Formalizing expert knowledge through machine learning

E IBM IEM R IBM

Introduction

-Why this is an important task

-How traditional approaches failed

Case study: condition-based maintenance in the rail industry

□Summary

IBM IEM R IBM

□ Two basic steps in value co-creation:

□(1) transformation

 Transform information by adding a value typically based on expert knowledge

(2) transfer

-Transfer the information to trigger further transformation

Formalizing expert knowledge is a key task in service science

The transformation step is a major source of vale creation
This is usually triggered by certain expert knowledge

□Interesting question:

-What experts are doing in this step?

- What kind of language is appropriate for knowledge representation?
- How can we construct useful rules from experience?

□Introduction

-Why this is an important task

-How traditional approaches failed

Case study: condition-based maintenance in the rail industry

□Summary

è 🏶 IBM IEM 🕀 🏶 IBM IEM 🕀 🏶 IBM IEM 🕀 🏶 IBM IEM 🕸 🤅

Expert systems: failure and success The failure of MYCIN

□MYCIN (1970s)

- -Medical expert system developed in Stanford
- -Used a large repository of IF-THEN rules
- -Seemingly good results in academic benchmarks

-Never been used in practice

Issue: knowledge acquisition bottleneck

-"Who prepares the complete knowledge base?"

ibm ibm ibm 🐨 🦇 ibm ibm 🐨 🦇 ibm ibm ibm 🐨 🏶 ibm ibm ibm 🐨

Expert systems: failure and success The victory of DeepQA

□DeepQA (2011)

- -Beat human quiz champions
- -Capable of handling open-domain questions
 - i.e. handles an infinite number of queries

□New technologies?

- -Rely on digitalized encyclopedia data like Wikipedia
- -Used machine learning to make a decision

Lessens learned from the history of expert system

Hopefully automatically) capturing expert knowledge is essential in practice

The extracted decision rules must satisfy at least three criteria:

Generalizeability

•Must be capable of handling unseen situations

•Learnability

•Must capture the decision patterns automatically

Actionability

•Must provide insights understandable to humans

(For ref.) Mathematics is a powerful language. Galileo's comment may apply to service systems

"Philosophy is written in this grand book, the universe...."

"It is written in the language of mathematics, and its characters are triangles, circles, and other geometric figures;...."

"The Assayer", Galileo Galilei, 1623.

This may be true in service systems!

Introduction

-Why this is an important task

-How traditional approaches failed

Case study: condition-based maintenance in the rail industry

□Summary

Wheel axle anomaly detection is a major topic in condition-based monitoring

* TSI: European specification for high-speed trains

Monitoring temperature is a common approach, but anomaly detection is known to be very hard

ibm iem 🐨 🏟 ibm iem 🐨 🦇 ibm iem 🐨 🆛 ibm iem iem 🐨

Temperatures are very much dependent on external disturbances

- -Weather: rainfall, wind, sunlight
- -Train speed, braking, ...
- -Equipment configuration

Example: two wheel axles in different cars

-Dependencies on Car # and rainfall are clear

Technical challenges in hot box detection

How to eliminate the effect of climate

-Rainfall, wind, ...

How to handle temperature differences in car positions

-Different cars may give different temperatures

How to handle temperature differences in axle positions

-Even in the same car, different axles may give different temperatures

Basic idea: relative comparison among dependent axles

Step 1: Discover the dependency between axles

- Dependency is automatically identified using a machine learning technique
- Step 2: Perform relative comparison with dependent axles
 - "Comparison" is mathematically performed in a probabilistic fashion

Note: Apart from mathematical expression, this approach shares the original idea of relative comparison with expert engineers.

IBM IEM A Step1: Dependency discovery for anomaly detection * IBM Anomaly Analyzer for Correlational Data ANACONDA

The ANACONDA algorithm uses a sparse structure learning technique, which automatically finds a hidden dependency between variables

-Dependencies are identified based only on the previous recordings

- Detailed knowledge of the system is not used

Dependency between variables

© 2011 IBM Corporation

Step 2: How much does a temperature deviate from its expected value, given dependent variables?

Example:

- -j-th axle is dependent on axles i and k
- The j-th temp. should be predicted by i and k
- -Negative conditional log likelihood $p(x_j | x_i, x_k)$ gives a measure of how much x_j deviates from its expectation

(anomaly score of the jth variable) = - log $p(x_j | x_i, x_k)$ Conditional probability density function of the graphical Gaussian model

Wheel axle and gear box temperature data

We are given a set of about 100 dimensional temperature vectors

- -Typically measured using a wayside hot box detector
- -Each temperature vector is a recording at a single detector

🗰 IBM IEM 🐨 🦛 IBM IEM 🐨 🦛 IBM IEM 🐨 🖛 IBM IEM 🐨 🕯 Result: Our method showed much better detectability of known anomalies

Compared with a state-of-the-art method

- It is based on hard-coded expert knowledge

□ Performance measure: higher is better

(mean anomaly score of anomalous samples) / (std. dev. of anomaly scores of normal samples)

Results with synthetic as well as real anomalies clearly shows better performance of our method

- About one order of magnitude better

C

Introduction

- -Why this is an important task
- -How traditional approaches failed

Case study: condition-based maintenance in the rail industry

□Summary

- Formalizing expert knowledge is a key problem in service science
- The use of mathematics is a natural way for knowledge representation
- Machine learning is a systematic method for rule discovery
- As an example, we construct a rule for anomaly detection to encode expert knowledge in the rail industry

Thank you!

Example: outsourced maintenance of high-speed trains

Entity 1: train operator

- -Provides technical information
- -Receive a guarantee of safety

Entity 2: maintenance company

- -Has expert engineers perform inspection
- -Trivially observed quantities are transformed based on expert knowledge

Mathematical and probabilistic representation is important for generalizability

General knowledge representation: IF-THEN rule

-IF (predicate) THEN (consequent) ELSE (alternative) END IF

Our claim:

Example: anomaly detection of wheel axles

Decision variable y: anomaly score of each axle

-Representing how much anomalous an axle is

Observables x: temperatures of wheel axle boxes

□Data D:

 A set of previous measurements on the temperature under normal and abnormal conditions Probabilistic approach is useful to build the rule

 \Box General strategy to build the rule $f(x|\mathcal{D})$ is to use probability distributions of the data D

Example: anomaly detection

–The anomaly score $f(\boldsymbol{x}|\mathcal{D})$ can be defined based on the probability density of x given the data D

© 2011 IBM Corporation

Machine learning give a systematic way to constructing mathematical rules

Occupying (Statistical) machine learning is based on probabilistic distribution

–e.g. $p({m x}|{\mathcal D})$ in the anomaly detection example

□Machine learning is data-driven

 Decision functions are defined using the probability functions, which is identified in a data-driven fashion

•Machine learning, which is data-driven in nature, is a useful framework for rule discovery

IBM IEM R (Service Science Research Forum (May 10, 2012) Program agenda

□ 14:00-14:05 Opening and Welcome

- Spohrer and Sawatani, Book editor

- Session Chair Dr. Uchihira
- □ 14:05-14:20 TBD

- Arai, Shibaura Institute of Technology

 14:20-14:35 Community based participatory service engineering: case studies and technologies

 Motomura, National Institute of Advanced Industrial Science and Technology (AIST)

 14:35-14:50 Methodology of Workshop-Based Innovative System Design based on Systems engineering and design thinking

Yasui, Keio University

14:50-15:05 Human Behavior
Observation for Service Science

- Matsunami, Osaka Gas CO. Ltd.

15:05-15:20 Value Co-Creation Process and Value Orchestration Platform

- Kijima, Tokyo Institute of Technology

- 15:20-15:35 Service design in tourism: Encouraging a cooperative relationship between professional design and nonprofessional design
 - Hara, The University of Tokyo
- □ 15:35-16:00 Break
- Session Chair Dr. Hara
- 16:00-16:15 Temporal-Spatial Communication for Nursing and Caregiving

- Uchihira, Toshiba Corp.

- 16:15-16:30 Formalizing expert knowledge through machine learning
 Ide, IBM Japan, Ltd.
- □ 16:30-17:10 Overall and Latest update – Jim Spohrer, Book Editor
- □ 17:10-17:30 Discussion/Closing