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Abstract This chapter addresses one of the key questions in service science: how
to formalize expert knowledge. While this question has been treated mainly as a
task of formal language design, we use an alternative approach based on machine
learning. Investigating the history of expert systems in artificial intelligence, we
suggest that three criteria, generalizability, learnability, and actionability, are critical
for extracted expert rules. We then conclude that machine learning is a promising
tool to satisfy these criteria. As a real example, we perform a case study on a task
of condition-based maintenance in the railway industry. We demonstrate that our
proposed statistical outlier detection method achieves good performance for early
anomaly detection in wheel axles, and thus in encoding expert knowledge.
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1 Introduction

Service industrialization in traditional non-service industries is a recent major trend
in the global economy. Related to this, one of the recent accomplishments in ser-
vice science research is the establishment of the concept of value co-creation be-
tween different entities in service systems as a universal view that applies even to
newly service-industrialized industries [12]. It is therefore interesting to study in
what sense the traditional business domains that have been thought of as non-service
industries can be understood in terms of value co-creation.

This chapter focuses on the Japanese railway industry, which has some of the
highest service standards in the world for such metrics as on-time operations [15].
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While the high service quality can be thought of as the result of a value co-creation
process involving expert engineers, little is known about the mechanisms of the
process from service science perspectives. Thus studying the value co-creation pro-
cesses of the field engineers is of particular interest.

In general, expert engineers make decisions based on their experience and ob-
servations. For example, an engineer may tap a bogie with a hammer, and carefully
listen to the sound to see if the system is working properly. Another engineer may
check multiple different sensor values to decide on an action for a malfunction. Al-
though much of the maintenance work is well documented, formalizing the subtle
decision-making processes in such situations is generally very hard. Perhaps the
difficulty of documentation itself is the source of differentiation, and, if this is the
case, then transforming such expert knowledge into formalized knowledge amounts
to analyzing the value creation process itself.

Therefore, we consider the problem ofhow to formalize expert knowledgeas a
particularly important problem in service science. Taking condition-based mainte-
nance (CbM) in the railway industry as an example, we give a case study to suggest
one possible solution to the problem.

1.1 Condition-based maintenance in the railway industry

In the railway industry, the basic strategy of maintenance is preventive maintenance,
where some action is taken before an accident occurs. In modern preventive main-
tenance, time-based maintenance is still the mainstream approach, where periodic
replacements of parts are done based on the predefined “safe” lifetimes of the indi-
vidual parts. A general trend is that a shift from time-based maintenance is taking
place, moving to condition-based maintenance, where the individual parts are only
replaced based on their actual conditions as measured by sensors.

Although the advantages of CbM are clear in terms of cost savings and safety,
CbM requires sophisticated analytics technologies to assess the health of the system
from the sensor data. For example, in a shinkansen car, each of the journal boxes
(wheel axle boxes) is equipped with a thermal senor, and the train is designed to
make an emergency stop if the temperature exceeds 140◦C [10]. However, it is
known that the temperature data is heavily influenced by external conditions such
as outdoor weather, and that anomalies manifest themselves in many ways. As a
result, early anomaly detection for CbM is extremely difficult unless the anomaly
is simple, as in the example of the 140◦C threshold. To consider a real example, it
has been extremely difficult for existing technologies to distinguish between tem-
perature decreases due to rain and temporal temperature decreases by oil leakage
due to lubrication failure. Therefore, post-run maintenance checks by experienced
engineers is almost the only option at this time.
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1.2 Goal of this chapter

Our task is to study how to extract such expert knowledge in the form of reusable
rules. For this goal, we have two basic problems:

• What kind of language is appropriate for knowledge representation?
• How can we construct useful rules from experience?

As discussed later, for the first problem, we argue that the traditional assumption
that natural language is always valid for knowledge representation is not necessar-
ily true. The implication of this can be profound in service science, since it might
entail a paradigm shift just like the one when mathematical astronomy drove out
metaphysical studies based on ancient stories and myths.

For the second problem, we argue that machine learning, which is essentially
data-driven, is the most appropriate approach. Since a service system involves a
value co-creation process by different entities through various interactions, the sys-
tem is almost always complex. For complex systems, relying upon knowledge on
the microscopic models of the system is unrealistic. In this sense, data-driven ap-
proaches including machine learning and data mining are of particular importance
in service science.

The layout of this chapter is as follows. In the next section, we briefly take a look
at the history of expert systems in artificial intelligence. In Section 3, we go through
the basic strategy of machine learning to see the importance in the service science
research. In Section 4, we introduce a machine learning approach to encode the
expert knowledge within a probabilistic model. In Section 5, we present a detailed
case study from the railway industry. Finally, Section 6 summarizes this chapter.

2 A brief history of artificial intelligence: failures and successes
of expert systems

This section briefly reviews the history of expert systems in artificial intelligence
(AI). An expert system is a database (DB) system composed of a knowledge base
and a search engine that traverses the knowledge base to identify the most appropri-
ate answers to queries. The first expert systems appeared in the late 1970s. While
expert systems have never been extensively used in the real world, a recent success,
the victory of a DeepQA system in an American quiz show, gives us useful insights
into our problem of how to formalize expert knowledge.

2.1 The failure: the knowledge acquisition bottleneck

The original approach in computer science to formalizing knowledge was to express
the knowledge in a formal language such as Prolog, and to accumulate the rules in
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a DB. Expert systems were made of such DBs [13], and IF-THEN rules can be
viewed as the simplest example of the formal language. In MYCIN [3], which is
undoubtedly the best-known expert system, a typical rule looks like this:

IF the identity of the germ is not known with certainty
ANDthe germ is gram-positive
ANDthe morphology of the organism is “rod”
ANDthe germ is aerobic
THENthere is a strong probability (0.8) that the germ is of type enterobacteriacae

Since traversing the rule DB is often time-consuming, a major research focus was
put on search and enumeration technologies for the rules.

Whatever formal language is used in an expert system, the assumption is that
natural language is always a valid representation of human knowledge. Since our
thoughts are tightly connected with our languages, using natural languages and their
variants such as Prolog has been thought of as a literally natural approach.

Despite the serious and extensive research invested in it, MYCIN has never ac-
tually been used in practice [14]. There are at least two reasons. First, the limitation
of computational resources was an issue in performing DB search on a realistic time
scale and data volume. Second, and perhaps most importantly, MYCIN could not
produce meaningful answers unless seemingly complete knowledge was available
in advance. The technical highlight of MYCIN was its algorithm for computing the
value of the confidence of the rules. While it worked well when a rich knowledge
base was available, it was not very useful in most real-world cases, where only an
incomplete set of knowledge is available.

If knowledge acquisition is a problem, then how can we acquire it at a minimum
cost? In spite of extensive effort in the AI community for decades, no conclusive
answer was ever obtained at least not in the way originally imagined. This is the
well-known problem of theknowledge acquisition bottleneck.

2.2 The success: the victory of DeepQA

In 2011, we witnessed IBM’s “DeepQA” system [6] beating human champions in
playing an American TV quiz show. This was really epoch-making news in the his-
tory of AI, and perhaps in the history of service science. Question-answer (QA)
systems are one type of expert systems, where each query is processed to list the
candidate answers, and such systems have been one of the major research topics
in AI. However, the task DeepQA addressed was slightly but significantly differ-
ent from the traditional problem setting in that the DeepQA system is capable of
handlingopen-domainquestions.

In the traditional problem setting, a QA system is assumed to handle queries
within a closed domain. In a sense, traditional QA systems are straightforward ma-
chines, which tell us only the anticipated answers. However, in quiz shows, the
variety of answers is almost infinite. Also, the system must handle queries that are
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far from formal language. A query may contain puns and metaphors, and under-
standing the query itself is challenging. In this sense, an open-domain QA system is
an expert system that is capable of searching over an infinite space. This is why the
victory of DeepQA is so epochal.

We note that the DeepQA system does not rely on an integrated ontology in the
DB. Such an approach was not appropriate for the open-domain QA task. In fact, in
the DeepQA system, individual rules are shallow and partial, and statistical machine
learning integrates them into a single QA system [6].

2.3 Implications to service science

What is the implication of the failure and success of expert systems to service sci-
ence? In the Introduction, we discussed that formalizing expert knowledge amounts
to analyzing the value co-creation process in recently service-industrialized do-
mains. As is understood from the example of CbM in the railway industry, an ex-
pert must handle open-domain questions, and must be capable of updating his/her
knowledge based on newly observed facts. To summarize our claim:

Claim 1 In service science, formalizing expert knowledge is one of the key problems
to understand the value co-creation process. Our goal is to capture the rules of
decision patterns of experts so that three criteria are satisfied:

• Generalizability
• Learnablity
• Actionability

For generalizability, the rule must handle unseen situations by generalizing a
finite amount of previously observed data. This might look like a leap in logic
since we need to handle infinite situations based on a finite data set. However, as in
DeepQA, statistical machine learning allows us to generalize the knowledge through
statistical abstraction.

For learnablity, in order to address the knowledge acquisition bottleneck, we need
functions of capturing previous experiences into the system, and updating the cur-
rent decision rule with newly acquired knowledge if needed.

For actionability, the captured rule must not be a black box, and the decision
rule must provide understandable information to humans. In the case of DeepQA, a
list of candidate answers is given together with confidence values. Also, in machine
learning, a decision rule is always given as a (possibly nonlinear) function of differ-
ent features. By looking at the weight of each feature, one can get some insight into
the system for which factors play critical roles.
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3 Knowledge acquisition in service systems: strategy of machine
learning

This section points out the importance of machine learning in service science. We
first argue that natural language is not necessarily the only choice for knowledge rep-
resentation (Claim 2). Then we point out that the data-driven approach in machine
learning is of critical importance for modeling service systems, where complex in-
teractions between entities are involved (Claim 3).

3.1 Functional relationship as generalized rule

As discussed in Subsection 2.1, the failure of traditional expert systems posed a
challenge to the validity of natural language as a format for knowledge representa-
tion. As a concrete example, we focus on a task of CbM in the railway industry. Our
goal is early anomaly detection for wheel axles by using temperature sensors. For
example, in the shinkansen trains, there are sixteen cars in each set, and each car
has eight journal boxes (on both sides of the four wheel axles). Our goal is to detect
early signs of anomalies by analyzing the 128-dimension temperature data.

In predictive maintenance, the boundary between normal and abnormal condi-
tions is not clear. Thus it is fair to define our problem as computing the anomaly
score for each wheel axle. Letyi be the anomaly score for thei-th axle box. If our
output isyi for all is, then our input variable is the temperature data. We express one
measurement of the temperature sensors as a 128-dimension (column) vector

xxx≡ [x1, . . . ,xi , . . . ,xM]>,

wherexi denotes the temperature of thei-th axle box, andM is a generalized notation
representing the total number of wheel axle boxes (in the Shinkansen case,M =
128). Now our problem is to computeyi (i = 1,2, . . . ,M) for a givenxxx, based on the
previous measurementsD under normal conditions.

If we employ an IF-THEN encoding, the decision rule may look like

IF x32 is 10◦C greater than any other axle box
THENy32 = 1
ELSEy32 = 0.

However, this type of expression does not work well in practice. The data is noisy,
and includes a lot of outliers mainly due to the effects of external factors such as
the weather. The degree of the external effect may be different depending on the
location of the wheel axles. For example, the influence of the wind is more critical
for the first and last cars in high-speed trains, and the temperatures in those cars
tend to be much lower than in the other cars. In this way, there is an almost infinite
number of factors that may affect the rules, and handling such exceptions with fixed
IF-THEN rules is effectively impossible.
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If we state the problem in the most general manner, our goal is to obtain the
function fi such that

yi = fi(xxx|D)

for i = 1,2, . . . ,m, or
yyy= fff (xxx|D)

in the vector form combining all of theM relationships. Here ‘|’ represents ‘condi-
tioned on’ or ‘given.’ In this case, the functionfi(xxx|D) encodes expert knowledge,
which can be thought of as a generalization of natural-language-based rules. Starting
from this general expression, we determine an optimal functional relationship based
on the data. We call this type of function a rule, assuming a mathematically well-
defined functional relationship. In other words, we put more weight on mathematics
as a language to describe service systems. This strategy reminds us of Galileo’s
famous statement [5]

Philosophy is written in this grand book, the universe.... It is written in the language of
mathematics, and its characters are triangles, circles, and other geometric figures;....

Galileo was one of the first modern thinkers to clearly state that the laws of nature
are mathematical. We believe that Galileo’s statement is at least partly true in service
systems. We summarize our strategy towards expert knowledge formalization.

Claim 2 A rule is a functional relationship between a decision variable yyy and ob-
servables xxx. The function, which is assumed to be a mathematical relationship in
general, is to be optimally determined from the dataD so as to best satisfy the
criteria in Claim 1.

3.2 Data-driven approach to rule induction

Now our problem is how to determine the functionfi(xxx|D) from the data. For this
purpose, we employ a machine-learning approach. Machine learning and data min-
ing are relatively new academic disciplines originally intended to address the knowl-
edge acquisition bottleneck [11].

To be concrete, again, consider the task of CbM for wheel axles. Our goal is
to compute the anomaly scoreyi for each axle, based on the dataD containingN
samples in the past under normal conditions. To represent explicitly,D is written as

D ≡ {xxx(1),xxx(2), ...,xxx(N)}. (1)

In the modern theory of statistical machine learning, this function is determined
based on probabilistic distributions. In a typical formulation, we build a probability
distribution of xxx from D . Let p(xxx|D) be such a distribution. Since this function
represents the likelihood of an observationxxx, we see that
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• If p(xxx|D) is large, then the samplexxx takes a value close to its expected value.
The state of the system is expected to be in a normal condition, and the anomaly
score should be small.

• If p(xxx|D) is close to zero, then the samplexxx takes a value far from its expected
value. The state of the system is expected to be in an anomalous condition, and
the anomaly score should be large.

This assumes a uni-modal distribution. We will give an explicit mathematical ex-
pression for the anomaly score later.

Note that this type of approach focused only on the functional relationship be-
tween the input and output. The system is treated as a black box, and no attention
is paid to precisely modeling the microscopic mechanism of the system. For exam-
ple, in a later section, we give a quadratic form of function for the anomaly score.
However, we do not mean the physical mechanism of the system is represented as a
quadratic function of the temperatures. Unless we have complete knowledge of the
system, which is unlikely in many real-world cases, we believe that the data-driven
approach of machine learning is quite reasonable.

While this statement is primarily for physical systems, the situation is parallel in
service systems. Service science is an academic discipline that studies the process
of value co-creation between different entities [12], and one of the recent research
focuses is on holistic service systems containing interacting entities and value ex-
change mechanisms. Since holistic service systems are complex interacting sys-
tems, analytic approaches involving reduction to elements are not always effective
in studying the processes of value creation. If we think of the value created as an out-
put of a holistic service system, the a data-driven approach looks promising. Based
on pervious observations, machine learning would allow us to build a predictive
model of the output, and to clarify what kind of factors play important roles in the
value creation.

To summarize, our point is that:

Claim 3 Service systems involving value co-creation process between different en-
tities is complex interacting systems in nature. In modeling the value co-creation
process, data-driven approach is promising. In this sense, machine learning is one
of the most important disciplines in service science.

4 Dependency-based statistical anomaly detection

This section describes a statistical anomaly detection method to encode experts’
logic for anomaly detection. Our task is early fault detection from the temperature
sensors of journal boxes. As discussed earlier, the measurements are affected by
a lot of external disturbances such as the effect of the weather, and using a fixed
threshold for individual axles is not an optimal approach. Also, since individual
train cars are not identical to each other, the behavior of individual journal box
temperatures can differ. Our main technical challenge is minimize these sources of
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confusion. In this section, we will show that a subspace extraction technique and
sparse structure learning solve these hard problems.

In what follows, we denote our input (wheel axle temperature) by anM-dimensional
vectorxxx∈ RM. We assume that we are given a data set as in Eq. (1), and thatD has
been standardized to have zero mean and unit variance.

4.1 Subspace extraction technique

Let us focus on how to suppress the unwanted effects of the weather. Since our met-
ric is temperature, we expect that the value returned by a sensor gets smaller when
it is rainy or windy, and increases when it is sunny. This means that suppressing this
effect amounts to extracting the primary trend of the data. To find the primary trends
of the temperature vectors{xxx(n)}, we consider an optimization problem:

W = argmax
W

N

∑
n=1

d

∑
i=1

(www>
i xxx(n))2 subject towwwi

>www j = δi, j , (2)

where we denote the primary direction asxxx1,xxx2, . . . ,xxxd, and

W ≡ [xxx1,xxx2, . . . ,xxxd] ∈ RM×d.

Using Lagrange’s coefficientαi for the i-th constraint, we straightforwardly ob-
tain the equation

S0wwwi = αiwwwi , i = 1, · · · ,d,

where the(i, j)-element of the sample covariance matrixS0 ∈ RM×M is given by

S0
i, j ≡

1
N

N

∑
n=1

x(n)i x(n)j , (3)

which is the same as the correlation coefficient matrix for this data. These equations
state that the directionswwwi are the eigenvectors ofS0.

We now re-normalize the original dataxxx by subtracting the primary directions as

ξξξ ≡ (I−WW>)xxx. (4)

The number of the eigenvectors,d, is a parameter determined by trial and error.

4.2 Graphical Gaussian models

Next we consider how to analyze the dependencies between variables. Figure 1
illustrates the general approach. Given the dataD , our goal is to find a graph rep-
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resenting any hidden dependencies among the variables. Since we are interested in
a major structure that would not be affected by the noise, it is important to obtain a
sparsegraph.

To model the dependency graph, we use a graphical Gaussian model (GGM).
In our problem, where the temperatures of the journal boxes are monitored, the
physical behaviors of the variables are expected to be similar, and thus the variables
are expected to be highly correlated with each other. Since the correlation between
the variables is a natural statistic of Gaussian, a multivariate Gaussian distribution
is a reasonable choice for modeling the system. The GCM is the simplest graphical
model based on multivariate Gaussian.

axle #1

axle #2

…

One measurement of 
wheel axle temperature

Dependency between variables

“Axle i is dependent on j ”

timestamp

Fig. 1 Sparse structure learning finds sparse dependencies between variables in the data.

For a zero-meanM-dimensional random variableξξξ ∈RM, the GGM assumes an
M-dimensional Gaussian distribution

N (ξξξ |000,Λ−1) =
det(Λ)1/2

(2π)M/2
exp

(
−1

2
ξξξ>

Λξξξ
)
, (5)

where det represents the matrix determinant, andΛ ∈ RM×M denotes a precision
matrix. We denote byN (·|µµµ ,Σ) a Gaussian distribution with mean vectorµµµ and
covariance matrixΣ. The precision matrix is formally defined as the inverse of a
covariance matrix.

In the GGM, a Gaussian distribution is associated with a graph(V,E), whereV is
the set of nodes containing all of theM variables, andE is a set of edges. The edge
betweenξi andξ j is absent if and only if they are independent conditioned on all of
the other variables. Under the Gaussian assumption, this condition is represented as

Λi, j = 0 ⇒ ξi ⊥⊥ ξ j | other variables, (6)



Formalizing expert knowledge through machine learning 11

where⊥⊥ denotes statistical independence.
The condition (6) can be most easily understood by explicitly writing down the

conditional distribution. Let us denote(ξi ,ξ j)
> asξξξ a, and the rest of the variables

by ξξξ b. For centered data, a standard partitioning formula of Gaussian (see, e.g. [2],
Sec. 2.3) gives the conditional distribution as

p(ξξξ a|ξξξ b) = N (ξξξ a|−Λ−1
aaΛabξξξ b,Λ

−1
aa ), (7)

where, corresponding to the partitioning betweenξξξ a andξξξ b, we put

Λ=

(
Λaa Λab

Λba Λbb

)
. (8)

In this case,Λaa is 2×2, so the inverse can be analytically calculated, giving the off-
diagonal element proportional toΛi, j . Thus ifΛi, j = 0, thenxi andx j are statistically
independent conditioned on the rest of the variables.

Our goal in this subsection is to find a sparseΛ whose entries are nonzero for es-
sentially coupled pairs and zero for weakly correlated pairs that might be spuriously
created by noise. Such a sparseΛ will represent an essential dependency structure
not due to noise, and thus should be useful for detecting correlation anomalies. In
real-world noisy data, however, every entry in the transformed sample covariance
matrix

Si, j ≡
1
N

N

∑
n=1

ξ (n)
i ξ (n)

j (9)

will be nonzero, and the precision matrixΛ will not in general be sparse. Here

ξξξ (n) ≡ (I−WW>)xxx(n).

Moreover, if there are highly correlated variables,S will tend to become rank de-
ficient, andΛ will not even exist. Even ifS is full rank in theory, it is sometimes
the case that matrix inversion is numerically unstable whenM is more than several
tens. This is an essential difficulty in traditional covariance selection procedures [4],
where small entries inΛ are set to be zero starting from the smallest. Since our as-
sumption is that the data include some highly correlated variables, which holds very
generally for sensor data, such approaches are of little use in our context. This mo-
tivates us to use an L1-penalized maximum-likelihood approach.

4.3 Sparse structure learning

In the GGM, structure learning is reduced to finding a precision matrixΛ for the
multivariate Gaussian. If we ignore any regularization, we can getΛ by maximizing
the log-likelihood
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ln
N

∏
t=1

N (ξξξ (t)|000,Λ−1) = const.+
N
2
{lndet(Λ)− tr(SΛ)} ,

where tr represents the matrix trace (the sum over the diagonal elements). If we use
the well-known formulas for matrix derivatives

∂
∂Λ

lndet(Λ) = Λ−1,
∂

∂Λ
tr(SΛ) = S, (10)

then we readily obtain the formal solutionΛ= S−1. However, as mentioned before,
this produces a smaller amount of practical information on the structure of the sys-
tem, since the sample covariance matrix is often rank deficient and the resulting
precision matrix will not in general be sparse.

Therefore, instead of the standard maximum likelihood estimation, we solve an
L1-regularized version of the maximum likelihood:

Λ∗ = argmax
Λ

f (Λ;S,ρ), (11)

f (Λ;S,ρ)≡ lndetΛ− tr(SΛ)−ρ||Λ||1, (12)

where||Λ||1 is defined as∑M
i, j=1 |Λi, j |. Thanks to the penalty term, many of the en-

tries inΛ will be exactly zero. The penalty weightρ is an input parameter, which
works as a threshold below which the correlation coefficients are thought of as zero.

Since Eq. (11) is a convex optimization problem [1], we can use subgradient
methods to solve it. Recently, Friedman, Hastie, and Tibshirani [8] proposed an
efficient subgradient algorithm named graphical lasso. We describe briefly in this
subsection.

The graphical lasso algorithm first reduces the problem Eq. (11) to a series of
related L1-regularized regression problems by utilizing a block coordinate descent
technique [1, 7]. Using Eq. (10), we see that the gradient of Eq. (11) is given by

∂ f
∂Λ

= Λ−1−S−ρ sign(Λ), (13)

where the sign function is defined so that the(i, j) element of the matrix sign(Λ) is
given by sign(Λi, j) for Λi, j 6= 0, and a value∈ [−1,1] for Λi, j = 0.

To use a block coordinate descent algorithm to solve∂ f/∂Λ= 0, we focus on a
particular single variablexi , and partitionΛ and its inverse as

Λ=

(
L lll
lll> λ

)
, Σ≡ Λ−1 =

(
W www
www> σ

)
, (14)

where we assume that the rows and columns are always arranged so that thexi-
related entries are located in the last row and column. In these expressions,W,L ∈
R(M−1)×(M−1), λ ,σ ∈R, andwww, lll ∈RM−1. Corresponding to thisxi-based partition,
we also partition the sample covariance matrixS in the same way, and write it as
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S=

(
S\i sss
sss> si,i

)
. (15)

Now let us find the solution of the equation∂ f/∂Λ = 0. SinceΛ must be posi-
tive definite, the diagonal elements must be strictly positive. Thus, for the diagonal
elements, the condition of the vanishing gradient leads to

σ = si,i +ρ. (16)

For the off-diagonal entries represented bywww and lll , the optimal solution under
which all the other variables are held constant is obtained by solving

min
βββ

{
1
2
||W

1
2 βββ −bbb||2+ρ ||βββ ||1

}
= 0, (17)

whereβββ ≡W−1www, bbb≡W−1/2sss, and||βββ ||1 ≡∑l |βl |. For the proof, see [9]. This is an
L1-regularized quadratic programming problem, and again can be solved efficiently
with a coordinate-wise subgradient method [8].

Now to obtain the final solutionΛ∗, we repeatedly solve Eq. (17) forx1,x2, ...,xM,x1, ...
until convergence. Note that the matrixW is full rank due to Eq. (16). This suggests
the algorithm is numerically stable. In fact, as shown later, it gives a stable and
reasonable solution even when some of the variables are highly correlated.

Once we get the optimalΛ∗, we have the probabilistic model of the data as

p(xxx|D) = N (ξξξ |000,Λ∗)

ξξξ = I−WW>xxx

The next section will define the anomaly score using this model.

4.4 Anomaly score

Now that a complete probabilistic modelp(xxx|D) has been defined, we can proceed
to the next step. Here we define the anomaly score for thei-th variable as

yi(xxx)≡− ln p(ξi |ξ1, ..,ξi−1,ξi+1, ...,ξM,D). (18)

Note that we haveM scores, corresponding to individual variables, for a single ob-
servationxxx. The definition tells us the discrepancy between the value of thei-th vari-
able and its expected value given the surrounding variables. Thanks to the sparse-
ness, the surrounding variables should be in the same module or cluster as thei-th
variable.

Since the right hand side of Eq. (18) is Gaussian, we can analytically write down
the expression. For example, for the first variable, the conditional distribution is
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p(ξ1|ξ2, . . . ,ξM) = N

(
ξ1

∣∣∣∣∣− 1
Λ ∗

1,1

M

∑
i=2

Λ ∗
1,i ξi ,

1
Λ ∗

1,1

)
,

and the score is given as

y1 ≡
1
2

ln
2π

Λ ∗
1,1

+
1

2Λ ∗
1,1

(
M

∑
i=1

Λ ∗
1,i ξi

)2

. (19)

Collecting theM scores into a single vectorial expression, we get the final result
of the outlier scores as

yyy≡ yyy0+
1
2

diag(Λ∗ξξξD−1ξξξ>
Λ∗),

whereD ≡ diag2(Λ∗) and

(yyy0)i ≡
1
2

ln
2π
Λ ∗

i,i
.

5 Case study: hot box detection

This section presents experimental results for the two anomaly detection methods
introduced in the previous sections. We used these anomaly detection methods with
a real problem in the Japanese railway industry.

5.1 Business background

Japanese high-speed train operators have the world’s highest service standards for
their records of safety and punctuality. Maintaining such a high service standard
of service is increasingly difficult due to the growing shortage of skilled engineers.
This motivated us to develop a prototype of an anomaly detection system named the
IBM Anomaly Analyzer for Correlational Data (ANACONDA).

The task we addressed is often called hot box detection, where the goal is to
detect anomalous behaviors of wheel axles based on recorded temperatures. Under
normal operations, the temperature of an axle is expected to be highly correlated
with the temperatures of the other axles. Thus the dependency-based outlier detec-
tion is useful in this application.

Currently, a fixed threshold (typically 140◦C) [10] for individual axles and gear
boxes is used based on temperature sensors installed in each of the axle and gear
boxes. These sensors, however, are not capable of detecting subtle indications of
anomalies, such as a temperature decrease due to oil leakage, which can be particu-
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larly hazardous for high-speed trains. To address the limitations of the fixed-sensor
approach, frequent manual inspections are required.

Our objective is to enhance the existing system by using additional measurement
data. The supplemental anomaly detection system was designed to detect subtle
anomalies as indicated by imbalances of the temperature distribution among the
axle and gear boxes.

The ultimate goal of the customer is to reduce the human interventions by skilled
engineers. Addressing the shortage of skilled engineers is the main concern of the
customer.

5.2 Summary of technical challenges

The standard approach to hot box detection is based on temperature monitoring.
Axle temperature data has unique characteristics such as being

• Highly dimensional
• Highly correlated
• Strongly and heterogeneously dependent on external conditions

As regards the dimensionality, there are typically eight journal boxes in a single train
car, and more than 100 boxes in a complete train. This means that each measurement
is a vector of temperatures with more than 100 dimensions.

The most challenging feature is the strong and heterogeneous dependency on
external conditions. Our biggest technical challenges were how to filter out the un-
wanted effects of external conditions:

• How to eliminate the effect of the weather conditions, such as rain, direction and
velocity of wind, light intensity, air temperatures, etc.

• How to handle the temperature differences related to car positions because dif-
ferent cars may have different characteristics for their temperatures.

• How to handle temperature differences in axle positions because, even in the
same car, different axles may report different temperatures.

As explained before, we handle the first problem by using the subspace extraction
method, while sparse structure learning works for the second and third problems.

5.3 Experimental results

We collected a data setD of axle temperatures under normal conditions, and con-
structed the model of the systemp(xxx|D), based on the subspace extraction and
sparse structure learning techniques. Figure 2 shows an example of a sparse struc-
ture found with our approach, where the thickness of each edge represents the am-
plitude of the corresponding element ofΛ ∗. The symbols of 2B, 2D, etc. represent



16 Tsuyoshi Id́e

2B 2D

4B

4D

5B

5D

7B

7D

13B

11D

11B
10D

8B
8D

10B

13D

14B

16B

14D

16D

Fig. 2 The dependencies among the variables automatically discovered from the data.

the name of the axle boxes. In spite of the heavy noise in the data, we see that a
reasonably sparse graph can be obtained, from which engineers can obtain useful
insights into the system. For example, the wheel axle 4B has a strong dependency
on 13D. This can be counterintuitive since the car positions are different. However,
this result suggests that the fourth and the thirteenth cars have some shared feature,
and anomalies can be detected by taking advantage of this feature. This is a good
example of how our approach encodes expert knowledge in a concise mathematical
expression.

We tested our outlier detection method, and compared the performance with a
state-of-the-art method created by domain experts using extensive domain knowl-
edge. The results, shown in Fig. 3, were quite encouraging. We tried two types
of preprocessing. In IBM(1), we separated the data set into two portions, each of
which corresponds to axle box temperatures on a single side, to create two indepen-
dent models (i.e. two probabilistic models withM/2-dimensional observations). In
contrast, in IBM(2) we created a single model.

To evaluate the detection power, we used a separated data set containing anoma-
lous samples. The metric we used is detection power, which is defined for a truly
faulty axlei as

1
σi
[si(xxx)−〈yi〉].

Here〈yi〉 andσi are the mean and the standard deviation of thei-th outlier score
over the normal samples inD , while yi(xxx) is the outlier score of the faulty sample.

Since the number of faulty samples is limited, we augmented the separated data
set with a parameter representing how many of the samples deviated from the nor-
mal situation. In the figure, we showed the results for three different choices of the
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parameter (3, 6, and 12). In all cases, our approach is significantly better than the
state-of-the-art. Note that the state-of-the-art method is based on expert knowledge,
which means that our model is doing a better job with this metric than the best
experts. This is a key advantage of the data-driven approach, which enables us to
capture hidden patterns in the data.
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Fig. 3 Comparison of our approach with a state-of-the-art approach used by experts.

Finally, we show in Fig. 4 a screenshot of our fault detection method imple-
mented on SPSS ModelerTM . We see that a custom node is created in the Modeler
window. By double-clicking the icon, we can edit parameters such asρ in the model.
The rich graphical user interface of the SPSS modeler provides users with very good
usability.

Fig. 4 Fault detection system implemented on SPSS ModelerTM .
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6 Summary

We have discussed how to formalize expert knowledge, which we believe is one of
the key questions in service science. Based on the history of expert systems in AI,
we suggested that three criteria, generalizability, learnability, and actionability, are
critical for extracted rules to be useful. Then we pointed out that natural languages
and their variants are not necessarily the only choice for knowledge representa-
tion, and the use of mathematical language provides better generalizability. We also
pointed out that the data-driven approach of machine learning is useful in service
science. Finally, we conducted a case study on condition-based maintenance in the
Japanese railway industry, where our proposed statistical outlier detection method
was demonstrated to be useful in early anomaly detection in wheel axles.
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