
a sparse structure, and the second step is to computeudts lasso also in the first stage, as suggested in Ref. [5].
anomaly score of each variable. Since we are interested in the situations where some of the
variables are highly correlated, and heBds rank deficient,
traditional types of approaches [18, 7] based on direct esti-
« Reference and target data sBtg andD. mation of the precision matrix are out of our scope.

Data and evaluation measure.We tested the stability
of structure learning algorithms by comparing learned struc-
tures before and after adding white noise. The data used was
Actual spot rateslata as explained in Section 2. We gen-
3. Algorithm: erated 25 subsets of the data by using non-overlapping win-

1. Input:

e Penalty parameter.

2. Output: Individual anomaly scores, ..., ap;.



dows containing 100 consecutive days, and applied the three
. .
algorithms to each one, changing the value of the penalty 208 BRI g

. . PRI IWONTS o Glasso
parameter. We then computed the sparsity defined by 0.9 o 13%;"‘1?«3
DA TR o Lasso
08 o K AA“./_A':’@AAA L
. Ny ’ A YAVyiyzas A Adalasso
(sparsity)= MO —1) 07 L LT Y
B 2
= 06

whereN, is the number of zeros in the off-diagonal elements§
of A. o 05

After the first learning, we added zero-mean Gaussia@ 0.4
noise to the data as < z;+e¢;, Whereg; isindependentand = 5 |
identically distributed Gaussian noise. Then we computed o

the probability of edge flip formally defined by

(0]

(flip probability) = Ny /N,
0 0.2 0.4 0.6 0.8 1

where NV, is the number of edges that are flipped (i.e. either .
sparsity

appeared or disappeared) by the noise.

Results. Figure 4 shows the result, where the flip
probability is shown as a function of the sparsity. We us@igure 4: Edge flip probability as a function of spar-
white noise with the standard deviation of only 0.1 (appliegity, showing considerable instabilities ihasso and
after standardization of the entire data). From the figure, wealLasso .
see that there are considerable instabilitiet @#sso and

AdalLasso . With these algorithms, the flip probability isT

on the order of 50% at sparsity of 0.5. On the other hanvcglbulgs& Compared anomaly metrics and their best AUC

Glasso is much more stable under noise. The instability of symbol | neighborhood _metric | best AUC
Lasso andAdalasso can be understood from the general

Glasso Eq. (5.17)| 0.96(p = 0.3)
tendency that lasso tends to select only one of the correlatedSNG Glasso Eq. (6.20)| 0.93 (p = 0.7)
features. In théctual spot rateslata, European currencies SNN 1-NN Eq' (6.20) 0.87 & B 2')
such as BEF, FRF, DEM, and NLG are highly correlated, Glasso Eq' (6.21) 0.81 0 B 0.5)
and which one is selected as neighbors is almost determined q. . —
by chance. Although this kind of parsimonious behavior is
quite useful in regression in terms of generalization ability,
itis really tricky in structure learning. 1if nonzero, while the third metric denoted Bj{N(stochas-

To conclude this subsection, the separated regressigmeighborhood #-NN) simply uses thé-NN method ac-
strategy adopted ihasso andAdalLasso cannot repro- cording to the absolute values of the correlation coefficients,
duce stable structures when there are correlated variablegsgproposed in Ref. [16].
the data. In contrasGlasso gives reasonably stable struc-  Finally, the fourth definition of anomaly score is based

tures. on the likelihood ratio, and defined as
6.2 Comparing anomaly scoresWe compared four dif- B NI
o : ; (6.21) d :1_1_[#
ferent definitions of anomaly scores. The fist one is our p . (x(n) |Z(n))
n=1 Al 17Ad )

posed metric, the expected conditional KL divergence (de-
noted byKL). The second and third one are based on a C§ihe dataD A perfectly fits to bothps and pg, dAB will
relation anomaly score in Ref. [16], which can be written gg, 0. Otherwise, it takes a value less than 1. In the above
IT(sa — sp) definitions,d?# is obtained by replacing A with B, and the
(6.20) dAB = AVCAT TR ], final score is defined byiax{d*B, dP*}, as in Eq. (5.16).
(L +15sa)(1+spla) Data. To demonstrate the utility of our approach, we
- o usedsensorerror datal which are based on many experi-
wherel , represents the indicator vector whose element cfania runs with prototype cars. The experiments were orig-
responding tar; is 1 if z; is a neighbor ofr;, 0 otherwise. 4y designed to check the behaviors when a driver sud-

Also, we assumed the same partition as Eq. (4.11) for {fign|y prakes, and thus the signals are highly nonstationary.
sample covariance matrix @f, . To obtain the indicator vec-

tor, the second metric denote BNG(stochastic neighbor- —Tcgrrelation coefficient matrices generated from the raw data are avail-
hood +Glasso ) usesGlasso , and set each element to beble on request.




The data are preprocessed to have zero mean, unit variance, ...

a 0.1 second interval, and no monotonic trends. Our obser- [ [ [ [~
vations showed that correlations along the time axis are not
considerable, thus time-series modeling is less useful.

This sensorerror data includes 79 experimental runs
under normal system operation, and 20 runs in a faulty state.
Each run contains aboW = 150 points of M = 44 vari-
ables. SinceV is on the same order &4, traditional asymp-
totic theories in statistics are hard to be applied. Anomalies
included in the faulty runs are due to sensor miswiring er-
rors, and we arranged the data so that each of the faulty runs
includes two faulty sensors at, andxss. In general, mis-
wiring errors are very hard to detect since the individual sen-
sors are healthy.

Figure 5 shows examples of pairwise scatter plots,
where only four variables out of the/ = 44 variables were
chosen from particular runs as described in the caption. In
this exampley,, is one of the error variables. This is sug-
gested by the disappearance of linear correlations. However,
considering the heavy fluctuations of the pairwise trajecto-
ries, detecting anomalies of this kind is very hard with ex-
isting methods such as statistical tests on correlation coeffi-
cients based on the Wishart distribution theory [1].

Evaluation measures.In our problem setting, there are
20 x 79 = 1580 possible tests between the reference and
faulty runs. To summarize the results, we use the ROC (Re-
ceiver Operating Characteristic) curve, which represents the
averaged relationship between the detection rate (how many
truly faulty variables are picked up) and the data coverage

(how many variables are looked ap). In this case, a I:2(?:(F\gure 5: Pairwise scattering plot sénsorerror data. Top:
curve is plotted by counting the number of detected faulﬁ;f1e 10th reference run. Bottom: The third faulty run

variables at each value of the data coverage.-, 2, ..., 1.
We also use AUC (Area Under Curve) to compare the good-

ness of different ROC curves. is interesting to see th&NGgets better thaiL whenp is

Results. Figures 6-8 show ROC curves fpr= 0.3,0.5  more than about 0.5, where learned structures are very sparse
and 0.7, where the dashed line is also plotted to represghé mean sparsity was about 0.98 for the reference runs at
a random selection. Regardi®NN we plotted the same , — (7). In this regime, the contribution of the individual

curve withk = 2 in the figures, which gave the best AUGyariances represented by and)g etc. are relatively impor-
value. Comparing four metrics, we first see thatltRescore ant. SinceSNGuses a simple definition without individual
is much worse than the others. This can be explained by {hgiance terms, it is more robust to the variations of the in-

fact thatl R uses the data in computing the score as well asjRjidual signals. However, further theoretical and empirical
building the model. Since the data are extremely noisy, thigalysis is left to the future work.

strategy will be more sensitive to the unwanted effects of the

noise. 7. Conclusion

Table 3 summarizes the best AUC values for each dEﬁW—e have proposed a framework that applies sparse structure
tion of the score. We see thiét. and SNGoutperformSNN prop bp P

demonstrating the utility of the adaptive neighborhood selé%—ammg 0 anomaly_de.te.ct|on. Ol.” task was to compqte the
) . anomaly scores of individual variables, rather than simply
tion. At the value ofp = 0.3, our observation shows that the ! )
. . - detecting that two data sets are different. To the best of our
links that have the absolute correlation coefficients less than o . . .
S . nowledge, this is the first work that tackles this task using

about 0.6 were pruned in this data (the mean sparsity was .
arse structure learning.

about 0.90 for the_reference ru_ns). Considering the ne@ﬁ’- We demonstrated that recently proposed sparse structure
borhood preservation assumption and the heavy fluctuatluon

L . X rning methods are highly instable when collinearities exist
as shown in Fig. 5, this looks a reasonable thresholdmg.iﬁl?the data. Therefore, those methods are of limited use for
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Figure 6: ROC curves fop = 0.3, comparingKL (o), SNG Figure 7: ROC curves fogp = 0.5, comparingKL (o), SNG
(@), SNN(A), andLR (x). (@), SNN(A), andLR (x).

real-valued sensor data in many cases. Our experimental | ve got the solution3 anyway, we update the corre-
results showed, however, that the graphical lasso algoritdghnding columns of by

successfully avoids this serious difficulty.
We compared a number of different metrics for scorin 1 B

correlation anomalies using a real-world automotive sené%r'S) A= o—BTWg’ - - BTWS,

data set, and showed that the proposed conditional KL

divergence metric significantly improves the performaneehere we used the lower right part of Eq. (Be8) I+ o) =

over existing metrics. 1 and Eg. (B-3). Also, using the upper right part of Eq. (B-2),
we updatew as

APPENDIX w=—WI/\.

A Proofs

Note thats is kept constant because of Eq. (4.12). Therefore,
A.1 Proof of Eq. (4.13) Based on the partitioning inin the graphical lasso algorithrit, = A~ is given as a side
Eq.(4.10), the upper right part of the equati®fi/OA = 0 product ofA, without making any explicit inversion.
is readily written as

i e _ A.2 Proof of Proposition 1. If M = 2, the objective
(8- w—s—psign(l) =0. function Eq. (4.7) is explicitly written as
SinceXA = I, we have
(B-Z) . f(/\, S, p) = 1n(A11)\22 — )\%2)
A — ( Lt WL A ) _ ( iz 0 ) , — (L )1+ Az) = 2(Aaz + plAa)),
wherer is the correlation coefficient (or the off-diagonal
element ofS), and \;; is the (¢, j) element ofA. From
(B-3) l=-\Wltw=-)\3, equations)f/0A1; = 0 anddf /0 = 0, we easily see
that

If we use the upper right part of this identity, we see

where we define@ = W—1w. SinceA is positive definite,

A must be positive. Thusign(l) = —sign(3) holds. Using 1 1 1
this, we see that Eq. (B-1) is equivalent to B-6) Ai1 = Xog = = + +4X )
q.(B-1)iseq (B-6) Ay 22 2{1+p “(1+p)2 12}

0 (1
B-4 2l 8Twg - 87 — 0. N
(B-4) B {2’8 WB=f s+p Vj”} 0 From the other conditio?f /02 = 0, we have
If we let W—1/23 beb, it is evident that this is equivalent to 1 of Ao .
Eq. (4.13). B-7) —5 Dy (1+ ,O)T11 + 7+ psign(Aiz) =0,



C Lasso-based structure learning algorithms

In this appendix, we recapitulate the methods compared to
the proposed approach.

C.1 Lasso.InLasso [20], we build an L;-regularized re-
gression model to each variable, using the others as predic-
tors. Specifically, for a variable;, solve Eq. (4.14) to get the
coefficient3. Since this coefficient predict the target vari-
ablex; as3 " z;, comparison with the partioning formula of
Gaussian (as Eqg. (2.3)) gives one column of the precision
matrix (see Eq. (4.10))

detection rate

A=1/6.>
*716/0-1 )

0 0.2

0.4 0.6
coverage

0.8 1

whereg;? is the estimated predictive variance. If one uses a
maximum likelihood estimator, this is given by

1 N
~ 2
R
where we usedf /911 = 0 to simplify the first term. From ) o ) )
this equation, we see thatX;» > 0then—1 < r < —p, BY repeating regression like this, we can build the whole
while if A1 < 0 thenp < r < 1. Noting this, and solving Précision matrix.
simultaneous equations Egs. (B-6) and (B-7) with respect to

|A12|, we obtain Proposition 1 after some algebra. C.2 Adaptive lasso.In AdalLasso [26, 5], we proceed as
follows.

Figure 8: ROC curves fop = 0.7, comparingKL (o), SNG

(), SNN(A), andLR (x). BTZ(n))z_

B Subgradient algorithm for Eq. (4.13)

In this Appendix, we explain how to solve the;L
regiularized quadratic programming problem defined in

1. Find a lasso regression coefficient vectbfor a vari-
ablez;.

Eq. (4.13) using a coordinate-wise subgradient method. 2.

Instead of Eq. (4.13), consider the equivalent expression
of Eq. (B-4). Differentiating with respect t6;, we have

Z WimBm — si + p sign(8;) = 0.

3.

For 5; > 0, a formal solution to this equation is given by

4.

Modify the predictorzgn) by making element-wise
product betweer™ and.

Solve Eq. (4.14) based on the modified data matrix.

Build a precision matrix in the same way as above.

5. Proceed to anothér

1
= Y17 A’L - )
p Wm'( p)
where we defined References
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