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Abstract

When only a small number of labeled samples are available, supervised dimension-
ality reduction methods tend to perform poorly because of overfitting. In such
cases, unlabeled samples could be useful in improving the performance. In this pa-
per, we propose a semi-supervised dimensionality reduction method which preserves
the global structure of unlabeled samples in addition to separating labeled samples
in different classes from each other. The proposed method, which we call SEmi-
supervised Local Fisher discriminant analysis (SELF), has an analytic form of the
globally optimal solution and it can be computed based on eigen-decomposition. We
show the usefulness of SELF through experiments with benchmark and real-world
document classification datasets.

∗A preliminary version of this paper was previously published in Sugiyama et al. (2008). A
MATLAB implementation of the proposed dimensionality reduction method SELF is available from
‘http://sugiyama-www.cs.titech.ac.jp/~sugi/software/SELF’.
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1 Introduction

The goal of dimensionality reduction is to obtain a low-dimensional representation of high-
dimensional data samples while preserving most of the ‘intrinsic information’ contained in
the original data (Roweis & Saul, 2000; Tenenbaum et al., 2000; Hinton & Salakhutdinov,
2006). If dimensionality reduction is carried out appropriately, the compact representation
of the data can be used for various tasks such as visualization and classification.

In supervised learning scenarios where data samples are accompanied with class la-
bels, Fisher discriminant analysis (FDA) (Fisher, 1936; Fukunaga, 1990) is a popular
dimensionality reduction method. FDA seeks an embedding transformation such that
the between-class scatter is maximized and the within-class scatter is minimized. FDA
works very well if the samples in each class follow Gaussian distributions with a shared
covariance structure. However, FDA tends to give undesired results if the samples in
a class form several separate clusters or there are outliers (Fukunaga, 1990). To over-
come this drawback, Local FDA (LFDA) has been proposed (Sugiyama, 2007). LFDA
localizes the evaluation of the within-class scatter, and thus works well even when within-
class multimodality or outliers exist. In addition, LFDA overcomes a critical limitation
of the original FDA in dimensionality reduction—the dimension of the FDA embedding
space should be less than the number of classes (Fukunaga, 1990), while LFDA does not
suffer from this restriction in general. Moreover, LFDA was shown to compare favorably
with other supervised dimensionality reduction methods through experiments (Sugiyama,
2007).

However, the performance of LFDA (and all other supervised dimensionality reduc-
tion methods) tends to be degraded when only a small number of labeled samples are
available. Namely, the supervised dimensionality reduction methods tend to find embed-
ding spaces which are overfitted to the labeled samples. In such cases, it is effective to
make use of unlabeled samples that are often available abundantly—such a setup is called
semi-supervised learning (Chapelle et al., 2006). Through extensive experiments, it was
shown that principal component analysis (PCA) (Jolliffe, 1986), which is an unsupervised
dimensionality reduction method for preserving the global data structure, works moder-
ately well in semi-supervised learning scenarios (see e.g., Chapter 21 of Chapelle et al.,
2006).

Although PCA was reported to work well, it may not be the best possible choice
in the semi-supervised situation because of its unsupervised nature. In this paper, we
propose an alternative semi-supervised dimensionality reduction method. Our basic idea
is to smoothly bridge LFDA and PCA so that our reliance on the global structure of
unlabeled samples and information brought by (a small number of) labeled samples can
be controlled. We show experimentally that the proposed method, which we refer to as
semi-supervised LFDA (SELF), compares favorably with other methods. Note that SELF
maintains the same computational advantage of LFDA and PCA, i.e., a global solution
can be analytically computed based on eigen-decomposition. Therefore, SELF is still
computationally as efficient as LFDA and PCA.

The rest of this paper is organized as follows. In Section 2, the linear dimensionality
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reduction problem addressed in this paper is formulated and some mathematical facts used
in the following sections are briefly summarized. In Section 3, existing supervised and
unsupervised dimensionality reduction methods are reviewed in a systematic and unified
manner. This unified view will be the foundation for developing our new method in the
following section. Those who are familiar with the existing methods and interested in
immediately looking at the new method may choose to skip the review materials provided
in Section 3. In Section 4, we propose the new semi-supervised dimensionality reduction
method SELF and show its properties. Section 5 is devoted to experiments showing the
usefulness of the proposed approach. Finally, in Section 6, we conclude with a discussion
on possible future directions.

2 Preliminaries

In this section, we formulate the linear dimensionality reduction problem and give some
mathematical background.

2.1 Formulation

Let xi ∈ Rd (i = 1, 2, . . . , n) be d-dimensional sample vectors and let X ∈ Rd×n be the
matrix of all samples:

X := (x1|x2| · · · |xn).

Let z ∈ Rr (1 ≤ r ≤ d) be a low-dimensional representation of a high-dimensional sample
x ∈ Rd, where r is the dimensionality of the reduced space. For the moment, we focus
on linear dimensionality reduction, i.e., using a transformation matrix T ∈ Rd×r, an
embedded representation z of the sample x is obtained as

z = T⊤x,

where ⊤ denotes the transpose of a matrix or a vector. Later, we extend our discussion
to cases where the mapping from x to z is non-linear.

2.2 Generalized Eigenvalue Problem

Many dimensionality reduction techniques developed so far involve an optimization prob-
lem of the following form:

T (OPT) := argmax
T∈Rd×r

[
tr
(
T⊤BT (T⊤CT )−1

)]
. (1)

Roughly speaking, B encodes the quantity that we want to increase (e.g., between-class
separability), and C corresponds to the quantity that we want to decrease (e.g., within-
class scatter). In the next section, we show how B and C are designed in some specific
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cases. Note that the same solution T (OPT) can also be obtained as follows (see e.g.,
Fukunaga, 1990):

T (OPT) =argmax
T∈Rd×r

[
tr
(
T⊤BT

)]
subject to T⊤CT = Ir, (2)

T (OPT) =argmax
T∈Rd×r

[
det

(
T⊤BT

)
det

(
T⊤CT

)] ,
where Ir is the identity matrix on Rr and det(·) denotes the determinant of a matrix.

Let {φk}dk=1 be the generalized eigenvectors associated with the generalized eigenvalues
{λk}dk=1 of the following generalized eigenvalue problem:

Bφ = λCφ. (3)

The generalized eigenvectors are C-orthogonal (Bai et al., 2000), i.e., for k ̸= k′,

φ⊤
k Cφk′ = 0.

We assume that the generalized eigenvalues are sorted in descending order as

λ1 ≥ λ2 ≥ · · · ≥ λd, (4)

and the generalized eigenvectors are normalized as

φ⊤
k Cφk = 1 for k = 1, 2, . . . , d. (5)

Note that this normalization is often carried out automatically by an eigen-solver. Then
a solution T (OPT) is analytically given as follows (e.g., Fukunaga, 1990):

(φ1|φ2| · · · |φr).

It can be confirmed that Eq.(1) is invariant under linear transformations (Fukunaga,
1990), i.e., for any r-dimensional invertible matrix U , T (OPT)U is also a global solution.
This implies that the range of the embedding space can be uniquely determined by Eq.(1),
but the metric in the embedding space is arbitrary. A practically useful heuristic (e.g.,
Sugiyama, 2007) is to set

U = diag(
√
λ1,

√
λ2, . . . ,

√
λr), (6)

where diag(a, b, . . . , c) denotes the diagonal matrix with the diagonal elements a, b, . . . , c
and we assume that the generalized eigenvalues {λk}dk=1 are non-negative. Then the
solution is given as

T (OPT) = (
√

λ1φ1|
√

λ2φ2| · · · |
√
λrφr). (7)

Thus, the minor eigenvectors are deemphasized according to the square root of the eigen-
values. We will use this weighted solution in this paper.
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2.3 Pairwise Expression of Scatter Matrices

When addressing dimensionality reduction problems, we are often dealing with a matrix of
the following pairwise form (Belkin & Niyogi, 2003; Sugiyama, 2007), since it is convenient
to describe the relation between pairs of features regarding whether pairs are close together
or far apart:

S :=
1

2

n∑
i,j=1

Wi,j(xi − xj)(xi − xj)
⊤, (8)

where W is some n× n matrix. Let D be the n× n diagonal matrix with

Di,i :=
n∑

j=1

Wi,j,

and let L be
L := D −W .

Then the matrix S can be expressed in terms of L as

S =
n∑

i,j=1

Wi,jxix
⊤
i −

n∑
i,j=1

Wi,jxix
⊤
j

=
n∑

i=1

Di,ixix
⊤
i −XWX⊤

=XLX⊤. (9)

If we regard W as a weight matrix for a graph with n nodes, L can be regarded as a
graph Laplacian matrix in spectral graph theory (Chung, 1997). If W is symmetric and
its elements are all non-negative, L is known to be positive semi-definite.

In the following, we frequently use the matrices S(·), W (·), D(·), and L(·). They are
all defined as above.

3 Review of Existing Dimensionality Reduction

Methods

In this section, we review the existing dimensionality reduction methods. Our review
will be in terms of the pairwise expression (8) in a unified framework. This unified
formulation facilitates the development of a new method in the following sections. Those
who are familiar with existing methods of supervised and unsupervised dimensionality
reduction and interested in immediately looking at the new method may skip this section
and go directly to Section 4.
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3.1 Principal Component Analysis (PCA)

A fundamental unsupervised dimensionality reduction method is principal component
analysis (PCA) (Jolliffe, 1986), which iteratively finds the maximum-variance direction
of the data points. Below, we formulate PCA in a slightly different manner based on the
pairwise expression (8).

Let S(t) be the total scatter matrix :

S(t) :=
n∑

i=1

(xi − µ)(xi − µ)⊤,

where µ is the mean of all of the samples:

µ :=
1

n

n∑
i=1

xi.

Note that S(t) can be expressed in a pairwise form as

S(t) =
n∑

i=1

xix
⊤
i − nµµ⊤

=
1

n

n∑
i,j=1

xix
⊤
i −

1

n

n∑
i,j=1

xix
⊤
j

=
1

2

n∑
i,j=1

W
(t)
i,j (xi − xj)(xi − xj)

⊤,

where W (t) is the n× n matrix with

W
(t)
i,j :=

1

n
. (10)

The PCA transformation matrix T (PCA) is defined as

T (PCA) := argmax
T∈Rd×r

[
tr
(
T⊤S(t)T (T⊤T )−1

)]
. (11)

If we use the equivalent formulation (2), we see that PCA seeks a transformation matrix
T such that the scatter in the embedding space is maximized. A solution T (PCA) is given
by Eqs.(3) and (7) with

B = S(t) and C = Id.

3.2 Locality-Preserving Projection (LPP)

Another useful unsupervised dimensionality reduction technique is locality-preserving pro-
jection (LPP) (He & Niyogi, 2004).
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Let A be an affinity matrix, i.e., an n× n matrix with Ai,j being the affinity between
xi and xj. We assume that Ai,j ∈ [0, 1], where Ai,j is large if xi and xj are ‘close’ and Ai,j

is small if xi and xj are ‘far apart’. There are several different manners of defining A,
such as using the nearest neighbors (Roweis & Saul, 2000) or the heat kernel (Belkin &
Niyogi, 2003). In this paper, we use the local scaling heuristic (Zelnik-Manor & Perona,
2005) as the definition of the affinity matrix A, i.e.,

Ai,j = exp

(
−∥xi − xj∥2

σiσj

)
.

The parameter σi represents the local scaling around xi defined by

σi := ∥xi − x
(k)
i ∥,

where x
(k)
i is the k-th nearest neighbor of xi. A heuristic choice of k = 7 was shown to

be useful through experiments (Zelnik-Manor & Perona, 2005; Sugiyama, 2007).
Let S(n) and S(l) be the normalization matrix and the local scatter matrix defined by

S(n) := XD(n)X⊤,

S(l) :=
1

2

n∑
i,j=1

W
(l)
i,j (xi − xj)(xi − xj)

⊤,

where D(n) is the n× n diagonal matrix with

D
(n)
i,i :=

1

n

n∑
j=1

Ai,j,

and W (l) is the n× n matrix with

W
(l)
i,j :=

1

n
Ai,j.

The LPP transformation matrix T (LPP ) is defined as

T (LPP ) := argmin
T∈Rd×r

[
tr
(
T⊤S(l)T (T⊤S(n)T )−1

)]
.

Taking into account the equivalence between Eqs.(1) and (2), we see that LPP seeks a
transformation matrix T such that nearby data pairs in the original space Rd are kept close
in the embedding space Rr (with (T⊤S(n)T )−1 regarded as a normalization constraint).
Thus, LPP tends to preserve the local structures of the data.

As shown above, LPP is formulated as a minimization problem. To make this consis-
tent with the other methods reviewed here, let us consider an inverted version of LPP.

T (iLPP) := argmax
T∈Rd×r

[
tr
(
T⊤S(n)T (T⊤S(l)T )−1

)]
.

When S(n) is an identity, the inverted LPP (iLPP) agrees with the original LPP according
to Eq.(3); otherwise the iLPP solution may be different from that of the original LPP.

A solution T (iLPP) is given by Eqs.(3) and (7) with

B = S(n) and C = S(l).



Semi-Supervised Local Fisher Discriminant Analysis for Dimensionality Reduction 8

3.3 Fisher Discriminant Analysis (FDA) for Dimensionality Re-
duction

Fisher discriminant analysis (FDA) is a popular supervised dimensionality reduction
technique (Fisher, 1936; Fukunaga, 1990). When discussing supervised learning problems,
we suppose that we have n′ labeled samples {(xi, yi)}n

′
i=1, where yi ∈ {1, 2, . . . , c} is a class

label associated with the sample xi and c is the number of classes. Let n′
m be the number

of labeled samples in class m ∈ {1, 2, . . . , c}:

n′ =
c∑

m=1

n′
m.

Let S(b) and S(w) be the between-class scatter matrix and the within-class scatter
matrix :

S(b) :=
c∑

m=1

n′
m(µm − µ)(µm − µ)⊤,

S(w) :=
c∑

m=1

∑
i:yi=m

(xi − µm)(xi − µm)
⊤,

where
∑

i:yi=m indicates the summation over i such that yi = m and µm is the mean of
samples in class m:

µm :=
1

n′
m

∑
i:yi=m

xi.

The FDA transformation matrix T (FDA) is defined as

T (FDA) := argmax
T∈Rd×r

[
tr
(
T⊤S(b)T (T⊤S(w)T )−1

)]
.

That is, FDA seeks a transformation matrix T such that the between-class scatter in
the embedding space (i.e., T⊤S(b)T ) is ‘maximized’ and the within-class scatter in the
embedding space (i.e., T⊤S(w)T ) is ‘minimized’. A solution T (FDA) is given by Eqs.(3)
and (7) with

B = S(b) and C = S(w).

It is known (e.g., Fukunaga, 1990) that S(b) and S(w) are related to the total scatter
matrix S(t) as

S(t) = S(b) + S(w). (12)

This can also be confirmed from the fact that S(b) and S(w) are expressed in the pairwise
form (8) with the following weight matrices (Sugiyama, 2007):

W
(b)
i,j :=

{
1/n′ − 1/n′

yi
if yi = yj,

1/n′ if yi ̸= yj,

W
(w)
i,j :=

{
1/n′

yi
if yi = yj,

0 if yi ̸= yj,
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where n′
yi

denotes the number of labeled samples in class yi ∈ {1, 2, . . . , c}. In this case,
we have

W (t) = W (b) +W (w),

since W
(t)
i,j := 1/n′ in the current setup (cf. Eq.(10)).

The between-class scatter matrix S(b) has at most rank c− 1 (Fukunaga, 1990). This
implies that FDA allows us to obtain at most c− 1 meaningful features (or equivalently
the dimensionality r of the embedding space should be at most c− 1), and the remaining
features found by FDA are arbitrary in the null space of S(b). This is an essential limitation
of FDA in dimensionality reduction.

3.4 Local Fisher Discriminant Analysis (LFDA)

Local Fisher Discriminant Analysis (LFDA) is a supervised dimensionality reduction
method (Sugiyama, 2007) which overcomes the weakness of the original FDA against
within-class multimodality or outliers (Fukunaga, 1990).

Let S(lb) and S(lw) be the local between-class scatter matrix and the local within-class
scatter matrix defined by

S(lb) :=
1

2

n′∑
i,j=1

W
(lb)
i,j (xi − xj)(xi − xj)

⊤,

S(lw) :=
1

2

n′∑
i,j=1

W
(lw)
i,j (xi − xj)(xi − xj)

⊤,

where W (lb) and W (lw) are the n′ × n′ matrices with

W
(lb)
i,j :=

{
Ai,j(1/n

′ − 1/n′
yi
) if yi = yj,

1/n′ if yi ̸= yj,
(13)

W
(lw)
i,j :=

{
Ai,j/n

′
yi

if yi = yj,

0 if yi ̸= yj.
(14)

Ai,j is the affinity value between xi and xj based on the local scaling heuristic (see Sec-
tion 3.2). Note that the local scaling is computed in a classwise manner in LFDA since we
want to preserve the within-class local structure (Sugiyama, 2007). This also contributes
to reducing the computational cost for nearest neighbor search when computing the local
scaling. The LFDA transformation matrix T (LFDA) is defined as

T (LFDA) := argmax
T∈Rd×r

[
tr
(
T⊤S(lb)T (T⊤S(lw)T )−1

)]
.

In other words, LFDA seeks a transformation matrix T such that the local between-class
scatter in the embedding space (i.e., T⊤S(lb)T ) is ‘maximized’ and the local within-class
scatter in the embedding space (i.e., T⊤S(lw)T ) is ‘minimized’.
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In Eqs.(13) and (14), Ai,j(1/n
′−1/n′

yi
) is negative while Ai,j/n

′
yi
and 1/n′ are positive.

Thus LFDA imposes nearby data pairs in the same class to be close together and the data
pairs in different classes to be far apart; far apart data pairs within the same class are not
imposed to be close together. Samples in different classes are separated from each other
irrespective of their affinity values. A solution T (LFDA) is given by Eqs.(3) and (7) with

B = S(lb) and C = S(lw).

When Ai,j = 1 for all i, j (i.e., no locality), S(lw) and S(lb) are reduced to S(w) and
S(b). Thus, LFDA can be regarded as a localized variant of FDA. The between-class
scatter matrix S(b) has at most rank c − 1, while its local counterpart S(lb) usually has
full rank (given n′ ≥ d). Therefore, LFDA can be applied to dimensionality reduction
into spaces of any dimension, which is also a significant advantage over the original FDA
when the number of classes is small.

However, the performance of LFDA (and all other supervised dimensionality reduction
methods) tends to be degraded if only a small number of labeled samples are available.
The purpose of this paper is to give a new method that can overcome this weakness.

4 Semi-Supervised LFDA (SELF)

In this section, we propose a new dimensionality reduction method for semi-supervised
learning scenarios. From here on, we consider the case where, among all of the samples
{xi}ni=1, only {xi}n

′
i=1 (1 ≤ n′ ≤ n) are labeled and the rest are unlabeled.

4.1 Basic Idea

When only a small number of labeled samples are available, supervised dimensionality
reduction methods tend to find the embedding spaces overfitted to the labeled samples.
In such situations, the use of unlabeled samples can mitigate this problem—indeed, in
Chapter 21 of Chapelle et al. (2006), it was shown through extensive experiments that
PCA works well on the whole. Our experimental results in Section 5.1 also show that
PCA is sometimes better than LFDA. This means that preserving the global structure
of all of the samples in an unsupervised manner can be better than relying too much on
class information provided by a small number of labeled samples.

Figure 1 depicts 2-dimensional 2-class examples. The circles and triangles denote
the samples in positive and negative classes and the filled or unfilled symbols denote
the labeled or unlabeled samples. The solid and dashed lines denote the 1-dimensional
embedding spaces (onto which the data samples will be projected) found by LFDA and
PCA, respectively.

For the dataset in Figure 1(a), both LFDA and PCA can find good embedding spaces
which clearly separate unlabeled samples in different classes from each other. However,
for the dataset in Figure 1(b), which contains the same sample points as (a) but in which
the choice of the labeled samples is different, LFDA finds an embedding space that is
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Figure 1: Illustrative examples of LFDA and PCA for toy datasets. The circles and
triangles denote the samples in positive and negative classes and the filled or unfilled
symbols denote the labeled or unlabeled samples. The solid and dashed lines denote the
1-dimensional embedding spaces (onto which the data samples will be projected) found
by LFDA and PCA, respectively. The dataset is common to (a) and (b), but the choice of
labeled samples is different. This only affects the LFDA solution because of its supervised
nature; the PCA solution does not change because of its unsupervised nature. The choice
of labeled samples is common to (a) and (c), but the vertical scaling of the data is doubled
in (c). This affects both the LFDA and PCA solutions, but the PCA solution is more
influenced because of its unsupervised nature.
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overfitted to the labeled samples. Note that the choice of labeled samples only affects the
LFDA solution—the PCA solution does not change because of its unsupervised nature.
This illustrates a possible drawback of LFDA which relies strongly on a small number of
labeled samples.

The dataset described in Figure 1(c) has the same choice of labeled samples as (a),
but the vertical scaling of the data is doubled. Although this change of scales affects
both the LFDA and PCA solutions, LFDA is not strongly influenced by the change of
scales because of its supervised nature. In contrast, PCA is significantly influenced by
the change of scales and does not work well for the dataset (c). This illustrates a possible
weakness of PCA arising from its unsupervised nature.

The above result shows that LFDA and PCA have their own drawbacks. However,
the above result also implies that LFDA and PCA can compensate for each other’s weak-
nesses, i.e., LFDA can utilize label information, while PCA can avoid overfitting. Our
experimental results with the benchmark datasets in Section 5.1 also show that LFDA and
PCA tend to work in a complementary manner. Motivated by these facts, we propose to
bridge LFDA and PCA so that our reliance on the global structure of unlabeled samples
and class information brought by the labeled samples can be smoothly controlled. We
refer to the proposed method as semi-supervised LFDA (SELF).

The embedding transformations of LFDA and PCA can be analytically computed
through eigen-decomposition, as reviewed in the previous section. Based on this fact, we
combine the eigenvalue problems of LFDA and PCA and solve them together. This allows
us to retain the computational efficiency of LFDA and PCA.

As described in Section 3.4, LFDA includes FDA as a special case. Therefore, the idea
of combining LFDA and PCA detailed below is also applicable to FDA.

4.2 Definition

More specifically, we propose to solve the following generalized eigenvalue problem:

S(rlb)φ = λS(rlw)φ, (15)

where S(rlb) and S(rlw) are the regularized local between-class scatter matrix and the
regularized local within-class scatter matrix defined by

S(rlb) := (1− β)S(lb) + βS(t), (16)

S(rlw) := (1− β)S(lw) + βId. (17)

β ∈ [0, 1] is a trade-off parameter—SELF is reduced to LFDA when β = 0 and SELF is
reduced to PCA when β = 1. In general, SELF with 0 < β < 1 inherits the characteristics
of both LFDA and PCA (discussed in detail in Section 4.3). One may use different trade-
off parameters in S(rlb) and S(rlw) to increase the flexibility. However, this in turn makes
the trade-off parameter choice laborious. For this reason, we focus on using the single
shared trade-off parameter β for S(rlb) and S(rlw) below.
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The optimization problem of SELF is expressed as

T (SELF) := argmax
T∈Rd×r

[
tr
(
T⊤S(rlb)T (T⊤S(rlw)T )−1

)]
.

In other words, SELF seeks a transformation matrix T such that the regularized local
between-class scatter in the embedding space (i.e., T⊤S(rlb)T ) is ‘maximized’ and the
regularized local within-class scatter in the embedding space (i.e., T⊤S(rlw)T ) is ‘mini-
mized’. Since this optimization problem is the same form as LFDA and PCA, a solution
T (SELF) can be computed as

T (SELF) = (
√
λ1φ1|

√
λ2φ2| · · · |

√
λrφr), (18)

where {φk}dk=1 are the generalized eigenvectors of Eq.(15) associated with the generalized
eigenvalues {λk}dk=1. We assume that {λk}dk=1 are sorted in descending order as in Eq.(4)
and {φk}dk=1 are normalized as in Eq.(5). In Section 4.3, we will prove that all the
generalized eigenvalues are non-negative, which guarantees that the solution (18) is always
valid.

In the original LFDA, the nearest neighbor search (involved in the computation of
local scaling σi in the affinity matrix A) is carried out in a classwise manner (Sugiyama,
2007). On the other hand, in SELF, we determine the local scaling using all of the samples
{xi}ni=1 since the number of labeled samples is typically small in semi-supervised learning.
SELF requires affinity values Ai,j only for the pairs of labeled samples in the same class.
This means that we need to compute local scaling values only for the labeled samples and
affinity values only for the labeled sample pairs in the same class. This contributes greatly
to reducing the computational costs. The total scatter matrix S(t) in the original PCA
is computed for unlabeled samples, but we use all of the samples {xi}ni=1 (i.e., both the
labeled and unlabeled samples) in SELF. The pseudo-code for SELF appears in Figure 2.

4.3 Properties

First, we give an interpretation of S(rlb). The matrix S(rlb) can be expressed in a pairwise
form as

S(rlb) :=
1

2

n∑
i,j=1

W
(rlb)
i,j (xi − xj)(xi − xj)

⊤, (19)

where W (rlb) is the n× n matrix with

W
(rlb)
i,j :=


(1− β)Ai,j(1/n

′ − 1/n′
yi
) + β/n if yi = yj,

(1− β)/n′ + β/n if yi ̸= yj,

β/n otherwise.

(20)

The first case in Eq.(20) is negative if

β < Bi,j,
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Input : Labeled samples {(xi, yi) | xi ∈ Rd, yi ∈ {1, 2, . . . , c}}n
′

i=1

Unlabeled samples {xi | xi ∈ Rd}ni=n′+1

Dimensionality of embedding space r (1 ≤ r ≤ d)
Trade-off parameter β (0 ≤ β ≤ 1)

Output : d× r transformation matrix T (SELF)

for i = 1, 2, . . . , n′

x
(7)
i ←− 7th nearest neighbor of xi among {xj}nj=1;

σi ←− ∥xi − x
(7)
i ∥;

end
for i, j = 1, 2, . . . , n′

if yi = yj
Ai,j ←− exp(−∥xi − xj∥2/(σiσj));

W
(lb′)
i,j ←− Ai,j(1/n

′ − 1/n′
yi
);

W
(lw′)
i,j ←− Ai,j/n

′
yi
;

else

W
(lb′)
i,j ←− 1/n′;

W
(lw′)
i,j ←− 0;

end
end
X ′ ←− (x1|x2| · · · |xn′);

S(lb) ←−X ′
{
diag(W (lb′)1n′)−W (lb′)

}
X ′⊤;

S(lw) ←−X ′
{
diag(W (lw′)1n′)−W (lw′)

}
X ′⊤;

X ←− (x1|x2| · · · |xn);
µ←−X1n/n;

S(t) ←−XX⊤ − nµµ⊤;

S(rlb) ←− (1− β)S(lb) + βS(t);

S(rlw) ←− (1− β)S(lw) + βId;

{λk,φk}rk=1 ←− Generalized eigenvalues and eigenvectors of S(rlb)φ = λS(rlw)φ,

where λ1 ≥ λ2 ≥ · · · ≥ λd and φ⊤
k S

(rlw)φk = 1;

T (SELF) = (
√
λ1φ1|

√
λ2φ2| · · · |

√
λrφr);

Figure 2: Pseudo-code for SELF. 1n denotes the n-dimensional vector with
ones and diag(w) denotes the diagonal matrix with the diagonal elements spec-
ified by a vector w. A MATLAB implementation of SELF is available from
‘http://sugiyama-www.cs.titech.ac.jp/~sugi/software/SELF’.
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where

Bi,j :=
Ai,jn(n

′ − n′
yi
)

Ai,jn(n′ − n′
yi
) + n′n′

yi

.

Note that 0 ≤ Bi,j < 1. This implies that SELF tries to make sample pairs in the same
class close together if β is smaller than Bi,j, while it separates them farther from each
other if β is larger than Bi,j. Thus the local data structures in the same class tend to be
preserved when β is small, but are no longer preserved when β is large. Bi,j is reduced
when Ai,j is increased, so Bi,j is smallest in the case of FDA where Ai,j = 1 for all i, j.

The second case in Eq.(20) is always positive for any β ∈ [0, 1], implying that SELF
always tries to make sample pairs in different classes farther apart for any β. This would
be natural in (semi-)supervised learning scenarios. The third case in Eq.(20) is always
non-negative, implying that unlabeled samples are separated from each other to preserve
the global data structure.

S(rlb) includes the total scatter matrix S(t) (see Eq.(16)), which is equivalent to the
sum of S(b) and S(w) (see Eq.(12)). If samples in different classes were highly localized
and clearly separated from each other, S(b) would be dominant in S(t) and thus S(t)

and S(b) would be similar to each other. However, since S(b) needs to be computed
from a small number of labeled samples in semi-supervised learning, it is often unreliable.
In contrast, S(t) can be computed in a more reliable manner using a large number of
unlabeled samples1. For this reason, including S(t) in S(rlb) will improve the reliability of
the solution.

Next, we give an interpretation of S(rlw). When β = 0, S(rlw) (= S(lw)) could be ill-
conditioned. This is particularly crucial when the dimension d of the original data space
is larger than the number n′ of labeled samples. In such situations, βId included in S(rlw)

(see Eq.(17)) works as a regularizer and SELF can avoid overfitting the labeled samples
(cf. Friedman, 1989; Mika et al., 2003). Therefore, SELF is regarded as a regularized
variant of LFDA and would be more stable and more reliable than the original LFDA,
particularly when the number of labeled samples is small. Note that unlike Eq.(19), S(rlw)

does not have a pairwise expression since Id cannot be expressed in a pairwise form.
Finally, we investigate the positive (semi-)definiteness of S(rlb) and S(rlw). Let

W (∆lb) = W (lb) −W (b),

which means that W (∆lb) is the n× n matrix with

W
(∆lb)
i,j :=

{
(Ai,j − 1)(1/n′ − 1/n′

yi
) if yi = yj,

0 otherwise.

Note that (Ai,j − 1)(1/n′ − 1/n′
yi
) is non-negative. Then taking into account the relation

(9), we can express S(lb) as

S(lb) = S(b) +XL(∆lb)X⊤,

1This may partially explain why PCA is useful under the cluster assumption—samples in the same
cluster are likely to have a common label (Chapelle et al., 2006).
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where L(∆lb) is defined with W (∆lb) (see Section 2.3). Since S(b) and L(∆lb) are both sym-
metric positive semi-definite, S(lb) is also symmetric positive semi-definite. In addition,
since S(t) is symmetric positive semi-definite and β and 1 − β are non-negative, S(rlb)

is also symmetric positive semi-definite (see Eq.(16)). On the other hand, since S(lw) is
symmetric positive semi-definite and Id is symmetric positive definite, S(rlw) is symmetric
positive definite if β > 0. The facts that S(rlb) is symmetric positive semi-definite and
S(rlw) is symmetric positive definite guarantee that the generalized eigenvalues of Eq.(15)
are non-negative (Bai et al., 2000). Thus, the solution (18) is always valid.

4.4 Numerical Examples

To illustrate how SELF behaves, we used the Olivetti face dataset2. The dataset consists
of 400 gray-scale images of faces (40 people, 10 images per person). Each image consists
of 4096 (= 64× 64) pixels and each pixel takes an integer value between 0 and 255 as the
intensity level. In this experiment, we used the image samples of only 10 subjects (i.e.,
100 images in total) to make the visualization results clear. We experimentally confirmed
that the results do not change significantly (though points are more overlapped) when all
400 images are used.

Among the 10 people used for the experiments, 3 subjects are wearing glasses and
the other 7 subjects are without glasses (see Figure 3(a)). Our task was to embed the
face images into a two-dimensional space so that the subjects with and without glasses
were separated from each other. We labeled 1 image per person (so 3 faces are labeled as
with glasses and 7 faces as without glasses in total) and the rest are treated as unlabeled.
Since each class contains several different subjects, this dataset is thought to possess
within-class multimodality.

The embedded results are depicted in Figure 3, where the circles and triangles denote
the faces with or without glasses and the filled or unfilled symbols denote the labeled
or unlabeled samples. The figure shows that FDA and LFDA perfectly separate the
labeled samples in the two classes from each other. However, the unlabeled samples tend
to be mixed because of an overfitting phenomenon. PCA and iLPP tend to mix the
labeled samples in different classes because of their unsupervised natures. As a result,
the unlabeled samples in different classes are also mixed. In contrast, SELF with β = 0.5
clearly separates the labeled samples in the two classes from each other, and at the same
time, it also effectively separates the unlabeled samples in the two classes. We note that,
in this visualization experiment, the result of SELF is not sensitive to the choice of the
trade-off parameter β. The results are almost unchanged for 0.01 ≤ β ≤ 0.99.

4.5 Discussion

Here we discuss several issues related to SELF.

2The dataset is available from ‘http://www.cs.toronto.edu/~roweis/data.html’.
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(a) Olivetti face dataset (b) FDA

(c) LFDA (d) PCA

(e) iLPP (f) SELF (β = 0.5)

Figure 3: Embedded face samples (glasses vs. non-glasses). The circles and triangles are
the faces with or without glasses and the filled or unfilled symbols are the labeled or
unlabeled samples. In the plots of FDA, LFDA, and SELF, all the labeled points in the
same class are concentrated in one point.
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4.5.1 Combination of LFDA and iLPP

Semi-supervised learning is regarded as a situation between supervised learning and unsu-
pervised learning. Similarly, SELF may also be interpreted as a dimensionality reduction
method between supervised and unsupervised methods. This implies that our choice does
not have to be restricted to LFDA and PCA—other powerful supervised and unsuper-
vised methods could also be combined in a similar manner. Sugiyama (2007) showed
that LFDA is a useful supervised dimensionality reduction method through experiments,
so the use of LFDA in the semi-supervised dimensionality reduction method would be
reasonable.

On the other hand, the performance of an unsupervised dimensionality reduction
method is heavily dependent on label distributions. Clearly there are situations where
PCA performs poorly (as in Figure 1(c)). An alternative choice of the unsupervised
counterpart would be iLPP (see Section 3.2), which results in

B = (1− β)S(lb) + βS(n),

C = (1− β)S(lw) + βS(l).

Although this variant is still computationally as efficient as the original SELF, the combi-
nation of LFDA and iLPP was shown to be less useful in our experiments (see Section 5.1).
This was because the global data structure is not taken into account. That is, iLPP tries
to make samples in the same cluster close together, but it does not impose different clus-
ters to be separated from each other. Therefore, several clusters may merge without any
penalties and iLPP may lose the global cluster structure.

We also tested a combination of three methods—LFDA, PCA, and iLPP—with two
trade-off parameters, but this did not improve the performance over the original SELF.

4.5.2 Distance Metric Learning

The performance of distance-based learning methods such as nearest neighbor classifiers
depends heavily on the definition of the distances between samples. The idea of distance
metric learning is to optimize a metric M used for computing the distances between
samples (Xing et al., 2003; Goldberger et al., 2005; Globerson & Roweis, 2006; Weinberger
et al., 2006):

dist(xi,xj;M ) = (xi − xj)
⊤M (xi − xj).

By definition, the metric matrix M is symmetric and positive semi-definite. For this
reason, metric learning is typically formulated as a semi-definite programming problem,
which is a convex optimization problem for which the unique global solution can be
obtained (Boyd & Vandenberghe, 2004; Weinberger et al., 2006).

If the rank of the d×d matrix M is constrained to r, then the distance metric learning
methods are automatically causing implicit dimensionality reduction. More specifically,
the symmetricity and positive semi-definiteness of the metric matrix M implies that M
can be decomposed as

M = TT⊤,
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where T is a d × r matrix. Then T⊤xi could be regarded as an explicit expression
of a sample xi after dimensionality reduction. However, simultaneously reducing the
dimensionality of samples and learning the distance metric is usually hard since the rank
constraint is non-convex (Boyd & Vandenberghe, 2004). Thus it may not be possible to
obtain the global optimal solution.

In contrast, our approach to dimensionality reduction is formulated by Eq.(1), which
is not convex but which still allows us to access the global solution in terms of the range
of the embedding space. This means that we can obtain the unique solution for the metric
matrix by combining SELF (or any other dimensionality reduction method formulated by
Eq.(1)) with a convex metric learning method (such as Weinberger et al., 2006). That is,
a two-stage procedure of first reducing the dimensionality (i.e., determining the range of
the embedding space) with SELF and then learning the metric in the embedding space
without the rank constraint. We expect that this procedure is practically useful.

4.5.3 Kernelization

So far, we focused on linear dimensionality reduction. Using the standard kernel trick
(Schölkopf et al., 1998), we can easily obtain a non-linear variant of SELF.

Let
L(rlw) = (1− β)L(lw) + β(X⊤X)†,

where † denotes the Moore-Penrose generalized inverse (Albert, 1972). Recalling that
S = XLX⊤ (see Eq.(9)), we can express the eigenvalue problem solved in SELF as

XL(rlb)X⊤φ = λXL(rlw)X⊤φ. (21)

In the derivation of this expression, we used the fact that Id in Eq.(17) can be replaced
with a projection matrix X(X⊤X)†X⊤ without essentially changing the solution when
X⊤X is not invertible.

Since X⊤φ in Eq.(21) belongs to the range of X⊤, it can be expressed by using some
vector α ∈ Rn as follows3:

X⊤φ = X⊤Xα = Kα,

where K is the n× n matrix with

Ki,j := x⊤
i xj.

Then multiplying Eq.(21) by X⊤ from the left-hand side yields

KL(rlb)Kα = λKL(rlw)Kα.

Note that one of the properties of the Moore-Penrose generalized inverse implies that
KL(rlw)K can be simply computed as

KL(rlw)K = (1− β)KL(lw)K + βK.

3Here, we are not equating φ with Xα, but we equate X⊤φ with X⊤Xα.
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When KL(rlw)K is not of full rank, we may need to regularize it (Schölkopf et al.,
1998), i.e., for a small positive scalar ϵ, we replace (21) with

KL(rlb)Kα = λ(KL(rlw)K + ϵIn)α. (22)

Let {αk}dk=1 be the generalized eigenvectors associated with the generalized eigenvalues
{λk}dk=1 of Eq.(22), where they are sorted and normalized as

λ1 ≥ λ2 ≥ · · · ≥ λd

and
α⊤

k (KL(rlw)K + ϵIn)αk = 1 for k = 1, 2, . . . , d.

Then the embedded representation z of an original sample x can be computed in terms
of {αk}rk=1 as

z = (
√

λ1α1|
√
λ2α2| · · · |

√
λrαr)

⊤(x⊤
1 x,x

⊤
2 x, . . . ,x

⊤
nx)

⊤.

This implies that the data samples appear only via their inner products. We note that
the affinity values as well as the local scaling can also be computed in terms of the inner
products between data samples. Therefore, if the inner product x⊤

i xj is replaced by a
reproducing kernel K(xi,xj) (Aronszajn, 1950), we can obtain a non-linear variant of
SELF—linear dimensionality reduction is carried out in an implicit kernel feature space
(Schölkopf et al., 1998).

Beyond non-linearization, kernel SELF is also useful in the following two scenarios.
The first is that the kernelized variant also allows us to reduce the dimensionality of non-
vectorial structured data such as strings, trees, and graphs by employing kernel functions
defined for such structured data (Lodhi et al., 2002; Duffy & Collins, 2002; Kashima &
Koyanagi, 2002; Kondor & Lafferty, 2002; Kashima et al., 2003; Gärtner et al., 2003;
Gärtner, 2003).

Another possible usage of the kernel formulation would be for computational efficiency.
The size of matrices to be eigen-decomposed in the kernel formulation depends only on the
number of samples, not on the input dimensionality. Thus when the number of samples is
smaller than the input dimensionality, using the kernel formulation with the linear kernel
could be more efficient in terms of both computation time and memory space consumption
than the original formulation (see also Section 5.2).

5 Experiments

In this section, we experimentally evaluate the performance of SELF and other dimen-
sionality reduction methods using standard classification benchmark datasets.
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5.1 Benchmark Datasets

In Chapter 21 of Chapelle et al. (2006), systematic experiments were conducted for com-
paring various semi-supervised learning methods. The results showed that each method
performs very well for a particular type of dataset, but at the same time, it tends to be
poor for other kinds of datasets. Thus, the performance of semi-supervised learning meth-
ods is highly dependent on the types of the datasets and there seems to be no single best
method. In contrast, although it may not be the best possible method in semi-supervised
classification, the 1-nearest neighbor classifier has been shown to perform reasonably well
across various datasets. In order to avoid any bias caused by the choice of the learning
methods, we decided to use the 1-nearest neighbor classifier in our experiments.

The misclassification rate is sometimes monotonically decreasing as the dimensionality
is reduced4 (see Figure 4). In such cases, if the best dimensionality is chosen (e.g., by cross-
validation), the largest dimension is mostly chosen (i.e., no dimensionality reduction).
Then we may not be able to compare the performance of the dimensionality reduction
methods in a meaningful way. Fixing the reduced dimensionality r to some number
in advance would be a possible option for avoiding this comparison problem, but the
evaluation results can strongly depend on the choice of the dimensionality. For this
reason, we decided to use the average misclassification rate over the reduced dimensions
(or equivalently the area under the classification error curve) as our error metric, which
we believe to be reasonable in the current experiments.

First we use the benchmark datasets used in Chapelle et al. (2006), which consist
of 9 semi-supervised learning datasets5. We refer to them as the SSL datasets. We did
not test the SSL8 and SSL9 datasets since the SSL8 dataset contains too many samples
(n is over one million) and the SSL9 dataset has too many dimensions (d is over ten
thousand). The SSL6 dataset contains 6 classes, while the other datasets have 2 classes.
Table 1 describes the means and standard deviations of the misclassification rates over
12 repetitions. Since we encountered a numerical problem when computing LFDA, we
slightly regularized it and treat SELF with β = 0.001 as LFDA.

The cluster assumption that the samples in the same cluster are likely to have the
common label is often regarded as an important assumption for the success of semi-
supervised classification (Chapelle et al., 2006). We roughly evaluated the correctness of
the cluster assumption (denoted as ‘CA’ in Table 1) by the correct classification rate of all
the training and test samples using the 1-nearest-neighbor classifier (the cases in which the
label of the target point is correctly predicted by the label of the nearest sample). Note
that CA is computed before the dimensionality reduction, so it represents the correctness
of the cluster assumption for the original data samples. The larger the value of CA is,
the more reliable the cluster assumption becomes.

When the number of labeled samples is 100 (see the upper half of Table 1), LFDA and
PCA tend to work well in a complementary way—LFDA works well if CA is small while

4Even so, dimensionality reduction is still useful since a compact representation of the data can yield
faster computation in the test phase.

5The datasets are available from ‘http://www.kyb.tuebingen.mpg.de/ssl-book/’.
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PCA works well if CA is large6. ‘SELF(0.5)’ (SELF with β = 0.5) tends to compensate for
the weaknesses of each method. It even outperforms both LFDA and PCA in some cases.
We also tested ‘SELF(CV)’, where β in SELF is chosen from {0.001, 0.25, 0.5, 0.75, 1}
by using 10-fold cross-validation. The results in Table 1 show that SELF(CV) further
improves the performance over SELF(0.5). These results also show that iLPP does not
work so well. The combination of LFDA and iLPP (indicated by SELF’(CV) in the
table) also does not perform as well as SELF(CV). We also tested the combination of
LFDA, PCA, and iLPP with two trade-off parameters, but this did not further improve
the performance over SELF, so we omit these details.

Figure 4 depicts the mean misclassification rates as a function of the reduced dimen-
sionality for LFDA, PCA, and SELF(CV). This also shows that LFDA and PCA tend to
work well in a complementary way and SELF(CV) tends to compensate for the weaknesses
of each method. We note that the curves are almost flat for large dimensions since minor
eigenvectors are deemphasized according to the square root of eigenvalues (see Eq.(7)).

When the number of labeled samples is only 10 (see the lower half of Table 1), the
performance differences among the methods shrink but SELF(CV) is still slightly better
than the other methods.

We also conducted similar experiments using the IDA datasets7 (Rätsch et al., 2001),
which consist of supervised classification tasks. We randomly extracted labeled and un-
labeled samples from the pool of all samples, testing n′ = 100 and 30. The results are
summarized in Table 2, showing that SELF(CV) still compares favorably with the alterna-
tive methods. From these results, we demonstrated that SELF(CV) performs reasonably
well across various datasets.

5.2 Document Classification

Here, we apply the proposed dimensionality technique, SELF, to real-world document
classification tasks and evaluate its performance. We used the datasets in the Technion
Repository of Text Categorization8 (TechTC; Davidov et al., 2004). The TechTC reposi-
tory contains 295 binary document classification tasks. Each task contains a few hundred
documents with category labels and a document is expressed by a bag-of-words vector of
term frequencies, which has an entry in the vector corresponding to each word in the dic-
tionary and its number of occurrences in the document. Following convention (Joachims,
2002), we multiply the term frequency by the logarithm of the inverse ratio of the doc-
uments containing the corresponding word. The feature vectors constructed in this way
is called the term frequency-inverse document frequency (TFIDF) vector and TFIDF is
widely used as a standard feature extraction scheme in the document analysis community.

6The success of PCA depends, of course, on the scaling of the data (see Figure 1 again). However, for
the SSL datasets, it was shown through extensive experiments that PCA works well on the whole (see
Chapter 21 of Chapelle et al., 2006). This implies that the scaling of the data is well-conditioned for
PCA in the SSL datasets.

7The datasets are available from ‘http://ida.first.fhg.de/projects/bench/benchmarks.htm’.
8The datasets are available from ‘http://techtc.cs.technion.ac.il/techtc300/techtc300.html’.
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Figure 4: Mean misclassification rates for the SSL datasets as a function of the reduced
dimensionality r when n = 100.
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The TFIDF vector x usually has a large number of dimensions. In our experiments,
its dimensionality ranged from thousands to tens of thousands (depending on the tasks
since we removed the entries of zero occurrences for all of the documents). In general it is
not possible to directly solve eigenvalue problems in such high dimensional spaces. Here,
we used the kernel formulation (see Section 4.5.3; we used the linear kernel so that SELF
is still a linear dimensionality reduction), relying on the number of samples being much
smaller than the input dimensionality in our experiments.

We compare the performance of ‘Plain’ (without dimensionality reduction), LFDA,
PCA, ‘SELF(0.5)’ (SELF with β = 0.5), and ‘SELF(CV)’ (SELF with β chosen by using
5-fold cross-validation). In each method, the dimensionality of the reduced space r is
chosen by using 5-fold CV from9 {1, 2, . . . , 10}. For each dataset, we consider 4 config-
urations with different degrees of supervision. Given n document samples, we randomly
choose 20%, 40%, 60%, and 80% of them as the training data and the rest are treated
as unlabeled data. The 1-nearest neighbor method was again used to evaluate the clas-
sification accuracy of the unlabeled samples. For each dataset and each training sample
configuration, the experiments were repeated 100 times with randomly selected training
samples.

The means and standard deviations of the misclassification rates are summarized in
Table 3. The table shows that all of the dimensionality reduction methods perform better
than Plain, so dimensionality reduction evidently contributes to improving the accuracy
of document classification. Among these methods, SELF consistently works better than
LFDA and PCA.

The mean value of β in SELF(CV) for the four configurations, 20%, 40%, 60%, and
80%, are 0.57, 0.52, 0.48, and 0.46, respectively. This shows that, as the degree of
supervision increases, the value of β decreases and therefore SELF approaches LFDA.
This agrees well with our intuition. However, since all of the values are rather close to 0.5
in this experiment, SELF(0.5) tends to perform slightly better (and is computationally
more efficient) than SELF(CV). It is also intuitive that LFDA tends to outperform PCA
as the degree of supervision increases.

Overall, SELF—a combination of LFDA and PCA—was shown to be a useful dimen-
sionality reduction method in practical document classification tasks.

6 Conclusions, Discussion, and Future Work

Our approach to dimensionality reduction in the current work is called the filter approach,
meaning that the dimensionality reduction procedure is independent of subsequent clas-
sification algorithms (Guyon & Elisseeff, 2003). Our experimental results showed that
the proposed method, SELF, works well when it is combined with the 1-nearest-neighbor
classifier. On the other hand, it is also important to explore wrapper methods (Ko-

9We set the upper limit of r to 10 mainly for computational reasons. However, as shown later, the
value of r chosen by CV is typically less than 10, so this restriction does not cause a serious performance
change.
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Table 3: Means and standard deviations of the misclassification rates of the document
classification tasks over 295 datasets for 100 runs each (i.e., 29, 500 total trials). The
mean value of the reduced dimensionality r chosen by CV was also included in the table.

n′ = 0.2n Plain LFDA SELF(0.5) PCA SELF(CV)

Mean error 20.8 18.4 16.3 18.5 16.4
Std. error 3.4 2.3 2.1 1.7 1.7
# Bests 41 76 252 46 242

Mean chosen r — 2.2 3.3 4.6 3.5

n′ = 0.4n

Mean error 20.8 15.0 13.8 17.0 13.9
Std. error 3.8 1.6 1.5 1.6 1.5
# Bests 10 115 239 34 220

Mean chosen r — 3.0 4.0 5.3 3.9

n′ = 0.6n

Mean error 21.1 13.9 12.7 16.2 12.7
Std. error 3.4 1.5 1.6 1.7 1.6
# Bests 8 126 235 50 242

Mean chosen r — 3.5 4.2 5.7 3.9

n′ = 0.8n

Mean error 21.5 13.6 12.0 15.6 12.1
Std. error 2.9 2.0 2.2 2.4 2.3
# Bests 9 134 245 72 240

Mean chosen r — 3.8 4.1 6.0 3.8

havi & John, 1997) for semi-supervised dimensionality reduction, which explicitly take
the properties of subsequent classification algorithms into account. A wrapper approach
would be particularly useful in semi-supervised learning scenarios since the performance
of elaborate semi-supervised learning methods is highly dependent on the reliability of the
assumptions on the unlabeled samples, such as cluster or manifold structure (Chapelle
et al., 2006).

We showed in Section 4.5.3 that a non-linear variant of SELF can be created by
employing the standard kernel trick. However, a kernelized SELF shares the common
difficulty of kernel methods, the question of how to choose the kernel functions. This
must be investigated in the context of semi-supervised dimensionality reduction. In future
work, we will explore semi-supervised dimensionality reduction of structured data using
kernel SELF.

In SELF, we linearly combined the eigenvalue problems of LFDA and PCA since this
approach allows us to maintain the computational advantages of LFDA and PCA. This
approach was demonstrated to be useful through our experiments in Section 5. Although
we examined some properties of the combined method in Section 4.3, it is important to
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provide a better understanding of the mechanism of the proposed method. Also, our
proposed approach for combining LFDA and PCA is not the only possibility. A future
direction would be to explore other ways to combine supervised and unsupervised methods
for further performance improvement.

An advantage of SELF is that its solution can be obtained analytically by solving
a generalized eigenvalue problem. When the number of samples is very large, solving
the eigenvalue problem by using the algorithm in Figure 2 would be still computation-
ally tractable as long as the input dimensionality is not too high. On the other hand,
when the input dimensionality is very high, the kernel formulation with the linear kernel
(see Section 4.5.3) is still computationally tractable as long as the number of samples is
moderate (as demonstrated by the document classification experiments in Section 5.2).
However, when the number and dimensionality of the samples are both very large, a naive
implementation may not be computationally tractable. Thus an important future work
along this line is to further investigate the computational aspects of SELF and develop
efficient algorithms that can deal with high-dimensional and large-scale datasets, perhaps
by utilizing the sparsity of the data matrix or the kernel matrix.

A remaining important issue to be discussed, which is common to all semi-supervised
learning techniques, is how to optimize the tuning parameters. We may simply use cross-
validation for this purpose, but that approach has two potential problems. The first
problem is that the number of labeled samples is typically small in semi-supervised learn-
ing scenarios, so cross-validation is not reliable (Chapelle et al., 2006). Fortunately, our
experiments showed that SELF is not very sensitive to the choice of the trade-off parame-
ter β in small sample cases, but there is still room for improvement. The second problem is
that labeled samples and unlabeled samples can have different (input) distributions. Such
a situation is referred to as covariate shift (Shimodaira, 2000; Quiñonero-Candela et al.,
2009) and ordinary cross-validation is known to be significantly biased in such situations
(Zadrozny, 2004), while importance-weighted cross-validation is unbiased under covariate
shift (Sugiyama et al., 2007). In future work, we will investigate how such covariate
shift adaptation techniques can be used in the context of semi-supervised dimensionality
reduction.

The properties of a family of linear discriminant analysis algorithms were studied in
Ye (2005; 2008) and Loog (2007; 2008), but the methods discussed in these papers do
not take the locality of the data into account as LFDA does. Therefore our current work
is essentially different from these existing methods. Another alternative to our approach
involves regularized linear discriminant analysis methods for semi-supervised dimension-
ality reduction based on LPP (Cai et al., 2007) or manifold regularization (Belkin et al.,
2006; Song et al., 2008). These methods suffer from the weakness of the original FDA, i.e.,
the maximum dimension of the reduced subspace is dominated by the number of classes.
In contrast, our method offers advantages for classification tasks with rather small num-
bers of classes. A relevant dimensionality reduction method has also been proposed in
the context of semi-supervised clustering (Zhang et al., 2007). However, the locality of
the data is still not addressed. Recently, a non-linear dimensionality reduction method
based on a neural network has been proposed (Hinton & Salakhutdinov, 2006). However,
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neural-network-based methods are prone to suffer from local optimality because of the
non-convexity of optimization. Also, this optimization is usually carried out via a gradient
method and is computationally inefficient. Therefore another important research direction
is to extend such neural-network-based methods to semi-supervised setups and compare
their accuracy and computational efficiency with discriminant-analysis-based methods.
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Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A., & Lawrence, N. (Eds.). (2009).
Dataset shift in machine learning. Cambridge, MA: MIT Press.
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