
Travel-Time Prediction using Gaussian Process Regression:
A Trajectory-Based Approach

Tsuyoshi Id́e Sei Kato
IBM Research, Tokyo Research Laboratory

{goodidea, seikato}@jp.ibm.com

Abstract

This paper is concerned with the task of travel-time predic-
tion for an arbitrary origin-destination pair on a map. Unlike
most of the existing studies, which focus only on a particular
link (road segment) with heavy traffic, our method allows us
to probabilistically predict the travel time along an unknown
path (a sequence of links) if the similarity between paths is
defined as a kernel function. Our first innovation is to use a
string kernel to represent the similarity between paths. Our
second new idea is to apply Gaussian process regression for
probabilistic travel-time prediction. We tested our approach
with realistic traffic data.

1 Introduction

Recent advances in sensing and information technologies
make it possible to track moving objects such as vehicles
and humans over a wide area of a city. An Intelligent Trans-
portation System (ITS) is a large-scale information system
designed to optimize transportation traffic and to offer guid-
ance information to drivers by analyzing the vehicle traffic
over an entire city. Just as dynamic information flows on
the hyperlink structure of the Internet have created the new
research field of Web mining, traffic data is bringing new
challenges in data mining because of the variety and volume
of the data.

This paper is concerned with the task oftravel-time pre-
diction for a given origin-destination (OD) pair on a map.
This is one of the fundamental tasks in traffic modeling, and
much effort has been devoted since the 90s when ITS ap-
peared. In general, there are two views in traffic modeling,
which we call the observer’s view and driver’s view [12].
Theobserver’s viewwatches the traffic on a particular link,
viewing the traffic as a flow of many moving objects. Here
a link is a road segment between neighboring intersections.
Thedriver’s view, on the other hand, focuses on a particular
moving object, and tracks the object along all of the links of
a particular path. Most of the existing approaches are based
on the observer’s view. Recent examples include multivari-
ate autoregressive (AR) modeling [17] and “nonparametric”
approaches [29] for the traffic over particular links. This is

not surprising since there was no way to track the trajectories
of individual objects until recently. Thus traffic modeling
was possible only for links having sufficient traffic.

However, with the rich information collected using
a modern GPS (Global Positioning Systems), the tradi-
tional time-series modeling approaches are less satisfactory.
Specifically, these approaches are not capable of making
predictions for links with little traffic history data. To be
concrete, imagine that a control center in a city broadcasts
rerouting information to avoid traffic jams in a particular re-
gion. In this case, what we really want is a predictive ca-
pability for many path candidates rather than accurate pre-
dictive models for a limited number of main roads (apath is
a sequence of links for a given OD pair). For a given OD
pair, a path may go through side roads without sensors for
time-series modeling.1 For such links, the traditional meth-
ods must be supplemented with static information such as
legal speed limits. It is clear that the overall accuracy is
greatly degraded when such sensor-free links are included
in a path, since, for example, waiting times at intersections
are neglected.

Unlike most of the existing work, this paper is based on
the driver’s view. Our task is to predict the travel time for an
arbitrary OD pair, based on a data set as{(x(n), y(n))|n =
1, 2, ..., N}. Herex(n) is the identification of then-th path,
andy(n) is the observed travel time for the pathx(n). N is
the number of observed paths. Note that anx(n) can include
many links, and some of links might be minor roads whose
traffic volume is insufficient for time-series modeling. Also,
some of thex(n)s can be the same, but the number of possible
paths is exponential with the total number of links in the
map.

Our task can be viewed as a regression problem where
the target variable isy and the predictor variable isx.
However, the nature of this problem is quite different from
standard regression problems. First, the predictorx is not

1In fact, only 22% of the total length of trunk lines in Nagoya, Japan is
covered by beacons of the VICS (vehicle information and communication
system) [16]. The headquarters of Toyota is located in Nagoya, which
probably has the world’s most advanced ITS system.

origin

destination

(xi, yi)

(xj, yj) y ?

Figure 1: Problem setting. Our problem is to predict the
travel timey for a given pathx, as shown with the dashed
line. We are given a data set of{(xl, yl)|l = 1, ..., N}
containing pairs of a path and its travel time. All the paths in
the data share the origin and destination withx.

given as standard vector data in the Euclidian space, so
classical regression formulas based on the data matrix are
not useful. Second, given the variety of roads in real
cities, the relationship betweenx and y is expected to be
a complex one which would be hard to model with simple
parametric functions. In addition, the number of possible
paths is so large that a simple average over different trials
for a particular path is useless. This is because many of the
possible paths between OD will not be contained in the data,
especially for the paths including minor roads. In such cases,
a simple average is impossible.

To reach our goal, we need to relate a path, a trajectory
for moving objects, to the travel time. Trajectory analysis is
an interesting new research area in data mining [26, 13, 12].
Given a set of trajectories, one of the fundamental tasks
is how to measure the (dis)similarity between them. One
popular approach is to utilize elastic matches such as dy-
namic time warping [2, 11] and longest common subse-
quences [26], but similarities of this kind are not very use-
ful in our context, since the resulting similarity matrix is not
necessarily positive definite. This means that the elastic type
of similarities cannot be used directly in kernel machines,
which support a number of useful regression methods.

In this paper, we propose to use string kernels and Gaus-
sian process regression for travel-time prediction. To the best
of our knowledge, this is the first work that directly models
trajectories for travel-time prediction. Specifically, we first
treat the different paths as sequences of symbols, and com-
pute the similarity between them with string kernels [14].
The string kernel computes the similarity in terms of the
number of co-occurrences of short substrings. Intuitively,
this kernel models a driver’s behavior at road intersections.
For example, substrings of length two contain the informa-

tion on how each object passes through each intersection
(turning left or right, going straight, etc.). Based on the string
kernel, we then exploit a nonparametric Bayesian kernel ma-
chine, the Gaussian process regression (GPR) [22]. GPR
is a popular probabilistic regression method, and has been
shown to perform quite well for a wide range of applications.
Thanks to its nonparametric nature, GPR is capable of fitting
arbitrary-shaped curves. In addition, unlike relevance vec-
tor machines, which is the other alternative for probabilistic
nonparametric regression, GPR is free from pathological be-
havior for regions where there are few data points [3].

The rest of this paper is organized as follows: Section 2
formalize the problem. Section 3 surveys related work, in-
cluding recent work on trajectory modeling. Section 4 ex-
plains our GPR framework for travel-time prediction. Sec-
tion 5 presents experimental results based on a real Kyoto
City map. Finally, Section 6 summarizes our results.

2 Problem setting

This section explains the background information on how to
collect the data for our task. Also, this section summarizes
our problem setting for travel time prediction.

2.1 Travel time prediction problem. We start with defi-
nitions.

DEFINITION 1. (LINK) A link is a road segment between
two neighboring intersections.

DEFINITION 2. (PATH) A path is a sequence of links, where
any two consecutive links share an intersection.

Now we summarize our problem. We are given a data
set for a given OD pair

(2.1) D ≡ {(x(n), y(n))|n = 1, 2, ..., N},

where eachx(n) represents the sequence of link identifica-
tions (IDs) for then-th path,y(n) represents the observed
travel time overx(n), andN is the number of observed time-
path pairs. As mentioned before, some ofx(n)s can be for
the same path, butD will not span all of the possible paths.
Since the traffic data is not in general stationary, we assume
thatD has been collected within some time period such as
one hour. However, to simplify the notation, we drop the ar-
guments fromD that represent the time period and the OD
pair.

Now our task can be stated as follows.

DEFINITION 3. (TRAVEL TIME PREDICTION PROBLEM)
From the training dataD, learn a predictive distribution of
the travel time given an arbitrary pathx.

We write the predictive distribution asp(y|x,D). Note that
this differs from the traditional short-term prediction setting,

where the goal is to learnp(y|t), and the predictor variable
is the time rather than the paths.

With p(y|x,D), we get information on how much time
will be spent on a pathx. The basic quantities will be the
expected travel time for a pathx

(2.2) m(x) ≡
∫

dy y p(y|x,D),

and the variance

(2.3) s(x)2 ≡
∫

dy [y − m(x)]2p(y|x,D).

Since GPR is a linear-Gaussian model, we can readily find
these as sufficient statistics.

2.2 Travel time data. To obtain the travel time data as
Eq. (2.1), we need two types of data:road network dataand
vehicle tracking data. For the road network data, organiza-
tions such as the Federal Geographic Data Committee2, Eu-
ropean Umbrella Organization for Geographic Information3,
or Geographical Survey Institute4 provide publicly available
data in a digital format collected through Geographic Infor-
mation Systems (GIS). GIS is an information system that al-
lows capturing, storing, and analyzing map-related informa-
tion, such as is typically managed by governmental organi-
zations.

Figure 2 shows a map of a downtown section of Ky-
oto City, Japan, using intersection data contained in the dig-
ital map distributed by the Geographical Survey Institute. In
general, digital road network data offered by GIS is given as
a weighted graph, where each node represents an intersection
and each link represents a road segment between neighbor-
ing intersections. In this particular set of Kyoto data, each
node is attached to a label in the form of(nid, n1, n2), such
as

(55406, 135.75370659722222, 35.00014322916667),

wherenid represents an unique identification number and
n1 and n2 represent the longitude and the latitude of the
intersection, respectively. Similarly, each link has a label in
the form ofeid, e1, e2, e3, ..., whereeid denotes an unique
identification number, and the other entries represent the
length of the link, a legal speed limit, the mean direction
measured with respect to the equator, etc.

For the vehicle tracking data, there is no widely known
and publicly available data repository, but some results have
been reported in the literature. For example, Ref. [17] uses
probe-car data collected in Nagoya City, Japan, where 1,500
taxis equipped with GPS hardware were used to collect

2http://www.fgdc.gov/
3http://www.eurogi.org/
4http://www.gsi.go.jp/ENGLISH/index.html

34.985

35.005

35.025

135.74 135.76 135.78

la
t

long

Figure 2: Downtown Kyoto City map plotted using latitude
and longitude information of intersections.

time sequences of data chunks, each of which includes a
vehicle identification, time, location, and some status data
for the vehicles (such as on-off flags for brakes and wipers).
These data chunks are either collected periodically or sent
via a cellular phone network in an event-driven fashion.
Although associating tracking data with a road network
data is not trivial, there are established methods for that
purpose as in Refs. [20, 15, 4] and references therein. By
processing tracking and road network data using a map-
matching algorithm, we can get a collection of travel data
as in Eq. (2.1).

Because of the limited availability of tracking data,
we use an agent-based traffic simulator developed at IBM
Tokyo Research Laboratory [10] to generate vehicle tracking
data based on road network data. Our simulator generates
tracking data by instantiating each vehicle as a Java object,
which is arbitrarily programmable to define its individual
behaviors and its interaction with other agents. One general
test to check if a simulator is realistic is to see if it correctly
reproduces a meta-stable state between the free-flow and
congestion states [18]. We confirmed that our simulator
successfully reproduces the meta-stable state, and therefore,
we believe that our travel time data shares essential aspects
with the real transportation traffic.

2.3 Notation. This paper employs the following notation.
Vectors are represented by bold face such asyN . All vectors
are assumed to be column vectors. The transpose is denoted
by ⊤. Matrices are represented by sans serif such asK, and
the(i, j) element of a matrix is represented asKi,j . Identity
matrices are represented asIq, whereq is the dimensionality.

3

3 Related work

As mentioned in the introduction, most of the existing
studies on travel time prediction are based on the observer’s
view. In this section, we first look at studies using this
viewpoint. Next, we look at recent studies of trajectory
mining, and discuss their relationships with the present
paper. Finally, we consider recent studies on GPR.

3.1 Travel time prediction. If a statistically sufficient
amount of data is provided for a particular link, time-series
modeling with AR (and the related) models seems to be a
promising approach. In fact, AR-based modeling was pro-
posed in the 70s [1], and great efforts have been devoted
to refining the models since then. One subtle problem in
AR-style modeling is how to handle nonstationarities. If
extensive amounts of traffic history data are available, then
seasonal adjustment techniques known from economics can
be used. However, this is true for only a limited number of
high-traffic links in the studied city. Even when true, nonsta-
tionarities in transportation traffic are so significant in many
cases, that compensating for the effects of nonstationarities
is a challenging problem.

To overcome the practical limitations of the traditional
AR modeling, growing attention has been paid to “nonpara-
metric” prediction techniques in recent years. Examples
includek-nearest neighbor (k-NN) regression methods for
time-series subsequences [5] and for feature vectors [23].
While these methods report successful improvements in the
prediction accuracy in some cases, their utility is still limited
to high-traffic links where extensive historical data is avail-
able.

Another research trend in the observer’s view is to ex-
tend a time-series model to include spatial correlations. One
natural approach in this direction is to use multivariate AR
models. For example, Nakata and Takeuchi [17] showed that
the accuracy of travel times can be improved by incorporat-
ing the information from neighboring links. Similar research
appears in [31], where the traffic for each link is estimated
by using the neighboring links defined in a given Bayesian
network. On the other hand, Zhang et al. [9] proposed a non-
parametric density estimation method, where the density is
defined in a two-dimensional space spanned by the time and
the position along each single link. Although these studies
consider the essential feature of spatial correlation, predict-
ing time for low-traffic (or no sensor) links is still hard, and
this can be a drawback in practice.

To predict the travel time along a path including some
secondary roads, which may not be equipped with sensors,
the simplest approach would be to use static information
about the links, such as the lengths and the legal speed
limits. However, this type of approach will give large
inaccuracies in predicting the travel times, since it lacks
actual information such as traffic jams. In addition, it does

not offer any way to estimate the reliability of a prediction.
We would like to know the variance, as well as the mean.

3.2 Trajectory mining. Our task is essentially to asso-
ciate the travel time with a trajectory. Although little has
been done in the context of travel time prediction, trajectory
modeling is currently attracting attention in the data mining
community.

Given a set of trajectories, one of the fundamental tasks
is how to define the (dis)similarity between them. For this
purpose, one natural approach is to use the idea of elastic
matches between trajectories. Examples include classical
dynamic time warping [2, 11] (DTW) and the longest com-
mon subsequences [26]. To apply these techniques to our
problem, however, one has to take account of the constraint
that trajectories are defined on a map, not on a translation-
ally uniform space. Tiakas et al. [25] addressed this issue,
and defined a mathematically well-defined distance between
trajectories, although their goal was not travel-time predic-
tion. In particular, they introduced the idea of sub-trajectory
decomposition to compare trajectories of different lengths.
Similarly, Lee, Han, and Whang [13] recently proposed a
trajectory clustering method, where each trajectory is first
partitioned into an optimal number of the sub-trajectories,
and then sub-trajectories are grouped according to a heuris-
tic geometric distance function. In a sense, our string kernel
can be viewed as a simplified implementation of these “par-
tition and compare” strategies, although these studies do not
address travel-time prediction, or the relationship with kernel
machines.

In the context of traffic modeling, Krigel et al. [12]
proposed a method for estimating traffic density at any
location on a map. Their method can be understood as
counting the number of shortest paths repeatedly generated
under different OD pairs. While their work deals directly
with trajectories, and thus is based on the driver’s view, it
differs from ours since their goal is traffic density modeling
and they are based on the assumption of shortest paths.

3.3 Computational issues in Gaussian process regres-
sion. GPR is known as a useful probabilistic regression
method due to its theoretical simplicity and excellent gen-
eralization ability [22]. However, one serious problem in
GPR is the computational cost. Naive implementations need
O(N3) time for inverting a kernel matrix. Speeding up
GPR is an active research area, and many approaches have
been proposed to date. One popular approach is to re-
duce the size of the problem in some sense. Examples in-
clude Nystr̈om’s method [28] and pseudo-input-based meth-
ods [21, 24]. However, one can say that these methods are
not mature enough to use in critical applications such as ours,
since most of them are sensitive to a parameter choice [27],
or require solving a complicated non-convex optimization

problems.
For relatively stable methods allowing a global solution,

Gibbs suggested using the conjugate gradient (CG) method
rather than explicit matrix inversion [7]. CG is known to
show excellent performance when the matrix is sparse, and
is the method of choice in such cases. However, CG can
not be used for finding hyperparameters such as the noise
level, where a matrix trace and a determinant are involved.
Also, CG is known to be somewhat unstable when the matrix
is dense and the condition number is very large, due to the
nature of Krylov subspace [8].

To summarize, we believe that studies for speeding up
GPR are still too immature to use in critical applications.
Therefore we employ a simple but stable approach based on
Cholesky factorization, as explained later.

4 Regression models for trajectories

In this section, we explain the regression model for travel
time prediction for a path. The point is that we use only the
similarity between paths rather than using the “coordinates”
of the exploratory variable. This can be done by kernel-
based regression methods such as GPR. To the best of our
knowledge, this is the first attempt to apply kernel machines
to the task of trajectory-based travel time prediction.

4.1 Gaussian process regression.As mentioned above,
the travel timey is expected to have some complex relation-
ship with the pathx. Thus simple parametric models such
as linear or polynomial functions will be inappropriate for
this problem. We first suppose that then-th travel time in
D is probabilistically represented through observation noise
varianceσ2 as

(4.4) p(y(n)|fn) = N (y(n) − ȳ|fn, σ2),

whereN (·|fn, σ2) denotes the Gaussian distribution with
the meanfn and the varianceσ2, and the mean̄y is defined
as

ȳ ≡ 1
N

N∑
n=1

y(n).

Notice that each data point is attached by a latent variable
or a parameterfn, so that in principle any curve can be
represented with this model. This is a general feature of
nonparametric models.

To avoid overfitting by thisN -parameter model, GPR
next assumes a prior distribution onfn as

(4.5) p(fN) = N (fN |0, K),

wherefN = (f1, ..., fN)⊤ ∈ RN , and the(i, j) element
of the covariance matrixK is given by the kernel function
between pathsx(i) andx(j), as denoted byk(x(i), x(j)) (we
neglected to denote the dependence on{x(n)} above).

fn

yn

xn

fn+1

yn+1

xn+1

f1

y1

x1

fN

yN

xN

Figure 3: Graphical representation of Gaussian process re-
gression [22]. Notice that latent variables (fns) are coupled
with each other through the kernel function, while the out-
puts (the travel timesy(n)) are independent.

Equations (4.4) and (4.5) represent the only two assump-
tions in GPR. Figure 3 shows this with a graphical represen-
tation of the model. For each element of the target datay(n),
we assign a latent variablefn. While they(n)s are indepen-
dent ofy(n′) (n ̸= n′), fn is correlated withfn′ through the
kernel matrixK. The kernel matrixK controls the degree to
which the different paths are coupled. Roughly speaking, if
k(x(i), x(j)) is very large, the prior strongly favors the situa-
tion wherey(n) ≃ y(n′).

Now let us find the predictive distribution for an out-
of-sample pathx. Following the Bayesian perspective, it is
defined as

(4.6) p(y|x,D) ≡
∫

df p(y|f)p(f |D),

wherep(y|f) is defined in Eq. (4.4), andp(f |D) is the pos-
terior distribution of the latent variable. Note that the depen-
dence onx is implicitly included within f (see Figure 3).
Since we are working with a linear Gaussian model, this in-
tegral can be exactly calculated as

p(y|x,D) = N (y|m, s2)(4.7)

m = ȳ + k⊤C−1yN(4.8)

s2 = σ2 + k(x, x) − k⊤C−1k,(4.9)

whereyN andk are defined as

yN = (y(1) − ȳ, ..., y(N) − ȳ)⊤(4.10)

k = (k(x(1), x), ..., k(x(N), x))⊤,(4.11)

andC ∈ RN×N is defined by

(4.12) C = K + σ2IN ,

whereIN represents theN -dimensional identity matrix (See
Appendix A for the derivation).

Notice that the predictive meanm is represented as a
linear combination of the training data points:

m = ȳ +
N∑

n=1

bn(y(n) − ȳ),

5

wherebn represents then-th element of the vectorC−1k. In
this sense, GPR is a generalization of the kernel regression
andk-NN regression methods. Unlike these methods, the
coefficientsbn are automatically optimized so that the poste-
rior distribution best explains the data. In addition, GPR can
systematically produce a probability distribution rather than
just a point estimation.

4.2 Choosing the kernel.If one compares two different
paths, the simplest approach would be to look only at the
lengths (i.e. longer path takes more time). This could be a
zeroth approximation for a particular link on a highway, but
will be inaccurate for city roads, where traffic signals and
intersections greatly affect the travel times. The movement
pattern at an intersection can be described with a tuple of the
neighboring links around the intersection. For example, if
a north-directed link is followed by a west-directed link, we
know that the object made a left turn.

Generalizing this idea, we first represent a path using a
sequence of symbols. A symbol may be directions, but we
associate the identification itself with each link. Next, we
focus on subsequences of lengthp from the paths, and count
the co-occurrences of each subsequence. Our definition of
the similarity between pathsx(i) andx(j) is given by

(4.13) kp(x(i), x(j)) = β
∑

u∈Σp

Nu(x(i))Nu(x(j)).

This similarity was first introduced in bioinformatics [14],
and now is known as thep-spectrum kernel in machine
learning. Here are the definitions of the symbols:

• Σ is a set of symbols being used to represent links.

• Σp is a set of subsequences ofp consecutive symbols.

• Nu(x(i)) is the number of occurrences of a subse-
quenceu in a path (sequence of symbols)x(i).

The coefficientβ controls the magnitude of the variance of
the prior, and is treated as a hyperparameter to be optimized
from data.

4.3 Choosingσ and β. So far we have treated the noise
level σ2 and the magnitudeβ as constants. In the Bayesian
framework, one theoretically consistent approach to choos-
ing these is the evidence approximation. In this approach,
they are obtained as the maximizer of the marginal likeli-
hood. If we define

γ ≡ σ2

β
,

the marginal likelihood is written as

ψ(γ, β) ≡ ln
∫

dfN p(fN)
N∏

n=1

p(y(n)|fn)

= −1
2

ln det(C1) −
1
2β

y⊤
NC−1

1 yN − N

2
ln β,(4.14)

omitting a constant term. Here we definedC1 as

C1 ≡ K1 + γIN ,

whereK1 is the kernel matrix withβ = 1. Using standard
formulas for matrix derivatives (see Appendix B.2), the
condition of optimality is given as

0 =
∂ψ

∂γ
=

1
2β

y⊤
NC−2

1 yN − 1
2
tr

(
C−1

1

)
(4.15)

0 =
∂ψ

∂β
= − N

2β
+

1
2β2

y⊤
NC−1

1 yN .(4.16)

These equations are solved alternately until convergence.
Note that the latter is analytically solved as

(4.17) β =
1
N

y⊤
NC−1

1 yN

for a given value ofγ.

4.4 Algorithm summary. Here is a summary of our algo-
rithm. For more details, see Appendix C.

In the training phase, we determine the bestσ andβ
with the evidence approximation as follows.

1. Input: Kernel matrixK, vector of travel timesyN , and
initial values forσ andβ.

2. Algorithm: Solve Eqs. (4.15) and (4.16) alternately
until convergence.

3. Output:σ2 andβ that maximizeψ.

For initial values, one reasonable approach is to relate them
with the varianceσ2

y, defined by

σ2
y =

1
N

N∑
n=1

(y(n) − ȳ)2.

In particular, one can choose the initial values ofσ2 and the
diagonal elements ofK, which is proportional toβ, on the
same order of magnitude asσ2

y. See Appendix C for more
details.

In the test phase, we precompute the Cholesky factor
L, whereC = LL⊤, and its inverseL−1 as a side product
of the Cholesky factorization. We also precompute a vector
h ≡ L−1yN .

1. Input: Pathx (and precomputedL−1 andh).

2. Algorithm:

• Computel ≡ L−1k.

• Computem = ȳ + h⊤l.

• Computes2 = σ2 + k(x, x) − l⊤l.

3. Output: Predictive meanm and variances2.

5 Experiment

In this section, we test our trajectory-based travel-time pre-
diction method based on a realistic traffic data set.

5.1 Data Generation. To generate travel time dataD, we
used real road network data of downtown Kyoto, Japan, as
shown in Fig. 2, and vehicle tracking data generated with the
traffic simulator [10], as explained in Section 2. Figure 4(a)
shows a screenshot of the simulator, where colored dots
represent generated vehicles. As shown in the map, Kyoto
City has a grid-like road network structure, where the length
of each link is about 2 km on average. We picked an origin
and destination at the upper left and lower bottom corners in
the map, as shown in Fig. 4(a).

We first listed 132 path candidates between the OD
pair by using thek shortest path method based on Yen’s
algorithm [30], some of which are shown in Fig. 4(b). Each
path is represented as a sequence of links, and the minimum,
maximum, and average number of the size of the sequences
is 103, 185, and 140.7, respectively. On simulation, we
selected one path out of the 132 candidates for each vehicle
in turn.

At each time, the velocity of the vehicles is determined
as a function of the vehicular gaps and the legal speed
limits at the current positions. The functional form has been
determined empirically and we skip describing it here. At
intersections, vehicles are programmed to stop for timeτ to
simulate the waiting times for the traffic lights. We think of
this waiting time as an input parameter.

Upon arrival at the destination, the travel time is com-
puted by adding up the transit times of each link and the
waiting times at each intersection. In the experiment, 100
out of the 132 paths were randomly selected for training (i.e.,
N = 100), and the remaining 32 data were used for predic-
tion.5

5.2 Methods Compared.We compared three different
kernels in this experiment, the ID kernel, direction kernel,
and area kernel. Since we are working on the new problem
of trajectory-based travel time prediction, traditional time-
series models are not directly comparable in our problem
setting.

The ID kernel is a p-spectrum kernel defined in
Eq. (4.13), where the definition of the alphabet is a set of
all the link identifications (IDs). In this case, it is given as

Σ = {10150600, 5180612, 5080611, ..., 11340400},

where each numbers represent an ID of an individual link.
The direction kernel is also ap-spectrum kernel, but the

5The data set is available athttp://www.trl.ibm.com/
projects/socsim/project e.htm .

(a) Screenshot of simulator.

34.985

35.005

35.025

135.74 135.76 135.78
la

t
long

Org

Dst

(b) Sample route paths.

Figure 4: (a) IBM’s mega traffic simulator. This window vi-
sualizes traffic flow with colored rectangles denoting moving
vehicles. (b) Example sample route paths between an origin
(located at the upper left) and a destination (located at the
bottom right).

definition of the alphabetΣ is given by the direction of links

Σ = {N,S,E,W},

representing north, south, east, and west directions, which
can be identified using the longitude and latitude values of
links. Unlike the ID kernel, this kernel only takes account
of the directions of links, disregarding the location-specific
information contained within the link IDs. In this sense, it
compares between paths in a topological manner.

In contrast, the area kernel uses the area enclosed by two
paths as the dissimilarity measure. Clearly, the enclosing
area is a generalization of the L1 distance. We use this as a
representative of geometrical dissimilarity measures that are
based on direct comparison between curve shapes, such as
DTW-based dissimilarities (see Sec. 3.2). We define the area
kernel as

karea(x(i), x(j)) ≡ β e−S(x(i),x(j)),

where the area enclosed by two pathsx(i) andx(j) is denoted
by S(x(i), x(j)).

7

-363-362.5-362-361.5-361

1.8 2.3 2.8 3.3 3.8sigma
evidence

Figure 5: Theσ-dependence of the evidence function (ID
kernel withp = 1).

5.3 Evaluation Metric. We adopt the correlation coeffi-
cient,r, between actual and prediction times in the test data.
The metricr is simply defined as

(5.18) r ≡
∑Ntest

n=1 (y(n) − ȳ)(m(x(n)) − m̄)√∑Ntest
n=1 (y(n) − ȳ)2

∑Ntest
l=1 (m(x(l)) − m̄)2

.

Here the numerator is proportional to the sample covariance
between the predictive mean and the actual travel times in the
test data. Quantities with the bar represent the sample mean
(over the test data in this case). Note thatr is essentially the
same as so-calledR2 metric in regression analysis. Since we
are solving the new problem of trajectory-based prediction,
understandability of the evaluation metric is important, and
r is such a one.

5.4 Experimental Results. In our experimental setting,
we have two controllable parameters,p in the p-spectrum
kernels andτ in the data. In this subsection, we first look at
the dependence onp in the ID kernel. Then, with the best
value ofp, we compare the ID kernel with the other kernels.

Before getting into the details of experimental results
using the test data, we briefly look at the training phase.
Figure 5 shows theσ-dependence of the evidence function of
the ID kernel forp = 1 with the optimal value ofβ = 114.4.
Note that the resulting diagonal elements ofK are on the
same order of magnitude asσ2

y = 96.52. This is reasonable
since this means that the variance of the prior was given as
a value rather close to the variance ofy. As shown in the
figure,ψ has a single global maximum atσ = 2.64. Thanks
to the unimodal shape, finding the maxima is numerically
easy in this case.

p-dependence. We calculated the predictive mean
m(x), changing the value ofp with the ID kernel. Figure 6

shows the result, wherer is given as a function ofp for dif-
ferent values ofτ . As shown, the dependence onp is not
considerable whenτ = 0. This result implies that the to-
tal travel time in this case mostly comes from the individual
links, and the turning patterns at the intersections give mi-
nor effects. In contrast, forτ = 10 and 20, the figure shows
maxima atp = 2, showing the fact that moving patterns at
intersections play a crucial role in travel-time prediction. In
fact, in the case ofτ = 10, the turning times account for
28.7% of the total travel time on average.

These results can be understood as interplay between
intra-link and inter-link dynamics. By definition, thep = 1
kernel represents only intra-link behaviors, while thep = 2
also covers the inter-link dynamics. A larger value ofτ
naturally leads to a larger contribution of the inter-link term.
Our finding is that this interplay is well described with the
string kernel withp = 2, at which intra- and inter-link effects
are well balanced. Sinceτ should be always finite in real
traffic data, we conclude that the string kernels withp > 1
work well in practical travel-time prediction.

0.95

0.96

0.97

0.98

0.99

1

1 1.5 2 2.5 3 3.5 4 4.5 5

r

p

τ=0
τ=10
τ=20

Figure 6: The correlation coefficient as a function ofp for
τ = 0 (solid line),τ = 10 (broken line) andτ = 20 (dotted
line).

Comparing different kernels. Next, we compared the
ID, direction, and area kernels. In the ID and direction ker-
nels,p is fixed to 2. Figure 7 shows the scatter plot between
the predictive and observed travel times in second. In the
figure, we see that the points distribute closely along the di-
agonal line with the ID and direction kernels. This means
a good agreement between the predictions and observations.
Ther values are summarized in Table 1, showing the high-
est accuracy 0.980 in the ID kernel. We can say that this
value ofr is satisfactory enough, if we consider the fact that
conventional technologies are not capable of predicting the
travel time for the paths including low-traffic links, and our
approach is the first one that enables us to do that.

It is interesting to see that the predictive accuracy of
the direction string kernel is comparable to that of the ID
kernel, in spite of the fact that this kernel uses only four kinds
of alphabets representing the direction. On the other hand,
in spite of the fact that the enclosing area more accurately
calculates the dissimilarity in the geometrical sense, the
predictive accuracy of the area kernel is much worse than
the others. The accuracy is too inferior to consider that
other metrics based on direct comparison between trajectory
shapes would produce competitive results. In fact, in the road
network we used, some of the main streets are neighboring to
narrow side roads, but the legal speed limits for these roads
may differ by a factor of 3. In this case, the geometrical
dissimilarity will be almost zero, but the expected travel
times should be greatly different.

Predictive variance. We computed the predictive
variance for each prediction, and showed values of the
averaged standard deviation in Table 1, wheres̄2 is defined
by

s̄2 =
1

Ntest

Ntest∑
n=1

s(x(n))2.

The summation runs over the test samples in this definition.
In the table, we see that the ID kernel produces a much
smallers̄2 value.

Although analyzing the risk of the prediction in terms
of the predictive variance is of particular interest, we would
point out that the calculated predictive variances might be
rather small as compared to the order of magnitude ofŷ.
Specifically, we first listed paths using ak-shortest path algo-
rithm, and then calculated the travel time using a determinis-
tic agent-based simulation. Considering a variety of circum-
stances that might happen in the real-world situations, it is
possible that the data we used captures only a small portion
of the variety. Further investigation on this point is an inter-
esting research issue from the simulation side, and we leave
that to our future work.

6 Conclusion

We have proposed a method for predicting the travel time
for an arbitrary path. We formulated our problem as regres-
sion where the target variable is the travel times while the
predictor is the paths, or trajectories, not the time as in stan-
dard time-series modeling. Our method allows predicting the

Table 1: r and averageds2 values for different kernels
(τ = 10).

ID direction area
r 0.980 0.933 0.059√
s̄2 4.5 10.0 10.3

0

200

400

600

800

1000

0 200 400 600 800 1000

m

y

Figure 7: Comparison between the predicted (m) and actual
(y) travel times with the ID kernel (¤), direction kernel (◦),
and the area kernel (△). The dashed line representsy = m,
showing perfect agreement.

travel time for paths including links with little traffic history
data. This is in contrast to traditional time-series modeling
where travel time analysis is performed mainly for particular
links with heavy traffic.

Our innovation was to use only the similarity between
different paths in regression, and for that purpose, we pro-
posed to use string kernels that are known in bioinformatics.
Our second new idea was to use a nonparametric probabilis-
tic kernel machine, Gaussian process regression, for proba-
bilistic travel-time prediction.

Using travel-time data generated with an agent-based
traffic simulator and a real road network, we demonstrated
that our approach is capable of making accurate probabilistic
predictions. In particular, we found that the string kernel
with p = 2 gives the best performance.

For future work, first, it would be interesting to conduct
extensive experiments on more realistic settings in terms of
the variety of travel times and trajectories. Second, while
we tested only the string and area kernels in this paper,
studying other similarity metrics for trajectories would be
an interesting research issue. Finally, comparing different
kernel regression methods would be also an interesting future
work.

Appendix

A Derivation of the predictive distribution.

This Appendix derives Equations (4.7)-(4.9). Introducing
additional integral variablesfN , the definition (4.6) is writ-
ten as

(A-1) p(y|x,D) =
∫

dfdfN p(y|f)p(f |fN)p(fN |D).

9

If we use the notations of

yN+1 = (y − ȳ, y(1) − ȳ, ..., y(N) − ȳ)⊤

fN+1 = (f, f (1), ..., f (N))⊤,

Equation (A-1) is written simply as

(A-2) p(y|x,D) ∝
∫

dfN+1 p(yN+1|fN+1)p(fN+1),

where we used the definition of conditional probabilities:

p(fN |D) ∝ p(yN |fN)p(fN).

To get the final expression forp(y|x,D), we note

p(yN+1|fN+1) = N (yN+1|fN+1, σ
2IN+1)

p(fN+1) = N (fN+1|0, Σ),

where, for the kernel matrixK and the kernel vector defined
in (4.11),

Σ ≡
(

k(x, x) k
k⊤ K

)
.

Using the well-known additive nature of the covariance
matrices of the Gaussian, we have

p(y|x,D) ∝ N (yN+1|0, σ2IN+1 + Σ).

We get the equality by dividing the right hand side by
N (yN |0, σ2IN +K). This amounts to partitioningyN+1 into
(y, yN), and conditioningy given yN . Using the standard
partitioning formula for Gaussians (see Eqs.(B-1)-(B-3)), we
see that Eqs. (4.7)-(4.9) give the predictive distribution.

B Mathematical formulas

This section summarizes useful mathematical formulas.

B.1 Partitioning formula for Gaussians. Consider a
Gaussian distributionN (y|µ, Σ). If we partitiony asy =
(ya, yb)⊤, and correspondingly,

µ =
(

µa

µb

)
, Σ =

(
Σaa Σab

Σba Σbb

)
,

the conditional distribution ofya givenya is given by

(B-1) p(ya|yb) = N (ya|µa|b, Σa|b),

where

µa|b ≡ µa + ΣabΣ
−1
bb (yb − µb)(B-2)

Σa|b ≡ Σaa + ΣabΣ
−1
bb Σba.(B-3)

See Ref. [3] for the derivation.

B.2 Matrix derivatives. Assume that anN ×N matrixC
contains a scalar parameterα. For derivatives with respect
to α, the following holds.

∂

∂α
log det C = tr

(
C−1 ∂C

∂α

)
∂

∂α
C−1 = −C−1 ∂C

∂α
C−1

For proof and detailed discussions, see, e.g. [6].

C Implementation details

This section explains implementation details of our ap-
proach, and summarized the algorithm.

C.1 Cholesky factorization. As mentioned in Section 3,
computational cost is an issue in GPR. Although several
methods have been proposed for speeding up GPR [7, 28,
21, 24], these methods are still at a premature stage to apply
directly to critical applications. Therefore, we believe that
it is more practical to use a relatively stable method for a
moderateN that allows a global solution.

Our implementation of GPR is based on Cholesky fac-
torization. In contrast to CG, Cholesky factorization can be
used in hyperparameter learning, and is extremely stable for
both dense and sparse matrices. Let us look briefly at how
it works. Cholesky factorization decomposes a positive def-
inite matrix into the product between lower triangular matri-
ces. ForC, the decomposition is written as

C = LL⊤,

whereL is a lower triangular matrix. Direct elementwise
comparison between both sides leads to

Li,i =

[
Ci,i −

i−1∑
k=1

L2
i,k

]1/2

Li,j =
1

Lj,j

[
Ci,j −

j−1∑
k=1

Li,kLj,k

]

for i = j + 1, j + 2, ..., N , from which the entries ofL
are computed. As suggested by these simple equations,
Cholesky factorization is numerically very stable, although
it takesN3/6 operations.

C.2 Optimizing hyperparameters. In the training
phase, we need to solve the equation∂ψ/∂γ = 0. Since
this is a single-parameter equation, efficient numerical ap-
proaches that are much more efficient than gradient meth-
ods are available. In our implementation, we use Brent’s
method [19], which is an extension of the bisection method.
Brent’s method needs the upper and lower bounds of the
search domain. For a value ofβ, one reasonable choice for

the initial values will be(γ1, γ2) = (aσ2
y, bσ2

y)/β, where
a ∼ 0.5 andb ∼ 25 are useful in many cases. Starting with
the initial values, the algorithm locates a solution by sequen-
tially narrowing the domain. For the initial value ofβ, we
chose it so that the diagonal elements ofK is the same order
asσ2

y. For instance, in the case of the ID kernel, we used
β = 100 as the initial value.

Until convergence, we need to repeatedly evaluate the
gradient at the bounds and the present value ofσ. Cholesky
factorization is also useful for this purpose. In Eq. (4.15),
we have two terms:b⊤b and tr(C−1). Given the Cholesky
factorizationC = LL⊤, we note

tr(C−1) =
∑
i≤j

(L−1)2i,j ,

and thatL−1 is readily found as a side product of the
Cholesky factorization (see, e.g. Sec. 2.9 in [19]). With
L−1, we can directly computeb in O(N2) time. Otherwise,
we can solveLL⊤b = yN using forward and backward
substitutions [19] that takeO(N2) operations at worst.

C.3 Making predictions. With a matrixC having an op-
timal σ, we precompute the inverse of the Cholesky factor
L−1 as a side product of Cholesky factorization itself. Also,
we keeph ≡ L−1yN .

On prediction for an input pathx, we first compute the
kernel vectork and a productl ≡ L−1k. The predictive
mean and variance are easily computed with the vectorsh
and l. For the predictive meanm (Eq. (4.8)), we compute
l⊤h. For the predictive variances2 (Eq. (4.9)), we compute
l⊤l to getk⊤C−1k. The computational cost of prediction is
O(N2) whenK is dense. Otherwise, thanks to the fact that
a resultingL inherits the sparsity of the original matrix, the
cost can be sub-quadratic.

References

[1] M. S. Ahrmed and A. R. Cook. Analysis of freeway traf-
fic time-series data by using Box-Jenkins techniques.Trans-
portation Research Record, 722:1–9, 1979.

[2] D. Berndt and J. Clifford. Using dynamic time warping
to find patterns in time series. InAAAI-94 Workshop on
Knowledge Discovery in Databases. AAAI, 1994.

[3] C. M. Bishop. Pattern Recognition and Machine Learning.
Springer-Verlag, 2006.

[4] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On map-
matching vehicle tracking data. InProc. Intl. Conf. Very
Large Data Bases, pages 853–864, 2005.

[5] S. Clark. Traffic prediction using multivariate nonpara-
metric regression. Journal of transportation engineering,
129(2):161–168, 2003.

[6] K. Fukunaga.Introduction to Statistical Pattern Recognition.
Academic Press, 2nd. edition, 1990.

[7] M. N. Gibbs. Bayesian Gaussian Processes for Regression
and Classification. PhD thesis, Department of Physics,
University of Cambridge, 1997.

[8] G. H. Golub and C. F. V. Loan.Matrix computations (3rd
ed.). Johns Hopkins University Press, Baltimore, MD, 1996.

[9] C.-M. Hsu and F.-L. Lian. A case study on highway flow
model using 2-d Gaussian mixture modeling. InProc. IEEE
Intl. Conf. Intelligent Transportation System, pages 790–794,
2007.

[10] S. Kato, G. Yamamoto, H. Mizuta, and H. Tai. Simulating
whole city traffic with millions of multiple vehicle agents.
Technical Report RT0759, IBM Research, 2008.

[11] E. Keogh and M. Pazzani. Scaling up dynamic time warping
for data mining applications. InProc. ACM SIGKDD Intl.
Conf. Knowledge Discovery and Data Mining, pages 285–
289, 2000.

[12] H.-P. Kriegel, M. Renz, M. Schubert, and A. Zuefle. Statisti-
cal density prediction in traffic networks. InProc. SIAM Intl.
Conf. Data Mining, pages 692–703, 2008.

[13] J. Lee, J. Han, and K.-Y. Whang. Trajectory clustering: A
partition-and-group framework. InProc. 2007 ACM SIG-
MOD Intl. Conf. Management of Data, pages 593–604, 2007.

[14] C. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel: A
string kernel for SVM protein classification. In R. B. Altman,
A. K. Dunker, L. Hunter, K. Lauderdale, and T. E. Klein,
editors,Proc. the Pacific Symposium on Biocomputing, pages
564–575, 2002.

[15] T. Miwa, T. Sakai, and T. Morikawa. Route identification
and travel time prediction using probe-car data.International
Journal of ITS Research, 2(1), October 2004.

[16] T. Morikawa, T. Yamamoto, T. Miwa, and L. Wang. Develop-
ment and performance evaluation of dynamic route guidance
system PRONAVI. Journal of the Japan Society of Traffic
Engineers, 42(3):65–75, 2007.

[17] T. Nakata and J. Takeuchi. Mining traffic data from probe-car
system for travel time prediction. InProc. ACM SIGKDD
Intl. Conf. Knowledge Discovery and Data Mining, pages
817–822, 2004.

[18] K. Nishinari, M. Fukui, and A. Schadschneider. A stochas-
tic cellular automaton model for traffic flow with multiple
metastable states.Journal of Physics, A, 71:2339–2347,
2002.

[19] H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling.
Numerical Recipes in C. Cambridge University Press, 2nd.
edition, 1992.

[20] M. A. Quddus, W. Y. Ochieng, L. Zhao, and R. B. Noland.
A general map matching algorithm for transport telematics
applications.GPS Solutions Journal, 7(3):157–167, 2003.

[21] J. Quĩnonero–Candela and C. E. Rasmussen. A unifying view
of sparse approximate Gaussian process regression.Journal
of Machine Learning Research, 6:1939–1959, 2005.

[22] C. E. Rasmussen and C. Williams.Gaussian Processes for
Machine Learning. MIT Press, 2006.

[23] S. Robinson and J. W. Polak. Modeling urban link travel time
with inductive loop detector data by using thek-NN method.
Transportation research record, (1935):47–56, 2005.

[24] E. Snelson and Z. Ghahramani. Sparse Gaussian processes
using pseudo-inputs. In Y. Weiss, B. Schölkopf, and J. Platt,

11

editors,Advances in Neural Information Processing Systems
18, pages 1257–1264, Cambridge, MA, 2006. MIT Press.

[25] E. Tiakas, A. N. Papadopoulos, A. Nanopoulos,
Y. Manolopoulos, D. Stojanovic, and S. Djordjevic-Kajan.
Trajectory similarity search in spatial networks. InProc. Intl.
Database Engineering and Applications Symposium, pages
185–192, 2006.

[26] M. Vlachos. Elastic translation invariant matching of trajec-
tories.Machine Learning Journal, 58(2-3):301–334, 2005.

[27] C. K. I. Williams, C. E. Rasmussen, A. Schwaighofer, and
V. Tresp. Observations on the Nyström method for Gaus-
sian process prediction,http://www.dai.ed.ac.uk/
homes/ckiw/online pubs.html . 2002.

[28] C. K. I. Williams and M. Seeger. Using the Nyström method
to speed up kernel machines. InAdvances in Neural Informa-
tion Processing Systems 13, pages 682–688, 2001.

[29] C.-H. Wu, J.-M. Ho, and D. Lee. Travel-time prediction with
support vector regression.IEEE Trans. Intelligent Trans-
portation Systems, 5(4):276– 281, 2004.

[30] J. Y. Yen. Finding the k shortest loopless paths in a network.
Management Science, 17(11):712–716, 1971.

[31] C. Zhang, S. Sun, and G. Yu. A bayesian network approach
to time series forecasting of short-term traffic flows. InProc.
IEEE Intl. Conf. Intelligent Transportation System, pages
216–221, 2004.

