

Tokyo Research Laboratory

Travel-Time Prediction using Gaussian Process Regression: A Trajectory-Based Approach

IBM Tokyo Research Lab. Tsuyoshi Idé

2009/04/03 SDM 09 / Travel-Time Prediction

© Copyright IBM Corporation 2009

Contents

- Problem setting
- Background
- Formulation
- Implementation
- Experiment

Problem setting: Predict travel time along arbitrary path

- Given traffic history data, find a p.d.f. $p(y|x, \mathcal{D})$
- Traffic history data is a set of (path, travel time) :
 - $\mathcal{D} \equiv \{(x^{(n)}, y^{(n)}) | n = 1, 2, ..., N\}$
 - Assuming all the paths in D share the same origin and destination

travel time

destination

- Link road segment between neighboring intersections
- Path sequence of links

input path

Background (1/2):

Traditional time-series modeling is not useful for low-traffic links

Traditional approach: time-series modeling for particular link

 Construct an AR model or a variant model for computing travel time as a function of time

Limitation: hard to model low-traffic links

- Time-series modeling needs a lot of data for individual links
- However, a path includes low-traffic links in general
 - many side roads have little traffic

Background (2/2):

Trajectory mining is an emerging research field

Hurricane trajectory analysis

Clustering and outlier detection for trajectories

Shopping path analysis

Analyzing shipping paths in stores for marketing

Travel time prediction (this work)

Predicting travel time for each trajectory

Fig. 9. Trajectory outliers for Hurricane (small).

Jeffrey S. Larson, et al. , 2005.

Our problem can be thought of as a non-standard regression problem, where input *x* is not a vector but a path

Our solution

- Use string kernel for computing similarity between trajectories
- Use Gaussian process regression for probabilistic prediction

(Review)

Comparing standard regression with kernel regression

Standard regression explicitly needs input vectors

Input = data matrix (design matrix)

$$\mathsf{X} = \begin{bmatrix} x^{(1)}, \cdots, x^{(N)} \end{bmatrix} \int dimensionality of input space \\ \# of samples$$

Kernel regression needs only similarities

- Input = kernel matrix
 - i.e. only similarities matter

$$\mathsf{K} = \begin{bmatrix} k(x^{(1)}, x^{(1)}) & \cdots & k(x^{(1)}, x^{(N)}) \\ \vdots & \ddots & \vdots \\ k(x^{(N)}, x^{(1)}) & \cdots & k(x^{(N)}, x^{(N)}) \end{bmatrix} \quad \ \ \, \text{ $\#$ of samples}$$

of samples

Formulation (1/4):

Employing string kernels for similarity between paths

Each path is represented as a sequences of symbols

- The "symbol" can be link ID
 - e.g. the 3rd sample may look like

$$x^{(3)} = (25020201, 24021102, 222020101, 258020001, ...)$$

link ID

String kernel is a natural measure for similarity between strings

• We used *p*-spectrum kernel [Leslie 02]

$$k_{p}(x^{(i)}, x^{(j)}) \equiv \beta \sum_{u \in \Sigma^{p}} N_{u}(x^{(i)}) N_{u}(x^{(j)})$$

Set of subsequences of p subsequences of p subsequence u in a path $x^{(i)}$

Formulation (2/4): Intuitions behind *p*-spectrum kernel – "split-and-compare"

- Step 1: Split each path into subsequences
- Step 2: Sum up number of co-occurrences
- Example: p = 2, alphabet = {north, south, east, west}
 If u = _____ = (east, north), N_u(blue) = 2 and N_u(red) = 3.

Formulation (3/4): Employing Gaussian process regression (GPR). Two assumptions of GPR

- Assumption 1: Observation noise is Gaussian
 - $p(y^{(n)}|x^{(n)}) = \mathcal{N}(y^{(n)}|f^{(n)},\sigma^2)$
- Assumption 2: Prior distribution of latent variables is also Gaussian
 - $p(f_N) = \mathcal{N}(f_N|\mathbf{0},\mathsf{K})$
 - Close points favor similar values of the latent variable
 - i.e. "underlying function should be smooth"

Formulation (4/4): Employing Gaussian process regression (GPR). Predictive distribution p(y|x, D) is analytically obtained

Predictive distribution is also Gaussian

• (See the paper for derivation)

$$p(y|x, \mathcal{D}) = \mathcal{N}(y|m(x), s^{2}(x))$$
$$m(x) \equiv \mathbf{k}^{\top} \mathsf{C}^{-1} \mathbf{y}_{N}$$
$$s(x)^{2} \equiv \sigma^{2} + k(x, x) - \mathbf{k}^{\top} \mathsf{C}^{-1} \mathbf{k}$$

$$\begin{aligned} \boldsymbol{f}_{N} &\equiv [f^{(1)}, f^{(2)}, ..., f^{(N)}]^{\top} \\ \boldsymbol{y}_{N} &\equiv [y^{(1)}, y^{(2)}, ..., y^{(N)}]^{\top} \\ \boldsymbol{k} &\equiv [k(x, x^{(1)}), k(x, x^{(2)}), ..., k(x, x^{(N)})]^{\top} \\ \boldsymbol{\mathsf{C}} &\equiv \boldsymbol{\mathsf{K}} + \sigma^{2} \boldsymbol{\mathsf{I}}_{N} \end{aligned}$$

Implementation (1/2): Hyper-parameters are determined from the data

- Find β , σ^2 so that marginal likelihood is maximized
 - Log marginal likelihood (log-evidence):

$$\psi(\sigma,\beta) \equiv \ln \int d\boldsymbol{f}_N \ p(\boldsymbol{f}_N) \prod_{n=1}^N p(y^{(n)}|f_n)$$

- We can derive fixed-point equations for σ^2 and $\gamma \equiv \sigma^2/\beta$
 - No need to use gradient method in 2D space
 - Alternately solve $\frac{\partial \psi}{\partial \gamma} = 0$ and $\frac{\partial \psi}{\partial \beta} = 0$
 - Cholesky factorization is needed at each iteration
 - More efficient algorithm \rightarrow future work

Implementation (2/2): Algorithm summary

In the *test phase*, we precompute the Cholesky factor L, where $C = LL^{\top}$, and its inverse L^{-1} as a side product of the Cholesky factorization. We also precompute a vector $h \equiv L^{-1}y_N$.

- 1. Input: Path x (and precomputed L^{-1} and h).
- 2. Algorithm:
 - Compute $l \equiv L^{-1}k$.
 - Compute $m = \bar{y} + h^{\top} l$.
 - Compute $s^2 = \sigma^2 + k(x, x) \mathbf{l}^\top \mathbf{l}$.
- 3. Output: Predictive mean m and variance s^2 .

Experiment (1/4):

Generating traffic simulation data on an actual map

We used IBM Mega Traffic Simulator

- Agent-based simulator which allows modeling complex behavior of individual drivers
- Generated traffic on actual Kyoto City map

Data generation procedure: simulating sensible drivers

- Pick one of top N_0 shortest paths for a given OD pair
- Inject the car at the origin with Poisson time interval
- Determine vehicle speed at every moment as a function of legal speed limit and vehicular gaps
 - Give waiting time ${\mathcal T}$ at each intersection
- Upon arrival, compute travel time by adding up transit times of all the links

(a) Screenshot of simulator.

(b) Sample route paths.

Experiment (2/4): We compare three different kernels

ID kernel

• p-spectrum kernel whose alphabet Σ is a set of link IDs themselves

•
$$k_p(x^{(i)}, x^{(j)}) \equiv \beta \sum_{\boldsymbol{u} \in \Sigma^p} N_{\boldsymbol{u}}(x^{(i)}) N_{\boldsymbol{u}}(x^{(j)})$$

• p is an input parameter

Direction kernel

- *p*-spectrum kernel whose alphabet is the direction of each link
 - North, South, East, West
 - These are determined from longitude and latitude of each link

Area kernel

Based on enclosing area S between trajectory pairs

$$k^{\operatorname{area}}(x^{(i)}, x^{(j)}) \equiv \beta e^{-S_{i,j}}$$

 Can be thought of as a counterpart of standard distances (Euclid distance etc.) $x^{(i)}$

 \bigcirc

 \bigcirc

Experiment (3/4): Correlation coefficient as evaluation metric

 Evaluation metric r: correlation coefficient between predicted and actual values

$$r \equiv \frac{\sum_{n=1}^{N_{\text{test}}} (y^{(n)} - \bar{y}) (m(x^{(n)}) - \bar{m})}{\sqrt{\sum_{n=1}^{N_{\text{test}}} (y^{(n)} - \bar{y})^2 \sum_{l=1}^{N_{\text{test}}} (m(x^{(l)}) - \bar{m})^2}}$$

• We used *N* = 100 paths for training, and the rest for testing

- Total $N_0 = 132$ paths were generated
- \blacktriangleright Compare different intersection waiting times ~ $\tau=0,10,20$
- Compare different lengths of substring p = 1, 2, .., 5

Experiment (4/4):

String kernel showed good agreement with actual travel time

Comparing different substring lengths (ID and direction kernels)

- p = 2 gave the best result when T > 0
 - Major contribution comes from individual links, but turning patterns at intersections also matter

Comparing different kernels

- ID kernel is the best in terms of high *r* and small variance
- Area kernel doesn't work
 - The "shapes" of trajectories shouldn't be directly compared

Table 1:	r	and	averaged	s^2	values	for	different	kernels
$(\tau=10).$	-							

	ID	direction	area	
r	0.980	0.933	0.059	
$\sqrt{\bar{s^2}}$	4.5	10.0	10.3	

Figure 7: Comparison between the predicted (m) and actual (y) travel times with the ID kernel (\Box) , direction kernel (\circ) , and the area kernel (\triangle) . The dashed line represents y = m, showing perfect agreement.

Page 17 /18

Summary

- We formulated the task of travel-time prediction as the problem of trajectory mining
- We Introduced two new ideas

Use of string kernels as a similarity metric between trajectories

Use of Gaussian process regression for travel-time prediction

We tested our approach using simulation data and showed good predictability

Thank You!

2009/04 | SDM 09 Travel-Time Prediction / 3:00-3:20