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Abstract

We consider the task of performing anomaly detection in
highly noisy multivariate data. In many applications involv-
ing real-valued time-series data, such as physical sensor data
and economic metrics, discovering changes and anomalies
in the way variables depend on one another is of particular
importance. Our goal is to robustly compute the “correla-
tion anomaly” score of each variable by comparing the test
data with reference data, even when some of the variables
are highly correlated (and thus collinearity exists). To re-
move seeming dependencies introduced by noise, we focus
on the most significant dependencies for each variable. We
perform this “neighborhood selection” in an adaptive manner
by fitting a sparse graphical Gaussian model. Instead of tra-
ditional covariance selection procedures, we solve this prob-
lem as maximum likelihood estimation of the precision ma-
trix (inverse covariance matrix) under the L1 penalty. Then
the anomaly score for each variable is computed by evaluat-
ing the distances between the fitted conditional distributions
within the Markov blanket for that variable, for the (two) data
sets to be compared. Using real-world data, we demonstrate
that our matrix-based sparse structure learning approach suc-
cessfully detects correlation anomalies under collinearities
and heavy noise.

1 Introduction

Knowledge discovery from networks and graphs is one of
the most exciting topics in data mining. While most of the
existing studies in network mining assume the knowledge
of graph structure as input, estimating general dependency
graphs given multivariate data is also an important prob-
lem. In contrast to binary sparse connectivities in e.g. coau-
thor networks, the dependency graph between the variables
in a real-valued multivariate system is in general a com-
plete graph since two variables are rarely totally indepen-
dent. Since real-world data necessarily includes considerable
amount of noise, however, some of the dependencies might
very well be due to noise. This motivates us to learn asparse
structurefrom data representing an essential relationship be-
tween the variables that is not an artifact of noise.

We consider the task of performing graph-based
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Figure 1: Problem setting. Given noisy sensor data sets A
and B, (1) we first learn sparse structures based on given
covariance matrices. (2) Next, the two sparse graphs are
compared to give the anomaly score ofeachvariable.

anomaly detection in the following setting [16]: Given two
dependency graphs of a multivariate system, identify the
nodes (variables) which are most responsible for the differ-
ence between them, and compute the degree to which each
node contributes to the difference. We call this problem
change analysisto contrast with only detecting the overall
change. Figure 1 summarizes our problem. As shown in the
figure, we focus on dependency graphs typically produced
by noisy sensor data, and anomalies that occur in the de-
pendencies (we call themcorrelation anomalies). This is
because detecting anomalies that occur only within the in-
dividual variables is often trivial, while detecting correlation
anomalies is much harder and is practically important in fault
analysis of complicated dynamic systems such as automo-
biles [16] and computer systems [15]. Starting with dense
dependency graphs that might be contaminated by noise, we
first attempt to find sparse structures by removing the un-
wanted effects of noise. Then we compare the learned struc-
tures to compute the anomaly score for each variable.

In statistics, the problem of structure learning from real-
valued multivariate data has been treated within the frame-
work of covariance selection, as originally proposed by
Dempster [6]. As the name suggests, covariance selection



assumes the multivariate Gaussian as a generative model,
and fits a precision matrix (the inverse of the covariance ma-
trix) to the data under a sparsity constraint. Recently, sev-
eral new sparse structure learning algorithms have been pro-
posed [19, 20, 5, 3, 7, 9] to remedy drawbacks of the tradi-
tional covariance selection framework. In particular, Mein-
shausen and B̈uhlmann [20] formulated the task of sparse
structure learning as neighborhood selection of each vari-
able, and proposed a method based on lasso (L1 penalized
linear regression) where each variable is treated as the target
and the rest as the predictors. Thanks to the L1 regularizer,
many of the linear regression coefficients become exactly
zero, and predictors with nonzero coefficients are thought of
as the neighbors of the target.

From a practical perspective, one of the most important
merits of the method of [20] is that, in principle, it enables
us to learn a sparse graph structure even when the number
of variables (M ) is comparable to the number of samples
(N ). This is different from the traditional covariance selec-
tion procedure, where the algorithm cannot give meaningful
results when the sample covariance matrix is rank deficient,
as is always the case whenM > N or when some of the
variables are highly correlated.

In this paper, we apply L1 penalized sparse structure
learning to the task of scoring correlation anomalies. We
assume that some of the variables are highly correlated in
the data, which is quite common in sensor data analytics.
We experimentally demonstrate that the algorithm of [20] is
instable in such cases, while the graphical lasso algorithm [9]
enjoys robustness against noise. Based on the framework
of graphical Gaussian model, we propose a definition of
“correlation anomaly score” in an information-theoretically
consistent manner.

The rest of the paper is organized as follows. Section 2
illustrates our problem setting in more detail using a motivat-
ing example, and explains the essence of graphical Gaussian
models. Section 3 surveys related work including compar-
ison with the two-sample problem in statistics. Section 4
discusses sparse structure learning algorithms with particular
emphasis on graphical lasso. Section 5 defines the correla-
tion anomaly scores. Section 6 presents experimental results
including those with actual car sensor data. Finally, Section 7
concludes the paper.

2 Preliminaries

In this section, we briefly recapitulate the graphical Gaussian
model (GGM), and summarize our problem setting.

2.1 Motivating example and problem statement.In
many real-valued time-series data such as physical sensor
data and econometrics data, it is usual that some of the vari-
ables are highly correlated. Figure 2 shows such an exam-
ple, where daily spot prices (foreign currency in dollars)

Table 1: Abbreviations inActual spot ratesdata.
AUD Australian Dollar NLG Dutch Guilder
BEF Belgian Franc NZD New Zealand Dollar
CAD Canadian Dollar ESP Spanish Peseta
FRF French Franc SEK Swedish Krone
DEM German Mark CHF Swiss Franc
JPY Japanese Yen GBP UK Pound

Table 2: Correlation coefficients for the data shown in Fig. 3.
Values in the parenthesis correspond to the bottom plot.

BEF CAD FRF
AUD 0.31 (-0.37) 0.91 (0.04) 0.26 (-0.23)
BEF 0.46 (0.19) 0.99 (0.97)
CAD 0.41(0.30)

are shown over the last 567 days in theActual spot rates
data [17]. The original data was collected over the 10 years
from Oct. 9, 1986 through Aug. 9, 1996. Abbreviations used
in the figure can be found in Table 1. As expected, European
currencies such as BEF, FRF, DEM, and NLG are highly cor-
related. In fact, from Figure 3, which shows a pairwise scat-
tering plot between the first four currencies, we see that BEF
and FRF are almost perfectly correlated, while other squares
show more complex trajectories.

This figure suggests an important starting point for cor-
relation anomaly analysis. If a correlation is far from per-
fect, and if the data is noisy, generated by some complicated
dynamics, trajectories in the pairwise scattering plots will
be complex and instable. In fact, the corresponding correla-
tion coefficients shown in Table 2 demonstrate considerable
fluctuations in the pairs except for (BEF, FRF). Detecting
anomalies under these circumstances can be challenging un-
less there is some detectable persistent property, motivating
us to formulate the following assumption.

ASSUMPTION1. (NEIGHBORHOOD PRESERVATION) If
the system is working normally, the neighborhood graph
of each node is almost invariant against the fluctuations of
experimental conditions.

(The definition of a neighborhood graph will be given in
the next subsection, Definition 2). Thus, in the present pa-
per, we equate the problem of correlation anomaly detection
with that of detecting significant changes in the neighbor-
hood graph of the variables involved. We believe that this
assumption is reasonable in many practical situations, in-
cluding those in which data are generated by a system with
complicated dynamics, and this is the main motivation for
our graph-based approach to anomaly detection.

Now we state the problem addressed in this paper.
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Figure 2:Actual spot ratesdata over the 567 days until Aug.
9, 1996.

Suppose that we are given two data sets

DA ≡ {x(n)
A |x(n)

A ∈ RM , n = 1, 2, ..., NA}

DB ≡ {x(n)
B |x(n)

B ∈ RM , n = 1, 2, ..., NB}.

Since we are interested mainly in noisy sensor data, the index
n typically runs over discrete values of time. InDA andDB,
the number of measurements,NA andNB, can be different,
but the number of variables and the identity of each variable
must be the same. For example, if the first dimension ofx

(n)
A

in DA measures atmospheric pressure, the first dimension of
x

(n)
B inDB also measures the same quantity in some different

situation.
Now our problem is stated as follows.

DEFINITION 1. (CHANGE ANALYSIS PROBLEM) Given
DA and DB, compute the anomaly score of each variable
representing how much each variable contributes to the
difference between the data.

This problem, as formulated, shares some similarity with
the “two-sample problem” in statistics. We will discuss the
relationship between the two problems in the next section.

2.2 Graphical Gaussian model.For anM -dimensional
random variablex ∈ RM , the GGM assumesM -
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Figure 3: Pairwise scattering plot of four countries inActual
spot ratesdata. Top: first 500 days. Bottom: last 567 days.

dimensional Gaussian distribution

(2.1) N (x|0, Λ−1) =
det(Λ)1/2

(2π)M/2
exp

(
−1

2
x⊤Λx

)
,

where det represents matrix determinant, andΛ ∈ RM×M

denotes a precision matrix. We denote byN (·|µ, Σ) a
Gaussian distribution with mean vectorµ and covariance
matrix Σ. As mentioned above, a precision matrix is the
inverse of a covariance matrix, and vice versa.

In the GGM, a Gaussian distribution is associated with a
graph(V,E), whereV is the set of nodes containing all the
M variables, andE is a set of edges. The edge between
xi and xj is absent if and only if they are independent
conditioned on all the other variables. Under the Gaussian
assumption, this condition is represented as

(2.2) Λi,j = 0 ⇒ xi ⊥⊥ xj | other variables,

where⊥⊥ denotes statistical independence. Stating formally,
we give the definition of neighborhood as follows.



DEFINITION 2. (NEIGHBORHOOD) We say that a nodexi

is a neighborhood ofxj , if and only if Λi,j ̸= 0. A
neighborhood graph ofxi is the graph that containsxi and
its neighbors, connected with edges between thexi and its
neighbors. Neighborhood selection is the task to enumerate
all neighbors of each node.

The condition (2.2) can be easily understood by explic-
itly writing down the conditional distribution. Let us denote
(xi, xj)⊤ by xa, and the rest of the variables byxb. For cen-
tered data, a standard partitioning formula of Gaussian (see,
e.g. [4], Sec. 2.3) gives the conditional distribution as

(2.3) p(xa|xb) = N (xa| − Λ−1
aa Λabxb, Λ

−1
aa ),

where, corresponding to the partitioning betweenxa andxb,
we put

(2.4) Λ =
(

Λaa Λab

Λba Λbb

)
.

In this case,Λaa is 2 × 2, so the inverse can be analytically
calculated, giving the off-diagonal element proportional to
Λi,j . Thus ifΛi,j = 0, xi andxj are statistically independent
conditioned on the rest of the variables.

Our first goal is to find a sparseΛ, whose entries
are nonzero for essentially coupled pairs, and are zero for
weakly correlated pairs that might be induced just by the
noise. Such a sparseΛ will represent an essential depen-
dency structure not due to noise, and thus should be useful
for detecting correlation anomalies. In real noisy data, how-
ever, every entry in the sample covariance matrixS will be
nonzero, and the precision matrixΛ cannot be sparse in gen-
eral. Moreover, if there are highly correlated variables,S
becomes rank deficient, andΛ does not even exist. IfS is
full rank in theory, it is sometimes the case that matrix inver-
sion is numerically unstable whenM is more than several
tens. This is an essential difficulty in traditional covariance
selection procedures [6], where small entries inΛ are set to
be zero step by step. Since our assumption is that the data
include some highly correlated variables, which holds very
generally in sensor data, such approaches are of little use in
our context. This motivates us to use an L1 penalized maxi-
mum likelihood approach, as discussed later.

3 Related work

3.1 Anomaly detection from graphs. Anomaly or
change detection from sequences of graphs [15] is of
particular importance in practice. Sun et al. [23] proposed a
method for identifying anomalous nodes by computing the
proximities between nodes. Their task is similar to ours, but
differs in that they consider a single bi-partite graph rather
than comparing two graphs. Sun et al. [22] also studied
change detection from a sequence of graphs based on a
clustering technique for graph nodes. Node clustering is

similar to neighborhood selection, but it is generally hard
to be applied to dense graphs. Tong et al. [24] addressed
a similar change detection task, but their goal is not to
give the anomaly score to the individual nodes. Xuan and
Murphy [25] addressed the task of segmenting multivariate
time series. While their task differs from ours, they used L1

penalized maximum likelihood for structure learning, which
is the same approach as ours.

3.2 Structure learning. Covariance selection [6] is a stan-
dard approach to sparse structure learning. However, it is
known that it has several drawbacks in practice such as a high
computational cost and a suboptimality in terms of statisti-
cal tests. Drton and Perlman [7] addressed mainly the sec-
ond issue, and proposed an algorithm named SIN, although
it does not lift the requirement that the sample covariance
matrix must be full rank. Since we are interested in the sit-
uation where measurement systems have some redundancy,
and hence some of the variables are highly correlated, SIN is
less useful to our problem.

In such cases, L1-penalized regression approaches [20,
5, 3, 9] and a Bayesian sparse learning strategy [19] are
promising. There is no consensus in the literature, however,
on what is the best method to use to learn sparse structures
in these situations. For the task of causal modeling, Arnold
et al. [2] compares a number of structure learning algorithms
including SIN [7] and lasso [20], although their goal is to
learn causal graphs itself, and did not address the issue of
data with highly correlated variables.

3.3 Two-sample tests.The two-sample test is a statistical
test whose goal is to detect the difference between two data
sets. Formally, it attempts to decide whetherpA = pB or
pA ̸= pB, wherepA and pB are probability distributions
learned fromDA and DB, respectively. The two-sample
test has a long history in statistics, and a variety of methods
have been proposed so far, such as the Kolmogorov-Smirnov
test [10] and nearest neighbor test [14]. Although the two-
sample problem is similar to ours, but different in that the
goal is just to tell how muchpA andpB are different, rather
than scoring individual variables.

Related to the two-sample test, kernel-based tests for in-
dependence have attracted attention in recent years. Gretton
et al. [12, 13] proposed kernel-based metrics for the two-
sample test and an independence test. Fukumizu et al. [11]
proposed to use a covariance operator defined on reproduc-
ing kernel Hilbert spaces to test conditional dependence.
Their approach can be viewed as an extension of the GGM,
and is potentially useful for structure learning from the data
having complex correlations as shown in Fig. 3. However,
it is still an open problem how to generalize Assumption 1,
which is implicitly based on the notion of linear correlation,
in accordance with the generalized notion of independence.



This would be interesting future work that is not covered in
the present paper.

4 Sparse structure learning

This section considers step (1) in Fig. 1. That is, we consider
how to learn a sparse structure from the data. Since this step
is common to both the data A and B, we omit the subscript
showing A or B for now, and write either of the data as
D = {x(n)|n = 1, ..., N }. We assume thatD has been
standardized to have zero mean and unit variance. Then the
sample covariance matrixS is given by

(4.5) Si,j ≡ 1
N

N∑
n=1

x
(n)
i x

(n)
j ,

which is the same as the correlation coefficient matrix of this
data.

4.1 Penalized maximum likelihood. In the GGM, struc-
ture learning is reduced to finding a precision matrixΛ of the
multivariate Gaussian (Eq. (2.1)). If we ignore the regular-
ization penalty for sparsity for now, we can getΛ by maxi-
mizing the log-likelihood

ln
N∏

t=1

N (x(t)|0, Λ−1) = const.+
N

2
{ln det(Λ) − tr(SΛ)} ,

where tr represents the matrix trace (sum over the diagonal

elements), and we used a well-known identityx(t)⊤x(t) =
tr(x(t)x(t)⊤) and (4.5). If we use the well-known formulas
on matrix derivative

(4.6)
∂

∂Λ
ln det(Λ) = Λ−1,

∂

∂Λ
tr(SΛ) = S,

we readily get the formal solutionΛ = S−1. However, as
mentioned before, this produces less practical information
on the structure of the system, since the sample covariance
matrix is often rank deficient and the resulting precision
matrix will not be sparse in general.

Therefore, instead of the standard maximum likelihood
estimation, we solve an L1-regularized version of maximum
likelihood:

Λ∗ = arg max
Λ

f(Λ; S, ρ),(4.7)

f(Λ; S, ρ) ≡ ln detΛ − tr(SΛ) − ρ||Λ||1,(4.8)

where ||Λ||1 is defined by
∑M

i,j=1 |Λi,j |. Thanks to the
penalty term, many of the entries inΛ will be exactly zero.
The penalty weightρ is an input parameter, which works as
a threshold below which correlation coefficients are thought
of as zero, as discussed later.

4.2 Graphical lasso algorithm. Since Eq. (4.7) is a con-
vex optimization problem [3], one can use subgradient meth-
ods for solving this. Recently, Friedman, Hastie and Tibshi-
rani [9] proposed an efficient subgradient algorithm named
graphical lasso. We recapitulate it in this subsection.

The graphical lasso algorithm first reduces the problem
Eq. (4.7) to a series of related L1 regularized regression
problem by utilizing a block coordinate descent technique [3,
8]. Using the formula Eq. (4.6), we see that the gradient of
Eq. (4.7) is given by

(4.9)
∂f

∂Λ
= Λ−1 − S − ρ sign(Λ),

where the sign function is defined so that the(i, j) element
of the matrixsign(Λ) is given bysign(Λi,j) for Λi,j ̸= 0, and
a value∈ [−1, 1] for Λi,j = 0.

To use a block coordinate descent algorithm for solving
∂f/∂Λ = 0, we focus on a particular single variablexi, and
partitionΛ and its inverse as

(4.10) Λ =
(

L l
l⊤ λ

)
, Σ ≡ Λ−1 =

(
W w
w⊤ σ

)
,

where we assume that rows and columns are always arranged
so that thexi-related entries are located in the last row and
column. In these expressions,W,L ∈ R(M−1)×(M−1),
λ, σ ∈ R, andw, l ∈ RM−1. Corresponding to thisxi-based
partition, we also partition the sample covariance matrixS in
the same way, and write as

(4.11) S =
(

S\i s
s⊤ si,i

)
.

Now let us find the solution of the equation∂f/∂Λ = 0.
SinceΛ must be positive definite, the diagonal element must
be strictly positive. Thus, for the diagonal element, the
condition of vanishing gradient leads to

(4.12) σ = si,i + ρ.

For the off-diagonal entries represented byw andl, the
optimal solution under which all the other variables are kept
constant is obtained by solving

(4.13) min
β

{
1
2
||W 1

2 β − b||2 + ρ ||β||1
}

= 0,

whereβ ≡ W−1w, b ≡ W−1/2s, and ||β||1 ≡
∑

l |βl|.
For the proof, see Appendix A.1. This is an L1-regiularized
quadratic programming problem, and again can be solved
efficiently with a coordinate-wise subgradient method [9].
The algorithm is sketched in Appendix B.

Now to obtain the final solutionΛ∗, we repeat solving
Eq. (4.13) forx1, x2, ..., xM , x1, ... until convergence. Note
that the matrixW is full rank due to Eq. (4.12). This suggests
a numerical stability of the algorithm. In fact, as shown later,
it gives a stable and reasonable solution even when some of
the variables are highly correlated.



4.3 Connection to Lasso.The coordinate-wise optimiza-
tion problem (Eq. (4.13)) derived by the graphical lasso algo-
rithm has clear similarity to the lasso-based structure learn-
ing algorithm. The algorithm of Ref. [20] solves separate
lasso regression problems for eachxi:

(4.14) min
β

{
1
2
||Ziβ − yi||2 + µ||β||1

}
,

where we definedyi ≡ (x(1)
i , ..., x

(N)
i )⊤, and a data matrix

Zi ≡ [z(1)
i , ...,z

(N)
i ]⊤ with

z
(n)
i ≡ (x(n)

1 , .., x
(n)
i−1, x

(n)
i+1, ..., x

(n)
M )⊤ ∈ RM−1.

Using the definition ofS (Eq. (4.5)), it is easy to see that
this problem is equivalent to Eq. (4.13), when

(4.15) W = S\i and ρ ∝ µ

are satisfied. SinceW is a principal submatrix ofΛ−1,
we see that there is a correspondence betweenW andS\i

when ρ is small. It will never be satisfied forρ > 0,
however. In this sense, the graphical lasso algorithm solves
an optimization problem similar to but different from the
one in [20]. This fact motivates us to empirically study the
difference between the two algorithms as shown in the next
section.

4.4 Choosingρ. We have treated the penalty parameterρ
as a given constant so far. In many regularization-based ma-
chine learning methods, how to choose the penalty param-
eter is a subtle problem. In the present context, however,
ρ should be treated as an input parameter since our goal is
not to find the “true” structure but to reasonably select the
neighborhood.

To get insights on how to relateρ with the neighborhood
size, we note the following result:

PROPOSITION1. If we consider a2×2 problem defined only
by two variablesxi andxj (i ̸= j), the off-diagonal element
of the optimalΛ as the solution to Eq.(4.7) is given by

Λi,j =

{
− sign(r)(|r|−ρ)

(1+ρ)2−(|r|−ρ)2 for |r| > ρ

0 for |r| ≤ ρ,

wherer is the correlation coefficient between the two vari-
ables.

For the proof, see Appendix A.2.
Although this is not the solution to the full system, it

gives us a useful guide about how to chooseρ. For example,
if a user wishes to think of dependencies corresponding to
absolute correlation coefficients less than 0.5 as noise, then
the inputρ should be less than the intended threshold, and
possibly a value aroundρ = 0.3 would work. If ρ is close to

1, resulting neighborhood graphs will be very small, while a
value close to 0 leads to an almost complete graph where all
the variables are thought of as being connected.

This property is very useful given the neighborhood
preservation assumption. In Section 2, we saw that the
correlation coefficients are subject to strong fluctuations
in many highly dynamic systems unless their magnitude
is close to 1. It is evident, however, that simply letting
some entries be zero with a threshold does not maintain the
mathematical consistency as a graphical Gaussian model. In
addition, derived results can be sensitive to the threshold
value. Sparse structure learning allows us to reduce the
undesired effects of noise by fitting a sparse model in a
theoretically consistent fashion.

We should also note that sparse structure learning allows
us to conduct neighborhood selection in an adaptive manner.
If a variable is isolated with almost no dependencies on
others, the number of selected neighbors will be zero. Also,
we naturally expect that variables in a tightly-connected
cluster would select the cluster members as their neighbors.
We will see, however, that the situations when there are
highly correlated variables are much trickier than it seems.

5 Scoring Correlation Anomalies

Suppose that based on the algorithm in the previous section,
we have obtained two sparse GGMs,pA(x) andpB(x). In
this section, we discus how to define the anomaly score for
each variable, given these models.

5.1 Expected Kullback-Leibler divergence.Our final
goal is to quantify how much each variable contributes to the
difference betweenDA andDB in terms of each variable.
Given the probabilistic models, the most natural difference
measure is the Kullback-Leibler (KL) divergence. Let us fo-
cus on a variablexi for a while, and consider the following
quantity
(5.16)

dAB
i ≡

∫
dzi pA(zi)

∫
dxi pA(xi|zi) ln

pA(xi|zi)
pB(xi|zi)

.

This is the expected KL divergence betweenpA(xi|zi) and
pB(xi|zi), integrated over the distributionpA(zi). By re-
placing A with B in Eq. (5.16), we also obtain the definition
of dAB

i . Since we are working with Gaussians, the integral
can be analytically performed. The result is

dAB
i = w⊤

A(lB − lA)(5.17)

+
1
2

{
l⊤BWAlB

λB
− l⊤AWAlA

λA

}
+

1
2

{
ln

λA

λB
+ σA(λB − λA)

}
,



where we partitionedΛA and its inverseΣA as
(5.18)

ΛA =
(

LA lA
l⊤A λA

)
, ΣA ≡ Λ−1

A =
(

WA wA

w⊤
A σA

)
,

respectively (see Eq. (4.10)). A similar partition is also
applied toΛB andΣB. The definition ofdBA

i is obtained by
replacing A with B in the above. The derivation of Eq. (5.17)
is straightforward if the standard partitioning formula (see
Eq. (2.3)) is used.

The definition (5.17) has a clear interpretation. By
definition of GGMs, the number of nonzero entries inlA
is the same as the degree of the nodexi. In this sense,
lA contains the information on the neighborhood graph of
xi. Thus the first term mainly detects the change of the
degree. The second term corresponds to the difference in the
“tightness” of the neighborhood graph. Specifically, ifxi has
a single link toj, this term is proportional to the difference
between corresponding correlation coefficient, normalized
by the single variable precisionsλA and λB. The third
term is related to the change in single variable precisions (or
variances).

5.2 Anomaly score.dAB
i anddBA

i are quantities that mea-
sure the change in the neighborhood graph of thei-th node.
The greater these quantities are, the greater change we have
concerningxi. Thus, given the assumption of neighborhood
preservation, it is reasonable to define the anomaly score of
thei-th variable as

(5.19) ai ≡ max{dAB
i , dBA

i }

This definition is a natural extension of a prior proposal
of [16]. One of the drawbacks of that approach is that it
simply uses thek-NN strategy for neighborhood selection.
Also, due to a heuristic definition of the dissimilarity, it
cannot detect anomalies caused by sign changes such as
xi → −xi. In the present study, we propose an information-
theoretic definition of the anomaly score, which detect any
type of anomaly that affects the probability distribution, in
principle.

5.3 Algorithm summary. Our method for scoring corre-
lation anomalies consists of two steps. The first step learns
a sparse structure, and the second step is to compute the
anomaly score of each variable.

1. Input:

• Reference and target data setsDA andDA.

• Penalty parameterρ.

2. Output: Individual anomaly scoresa1, ..., aM .

3. Algorithm:

(a) Compute correlation matricesSA and SB using
Eq. (4.5).

(b) Use graphical lasso to obtain precision matrices
ΛA andΛB, and also obtain their inverseΣA and
ΣB as side products.

(c) Compute discrepanciesdAB
i and dBA

i using
Eq. (5.17) to obtain anomaly scoreai for i =
1, ...,M .

Finally, we briefly examine at the complexity of the
algorithm. As shown in Eq. (4.5), the cost to compute the
covariance matrix isO(M2N). For computing the precision
matrix, the graphical lasso algorithm needsO(M3) cost in
the worst case. While the behavior of the algorithm is still
not fully understood, it is known in practice that the cost can
be sub-cubic in the sparse case [9]. Systematic analysis on
the complexity of structure learning algorithms would be an
interesting future work.

6 Experiments

In this section, we first compare different structure learn-
ing algorithms with particular emphasis on the stability un-
der collinearities. Then we test the proposed correlation
anomaly metric using real-world car sensor data.

6.1 Comparing structure learning algorithms. Consid-
ering the fact that the traditional covariance selection proce-
dures face evident difficulty with data having highly corre-
lated variables, studying the stability of L1-penalized learn-
ing algorithm is of particular interest. We compared the
graphical lasso algorithm (denoted byGlasso ) with two
other structure learning algorithms.

The first alternative (denoted byLasso ) is the method
due to Meinshausen and Bühlmann [20], where lasso regres-
sion is done for each variable using the others as predictors.
They showed that their approach satisfies a form of statisti-
cal consistency. In practice, however, it is known that their
algorithm tends to over-select neighbors [21, 5]. As an al-
ternative, it has been proposed [5] to use an adaptive lasso
algorithm [26] for sparse structure learning. Adaptive lasso,
denoted byAdaLasso , is a two-stage regression algorithm
where the results of the first regression is used to improve the
second stage lasso regression. Here we use a method which
uses lasso also in the first stage, as suggested in Ref. [5].
Since we are interested in the situations where some of the
variables are highly correlated, and henceS is rank deficient,
traditional types of approaches [18, 7] based on direct esti-
mation of the precision matrix are out of our scope.

Data and evaluation measure.We tested the stability
of structure learning algorithms by comparing learned struc-
tures before and after adding white noise. The data used was
Actual spot ratesdata as explained in Section 2. We gen-
erated 25 subsets of the data by using non-overlapping win-



dows containing 100 consecutive days, and applied the three
algorithms to each one, changing the value of the penalty
parameter. We then computed the sparsity defined by

(sparsity)≡ N0

M(M − 1)
,

whereN0 is the number of zeros in the off-diagonal elements
of Λ.

After the first learning, we added zero-mean Gaussian
noise to the data asxi ← xi+ϵi, whereϵi is independent and
identically distributed Gaussian noise. Then we computed
the probability of edge flip formally defined by

(flip probability)≡ N1/N0,

whereN1 is the number of edges that are flipped (i.e. either
appeared or disappeared) by the noise.

Results. Figure 4 shows the result, where the flip
probability is shown as a function of the sparsity. We used
white noise with the standard deviation of only 0.1 (applied
after standardization of the entire data). From the figure, we
see that there are considerable instabilities inLasso and
AdaLasso . With these algorithms, the flip probability is
on the order of 50% at sparsity of 0.5. On the other hand,
Glasso is much more stable under noise. The instability of
Lasso andAdaLasso can be understood from the general
tendency that lasso tends to select only one of the correlated
features. In theActual spot ratesdata, European currencies
such as BEF, FRF, DEM, and NLG are highly correlated,
and which one is selected as neighbors is almost determined
by chance. Although this kind of parsimonious behavior is
quite useful in regression in terms of generalization ability,
it is really tricky in structure learning.

To conclude this subsection, the separated regression
strategy adopted inLasso and AdaLasso cannot repro-
duce stable structures when there are correlated variables in
the data. In contrast,Glasso gives reasonably stable struc-
tures.

6.2 Comparing anomaly scores.We compared four dif-
ferent definitions of anomaly scores. The fist one is our pro-
posed metric, the expected conditional KL divergence (de-
noted byKL). The second and third one are based on a cor-
relation anomaly score in Ref. [16], which can be written as

(6.20) dAB
i =

∣∣∣∣∣ l̃⊤A(sA − sB)
(1 + l̃⊤AsA)(1 + s⊤

B l̃A)

∣∣∣∣∣ ,

wherel̃A represents the indicator vector whose element cor-
responding toxj is 1 if xj is a neighbor ofxi, 0 otherwise.
Also, we assumed the same partition as Eq. (4.11) for the
sample covariance matrix ofDA. To obtain the indicator vec-
tor, the second metric denote bySNG(stochastic neighbor-
hood +Glasso ) usesGlasso , and set each element to be
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Figure 4: Edge flip probability as a function of spar-
sity, showing considerable instabilities inLasso and
AdaLasso .

Table 3: Compared anomaly metrics and their best AUC
values.

symbol neighborhood metric best AUC
KL Glasso Eq. (5.17) 0.96(ρ = 0.3)

SNG Glasso Eq. (6.20) 0.93 (ρ = 0.7)
SNN k-NN Eq. (6.20) 0.87 (k = 2)
LR Glasso Eq. (6.21) 0.81 (ρ = 0.5)

1 if nonzero, while the third metric denoted bySNN(stochas-
tic neighborhood +k-NN) simply uses thek-NN method ac-
cording to the absolute values of the correlation coefficients,
as proposed in Ref. [16].

Finally, the fourth definition of anomaly score is based
on the likelihood ratio, and defined as

(6.21) dAB
i = 1 −

NA∏
n=1

pA(x(n)
Ai |z

(n)
Ai )

pB(x(n)
Ai |z

(n)
Ai ).

If the dataDA perfectly fits to bothpA and pB, dAB
i will

be 0. Otherwise, it takes a value less than 1. In the above
definitions,dBA

i is obtained by replacing A with B, and the
final score is defined bymax{dAB

i , dBA
i }, as in Eq. (5.16).

Data. To demonstrate the utility of our approach, we
usedsensorerror data,1 which are based on many experi-
mental runs with prototype cars. The experiments were orig-
inally designed to check the behaviors when a driver sud-
denly brakes, and thus the signals are highly nonstationary.

1Correlation coefficient matrices generated from the raw data are avail-
able on request.



The data are preprocessed to have zero mean, unit variance,
a 0.1 second interval, and no monotonic trends. Our obser-
vations showed that correlations along the time axis are not
considerable, thus time-series modeling is less useful.

This sensorerror data includes 79 experimental runs
under normal system operation, and 20 runs in a faulty state.
Each run contains aboutN = 150 points ofM = 44 vari-
ables. SinceN is on the same order asM , traditional asymp-
totic theories in statistics are hard to be applied. Anomalies
included in the faulty runs are due to sensor miswiring er-
rors, and we arranged the data so that each of the faulty runs
includes two faulty sensors atx24 andx25. In general, mis-
wiring errors are very hard to detect since the individual sen-
sors are healthy.

Figure 5 shows examples of pairwise scatter plots,
where only four variables out of theM = 44 variables were
chosen from particular runs as described in the caption. In
this example,x24 is one of the error variables. This is sug-
gested by the disappearance of linear correlations. However,
considering the heavy fluctuations of the pairwise trajecto-
ries, detecting anomalies of this kind is very hard with ex-
isting methods such as statistical tests on correlation coeffi-
cients based on the Wishart distribution theory [1].

Evaluation measures.In our problem setting, there are
20 × 79 = 1580 possible tests between the reference and
faulty runs. To summarize the results, we use the ROC (Re-
ceiver Operating Characteristic) curve, which represents the
averaged relationship between the detection rate (how many
truly faulty variables are picked up) and the data coverage
(how many variables are looked at). In this case, a ROC
curve is plotted by counting the number of detected faulty
variables at each value of the data coverage,0, 1

M , 2
M , ..., 1.

We also use AUC (Area Under Curve) to compare the good-
ness of different ROC curves.

Results.Figures 6-8 show ROC curves forρ = 0.3, 0.5
and 0.7, where the dashed line is also plotted to represent
a random selection. RegardingSNN, we plotted the same
curve withk = 2 in the figures, which gave the best AUC
value. Comparing four metrics, we first see that theLR score
is much worse than the others. This can be explained by the
fact thatLRuses the data in computing the score as well as in
building the model. Since the data are extremely noisy, this
strategy will be more sensitive to the unwanted effects of the
noise.

Table 3 summarizes the best AUC values for each defini-
tion of the score. We see thatKL andSNGoutperformSNN,
demonstrating the utility of the adaptive neighborhood selec-
tion. At the value ofρ = 0.3, our observation shows that the
links that have the absolute correlation coefficients less than
about 0.6 were pruned in this data (the mean sparsity was
about 0.90 for the reference runs). Considering the neigh-
borhood preservation assumption and the heavy fluctuation
as shown in Fig. 5, this looks a reasonable thresholding. It
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Figure 5: Pairwise scattering plot ofsensorerror data. Top:
The 10th reference run. Bottom: The third faulty run.

is interesting to see thatSNGgets better thanKL whenρ is
more than about 0.5, where learned structures are very sparse
(the mean sparsity was about 0.98 for the reference runs at
ρ = 0.7). In this regime, the contribution of the individual
variances represented byσA andλB etc. are relatively impor-
tant. SinceSNGuses a simple definition without individual
variance terms, it is more robust to the variations of the in-
dividual signals. However, further theoretical and empirical
analysis is left to the future work.

7 Conclusion

We have proposed a framework that applies sparse structure
learning to anomaly detection. Our task was to compute the
anomaly scores of individual variables, rather than simply
detecting that two data sets are different. To the best of our
knowledge, this is the first work that tackles this task using
sparse structure learning.

We demonstrated that recently proposed sparse structure
learning methods are highly instable when collinearities exist
in the data. Therefore, those methods are of limited use for
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Figure 6: ROC curves forρ = 0.3, comparingKL (◦), SNG
(¤), SNN(△), andLR (×).

real-valued sensor data in many cases. Our experimental
results showed, however, that the graphical lasso algorithm
successfully avoids this serious difficulty.

We compared a number of different metrics for scoring
correlation anomalies using a real-world automotive sensor
data set, and showed that the proposed conditional KL
divergence metric significantly improves the performance
over existing metrics.

APPENDIX

A Proofs

A.1 Proof of Eq. (4.13). Based on the partitioning in
Eq.(4.10), the upper right part of the equation∂f/∂Λ = 0
is readily written as

(B-1) w − s − ρ sign(l) = 0.

SinceΣΛ = IM , we have
(B-2)

ΣΛ =
(

WL + wl⊤ W l + λw
l⊤W + λw⊤ w⊤l + σλ

)
=

(
IM−1 0
0⊤ 1

)
.

If we use the upper right part of this identity, we see

(B-3) l = −λW−1w = −λβ,

where we definedβ ≡ W−1w. SinceΛ is positive definite,
λ must be positive. Thussign(l) = −sign(β) holds. Using
this, we see that Eq. (B-1) is equivalent to

(B-4)
∂

∂β

{
1
2
β⊤Wβ − β⊤s + ρ ||β||

}
= 0.

If we let W−1/2β beb, it is evident that this is equivalent to
Eq. (4.13).
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Figure 7: ROC curves forρ = 0.5, comparingKL (◦), SNG
(¤), SNN(△), andLR (×).

If we got the solutionβ anyway, we update the corre-
sponding columns ofΛ by

(B-5) λ =
1

σ − β⊤Wβ
, l = − β

σ − β⊤Wβ,
,

where we used the lower right part of Eq. (B-2)w⊤l+σλ =
1 and Eq. (B-3). Also, using the upper right part of Eq. (B-2),
we updatew as

w = −W l/λ.

Note thatσ is kept constant because of Eq. (4.12). Therefore,
in the graphical lasso algorithm,Σ = Λ−1 is given as a side
product ofΛ, without making any explicit inversion.

A.2 Proof of Proposition 1. If M = 2, the objective
function Eq. (4.7) is explicitly written as

f(Λ; S, ρ) = ln(λ11λ22 − λ2
12)

− (1 + ρ)(λ11 + λ22) − 2(rλ12 + ρ|λ12|),

where r is the correlation coefficient (or the off-diagonal
element ofS), and λij is the (i, j) element ofΛ. From
equations∂f/∂λ11 = 0 and∂f/∂λ22 = 0, we easily see
that

(B-6) λ11 = λ22 =
1
2

{
1

1 + ρ
+

√
1

(1 + ρ)2
+ 4λ12

}
.

From the other condition∂f/∂λ12 = 0, we have

(B-7) −1
2

∂f

∂λ12
= (1 + ρ)

λ12

λ11
+ r + ρ sign(λ12) = 0,
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Figure 8: ROC curves forρ = 0.7, comparingKL (◦), SNG
(¤), SNN(△), andLR (×).

where we used∂f/∂λ11 = 0 to simplify the first term. From
this equation, we see that ifλ12 > 0 then−1 < r < −ρ,
while if λ12 < 0 thenρ < r < 1. Noting this, and solving
simultaneous equations Eqs. (B-6) and (B-7) with respect to
|λ12|, we obtain Proposition 1 after some algebra.

B Subgradient algorithm for Eq. (4.13)

In this Appendix, we explain how to solve the L1-
regiularized quadratic programming problem defined in
Eq. (4.13) using a coordinate-wise subgradient method.

Instead of Eq. (4.13), consider the equivalent expression
of Eq. (B-4). Differentiating with respect toβi, we have∑

m

Wi,mβm − si + ρ sign(βi) = 0.

Forβi > 0, a formal solution to this equation is given by

βi =
1

Wi,i
(Ai − ρ),

where we defined

(B-8) Ai ≡ si −
∑
m̸=i

Wi,mβm.

SinceWi,i > 0, this solution must satisfyAi > ρ. If this
condition does not satisfied, the minimum of the objective
function is atβi = 0, since its gradient is positive in this
case. Similarly, considering also theβi < 0 case, we have
an updated equation as

βi ←

 (Ai − ρ)/Wi,i for Ai > ρ
0 for − ρ < Ai < ρ

(Ai + ρ)/Wi,i for Ai < −ρ

for eachi. This is repeated until convergence.

C Lasso-based structure learning algorithms

In this appendix, we recapitulate the methods compared to
the proposed approach.

C.1 Lasso. In Lasso [20], we build an L1-regularized re-
gression model to each variable, using the others as predic-
tors. Specifically, for a variablexi, solve Eq. (4.14) to get the
coefficientβ. Since this coefficient predict the target vari-
ablexi asβ⊤zi, comparison with the partioning formula of
Gaussian (as Eq. (2.3)) gives one column of the precision
matrix (see Eq. (4.10))

λ = 1/σ̃i
2

l = −β/σ̃i
2,

whereσ̃i
2 is the estimated predictive variance. If one uses a

maximum likelihood estimator, this is given by

σ̃i
2 =

1
N

N∑
n=1

(x(n)
i − β⊤z

(n)
i )2.

By repeating regression like this, we can build the whole
precision matrix.

C.2 Adaptive lasso. In AdaLasso [26, 5], we proceed as
follows.

1. Find a lasso regression coefficient vectorβ for a vari-
ablexi.

2. Modify the predictorz(n)
i by making element-wise

product betweenz(n)
i andβ.

3. Solve Eq. (4.14) based on the modified data matrix.

4. Build a precision matrix in the same way as above.

5. Proceed to anotheri.
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[5] P. Bühlmann. Variable selection for high-dimensional data:
with applications in molecular biology. 2007.

[6] A. P. Dempster. Covariance selection. Biometrics,
28(1):157–175, 1972.

[7] M. Drton and M. D. Perlman. A SINful approach to Gaussian
graphical model selection.Journal of Statistical Planning
and Inference, 138(4):1179–1200, 2008.

[8] J. Friedman, T. Hastie, H. Ḧofling, and R. Tibshirani. Path-
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[20] N. Meinshausen and P. Bühlmann. High-dimensional graphs
and variable selection with the lasso.Annals of Statistics,
34(3):1436–1462, 2006.

[21] R. Opgen-Rhein and K. Strimmer. Learning causal networks
from systems biology time course data: an effective model
selection procedure for the vector autoregressive process.
BMC Bioinformatics, 8(Suppl.2):S3, 2007.

[22] J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu. Graph-
Scope: parameter-free mining of large time-evolving graphs.
In Proc. the 13th ACM SIGKDD Intl. Conf. Knowledge Dis-
covery and Data Mining, pages 687–696, 2007.

[23] J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos. Neighbor-
hood formation and anomaly detection in bipartite graphs. In
Proc. IEEE Intl. Conf. Data Mining, pages 418–425, 2005.

[24] H. Tong, S. Papadimitriou, P. S. Yu, and C. Faloutsos. Prox-
imity tracking on time-evolving bipartite graphs. InProc.
2008 SIAM Intl. Conf. Data Mining, pages 704–715, 2008.

[25] X. Xuan and K. Murphy. Modeling changing dependency
structure in multivariate time series. InProc. the 24th Intl.
Conf. Machine Learning, pages 1055–1062, 2007.

[26] H. Zou. The adaptive lasso and its oracle properties.Journal
of the American Statistical Association, 101(476):1418–1429,
2006.


