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Value co-creation iIs the key concept of service
systems

oTwo basic steps in value co-creation:
0(1) transformation

— Transform information by adding a value typically based on expert
knowledge

0(2) transfer
— Transfer the information to trigger further transformation

/(2)\‘ (1)
R/

Service system
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Formalizing expert knowledge is a key task Iin
service science

oThe transformation step is a major source of
vale creation

oThis is usually triggered by certain expert
knowledge

olnteresting question:
—What experts are doing in this step?

‘.

What kind of language is appropriate A

for knowledge representation?

e How can we construct useful rules from
' )
\_experience” )
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Expert systems: failure and success
The failure of MYCIN

AMYCIN (1970s)

—Medical expert system developed in Stanford
—Used a large repository of IF-THEN rules
—Seemingly good results in academic benchmarks

—Never been used in practice

olssue: knowledge acquisition bottleneck
—“Who prepares the complete knowledge base?”
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Expert systems: failure and success
The victory of DeepQA

oDeepQA (2011)

—Beat human quiz champions
—Capable of handling open-domain questions
* I.e. handles an infinite number of queries

oNew technologies?
—Rely on digitalized encyclopedia data like Wikipedia
—Used machine learning to make a decision
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Lessens learned from the history of expert system

o(Hopefully automatically) capturing expert knowledge is
essential in practice

oThe extracted decision rules must satisfy at least three
criteria:

KGeneraIizeabiIity \

*Must be capable of handling unseen situations

sLearnability

*Must capture the decision patterns automatically
*Actionability
K «Must provide insights understandable to humans /
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(For ref.) Mathematics Is a powerful language.
Galileo’s comment may apply to service systems

0“Philosophy is written in this grand
book, the universe....”

0“1t Is written in the language of
mathematics, and its characters are
triangles, circles, and other
geometric figures;....”

"The Assayer", Galileo Galilei, 1623.

oThis may be true in service systems!
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Wheel axle anomaly detection is a major topic In
condition-based monitoring

-

\

TSI

(Technical
Specifications for

Interoperability)

/

Axle bearings

(axle, gear, etc.)

* TSI: European specification for high-speed trains
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Monitoring temperature iIs a common approach, but
anomaly detection is known to be very hard

oTemperatures are very much dependent on external
disturbances
—Weather: rainfall, wind, sunlight
—Train speed, braking, ...
—Equipment configuration

oExample: two wheel axles in different cars
—Dependencies on Car # and rainfall are clear
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Technical challenges in hot box detection

oHow to eliminate the effect of climate
—Rainfall, wind, ...

oHow to handle temperature differences in car positions
—Different cars may give different temperatures

oHow to handle temperature differences in axle positions
—Even in the same car, different axles may give different temperatures
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Basic idea: relative comparison among dependent

axles

oStep 1: Discover the
dependency between axles

—Dependency is automatically
identified using a machine learning
technique

oStep 2: Perform relative
comparison with dependent
axles

—“Comparison” is mathematically
performed in a probabilistic fashion

14
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Stepl: Dependency discovery for * 1BM Anomaly Analyzer

for Correlational Data

anomaly detection

oThe ANACONDA algorithm uses a sparse structure learning
technique, which automatically finds a hidden dependency between
variables
—Dependencies are identified based only on the previous recordings
—Detailed knowledge of the system is not used

One measurement given

by a wayside detector _
Dependency between variables

© 9y
W*M “Axle i is dependenton j”
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Step 2: How much does a temperature deviate from
Its expected value, given dependent variables?

1646

Example:
—j-th axle is dependent on axles i and k
—The j-th temp. should be predicted by i and k

—Negative conditional log likelihood - p(x;| x;, X,)
gives a measure of how much x; deviates from its
expectation

(anomaly score of the jt variable) = - log PO | X5 X,)

Conditional probability density function of
the graphical Gaussian model
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Wheel axle and gear box temperature data

oWe are given a set of about 100 dimensional
temperature vectors

—Typically measured using a wayside hot box detector

—Each temperature vector is a recording at a single detector

17
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Result: Our method showed much better detectability
of known anomalies

oCompared with a state-of-the-art method
—It is based on hard-coded expert knowledge
oPerformance measure: higher is better

(mean anomaly score of anomalous samples) / (std. dev. of anomaly scores of
normal samples)

oResults with synthetic as well as real anomalies clearly shows
better performance of our method

— About one order of magnitude better

70 60

60 Synthetic anomaly pattern 1 MLl Synthetic anomaly pattern 2
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Summary

oFormalizing expert knowledge is a key problem in
service science

oThe use of mathematics is a natural way for knowledge
representation

oMachine learning is a systematic method for rule
discovery

0As an example, we construct a rule for anomaly
detection to encode expert knowledge in the rail
iIndustry
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Thank you!

21 © 2011 IBM Corporation



Example: outsourced maintenance of high-speed
trains

oEntity 1: train operator
—Provides technical information
—Receive a guarantee of safety

oEntity 2: maintenance company
—Has expert engineers perform inspection

—Trivially observed quantities are transformed based on expert
knowledge
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Mathematical and probabilistic representation is
Important for generalizability

oGeneral knowledge representation: IF-THEN rule
—IF (predicate) THEN (consequent) ELSE (alternative) END IF

oOur claim:

~

/-Natural language is not a good starting point to
represent the predicates and consequents

*One “natural” representation of a rule looks like:

y = f(z|D)
\_ /
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Example: anomaly detection of wheel axles

oDecision variable y: anomaly score of each axle
—Representing how much anomalous an axle is

oObservables x: temperatures of wheel axle boxes

oData D:

—A set of previous measurements on the temperature under normal
and abnormal conditions
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Probabilistic approach is useful to build the rule

oGeneral strategy to build the rule f(x|D) is to use
probability distributions of the data D

oExample: anomaly detection

—The anomaly score  f(x|D) can be defined based on the

probability density of x given the data D
A

Probability density

\ Large anomaly scores
D \\
o
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Machine learning give a systematic way to
constructing mathematical rules

o(Statistical) machine learning is based on probabilistic
distribution
—e.g. p(x|D) in the anomaly detection example

oMachine learning is data-driven

—Decision functions are defined using the probability functions, which
IS iIdentified in a data-driven fashion

4 )

Machine learning, which is data-driven in nature, Is

a useful framework for rule discovery
\- y
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