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Abstract

This paper addresses the task of predicting the bat-
tery capacity degradation ratio for a given usage pat-
tern. This is an interesting pattern recognition task,
where each usage pattern is represented as a trajectory
in a feature space, and the prediction model captures
the previous usage trajectory patterns. The main tech-
nical challenge here is how to build a good model from
a limited number of training samples. To tackle this, we
introduce a new smoothing technique in the trajectory
space. The trajectory smoothing technique is shown to
be equivalent of a novel regularization scheme for lin-
ear regression. Using real Li-ion battery data, we show
that our approach outperforms existing methods.

1. Introduction

In recent years, growing attention has been paid to
batteries in many industrial applications such as elec-
tric vehicles (EVs), electric grids, and factory energy
management systems. In spite of the ubiquitous use of
batteries, users often must worry about the degradation
of their batteries. For example, in EVs, since battery
degradation directly affects the navigation distance, the
issue of degradation is very critical. In most practical
applications, the task of battery life prediction is one of
the key technologies.

This paper addresses the task of battery life predic-
tion. One of the most important properties of batteries
is the strong dependence of the battery life on the pre-
vious usage pattern, which is typically represented as a
time series of physical-chemical conditions. This is an
interesting pattern recognition task, where we need to
capture previous usage patterns, to make predictions for
arbitrary usage histories. In battery community, some
latest researches focus this task [4, 5]. But they are us-
ing only single degradation factor (cycle count, electric
current, or duration) for predicting the battery degrada-
tion. We need to deal with combination of these factors

for practical predictions. We formulate this task as “tra-
jectory regression,” which can be viewed as a variant of
trajectory analysis, one of the recent hot topics in the
pattern recognition community [6, 3, 2, 1]. We charac-
terize a battery usage pattern as a trajectory in a fea-
ture space of physical-chemical variables, and encode
the previous usage pattern in the regression function.

In real world battery modeling, one of the critical
issues is a lack of a sufficient amount of data. In bat-
tery life modeling, a prediction model is typically built
based on the data from battery endurance tests. How-
ever, since each endurance test takes a long time, the
number of samples is always quite small. In the present
context, this means that we do not have enough trajec-
tories to cover all of the possible usage patterns. This is
our main technical challenge.

To handle this difficult problem, we attempt to take
advantage of the natural notion that similar physical-
chemical states should produce similar degradations.
Very interestingly, such an analysis leads us to a new
formulation for trajectory regression with a novel regu-
larization term. To the best of our knowledge, this is the
first work that formulates the task of battery life predic-
tion as trajectory regression, and we show the utility of
the trajectory regression using real-world Li-ion battery
data.

2. Problem Setting

We assume that we are given a data set of N pairs of
a trajectory and a degradation ratio:

D ≡ {(P (n), y(n))|n = 1, 2, · · · , N}, (1)

where P (n) is the n-th trajectory pattern observed, and
y(n) is the amount of degradation corresponding to
P (n). Formally, our goal is to predict the amount of
degradation y for an arbitrary trajectory pattern P by
using a regression function ϕ as

y = ϕ(P |θ), (2)

where θ is a set of model parameters.



Each trajectory represents a usage history of a bat-
tery. Although how to represent battery usage patterns
is not at all trivial, based on careful physical chemistry
analysis, we found that three variables, temperature,
state-of-charge (SoC), and a quantity named depth-of-
discharge (DoD), are sufficient. To make the problem
tractable, we discretize the three-dimensional space into
NT × NS × ND voxels, where NT , NS , and ND are
the total number of voxels along the temperature, SoC,
and DoD dimensions, respectively. In addition, we also
found that the amount of battery degradation is propor-
tional to how long the battery is used, and how much
electric current is flowing at each voxel.

To conclude the problem setting, each usage trajec-
tory P is represented as (f , g), where f and g are
(NT ×NS ×ND)-dimension feature vectors of the tra-
jectory, representing the duration and electric current at
each voxel, respectively (see Figure 1). For example, if
the battery continuously remains at a single voxel, then
only a single entry is nonzero in both f and g. Finally,
the regression function ϕ is represented as

ϕ(f , g|θ) ≡
∑

c

αcfc +
∑

c

βcgc, (3)

where c runs over all of the voxels, and θ ≡ (α,β)
is the coefficients representing the dependency of the
nature of the battery degradation on voxel locations.
Since each of the trajectories, represented as (f , g), is
directly observed, our goal is to determine the parame-
ters (α, β), based on the training data.

3. Formulation

To determine the parameters (α,β), we consider an
optimization problem for the objective function as

Ψ(θ) ≡ L(θ) + R(θ), (4)

where L(θ) is a loss function term that represents the
error of the model as measured by the training data, and
R(θ) is the smoothing regularization function term that
is introduced to augment the data, as explained in detail
later.

For the loss function, the most natural assumption is
the quadratic loss:

L(θ) ≡
N∑

n=1

(
y(n) − ϕ(P (n)|θ)

)2

, (5)

which is justified by a Gaussian noise model. Note that
P (n) = (f (n), g(n)) is the feature vector of the n-th
usage trajectory in the training set.
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Figure 1. Outline of data set

For the smoothing regularization function, we note
that the training data cannot cover the entire trajectory
space. Since the length and the shape of a trajectory is
arbitrary (see Figure 1), it is quite rare to find a trajec-
tory in the training data that is exactly the same as an
input trajectory P . This fact motives us to introduce a
smoothing term in the objective function. The smooth-
ing term is also useful to reduce the risk of overfitting.
In the linear model in Eq. (3), we have many coefficients
that would be much larger than the number of observed
trajectories.

To address this problem, we use a well-known prop-
erty of batteries that the degradation rate at each state is
well-approximated by the interpolation over its neigh-
bors. Based on this, we introduce a regularization term

R(α, β) ≡ λα

∑
c

(
αc −

1
3
Qall(α, c)

)2

(6)

+ λβ

∑
c

(
βc −

1
3
Qall(β, c)

)2

. (7)

Intuitively, this term represents the natural assumption
that the value of a coefficient should not deviate very
much from its neighbors. Here λα and λβ are pa-
rameters which control the degree of smoothing, and
Qall(α, c) is the sum of three interpolations in the di-



mensions of the temperature, SoC, and DoD as

Qall(α, c) ≡ QT (α, c) + QS(α, c) + QD(α, c), (8)

and QT (α, c) is a simple interpolator as

QT (α, c) ≡

 −αT−2,S,D + 2αT−1,S,D (T = NT )
−αT+2,S,D + 2αT+1,S,D (T = 1)
1
2 (αT−1,S,D + αT+1,S,D) (other)

.

QS(α, c) and QD(α, c) are also defined in the same
way.

Now our problem is to minimize the objective func-
tion Ψ(θ) with respect to θ. The next section explains
how the optimization problem is solved.

4. Solving the Optimization Problem

In this section, we derive a matrix representation of
the objective function in order to reduce the seemingly
complicated optimization problem to a simple quadratic
program.

First let us define a data matrix as

W ≡
(

f (1) · · · f (N)

g(1) · · · g(N)

)⊤

,

and the coefficient vector is

γ ≡
(

α
β

)
.

Then we easily rewrite the loss function as

L(γ) = ∥y − Wγ∥2. (9)

Now let us consider the regularization term. For a
simplified expression, we introduce the indicator vec-
tors kc,all such that α⊤kc,all reproduces the operation
of Qall(α, c). We also introduce another indicator vec-
tor pc, whose c′-th element is just δc,c′ (Kronecker’s
delta). Using this notation, we can rewrite Eq. (7) as

R(γ) = λα

∑
c

∥∥∥∥α⊤
(

pc −
1
3
kc,all

)∥∥∥∥2

+ λβ

∑
c

∥∥∥∥β⊤
(

pc −
1
3
kc,all

)∥∥∥∥2

= γ⊤
(

λαRs 0
0 λβRs

)
γ

= γ⊤Rγ,

where

kc,all ≡ kc,T + kc,S + kc,D,

Rs ≡
∑

c

(
pc −

1
3
kc,all

)(
pc −

1
3
kc,all

)⊤

,

R ≡
(

λαRs 0
0 λβRs

)
.

Here is the matrix representation of the objective
function with smoothing regularizer

Ψ(γ|λ) = ∥y − Wγ∥2 + γ⊤Rγ, (10)

and the global optimum solution γ∗ is given as the so-
lution of a quadratic problem as

Minimize
1
2
γ⊤Qγ + c⊤γ, (11)

subject to γ ≥ 0, (12)

where Q = 2W⊤W + R, and c = −2W⊤y. To solve
this quadratic problem, we can use well known algo-
rithms such as the interior point method or the subgra-
dient method.

5. Experiments

In this section, we validated our model using real-
world battery data set.

5.1. Data sets

We used two data sets, SIMULATOR and
ENDURANCE, for our performance evaluations.

The SIMULATOR data was generated by a battery
simulator carefully designed to reproduce the behavior
of Li-ion batteries based on physical-chemical laws. Ta-
ble 1 shows the summary of the data. This data includes
six cycle patterns for training, but 20%-80% cycle pat-
terns are lacking. For accurate prediction, the prediction
model must also handle usage patterns that fall into the
unobserved region.

Table 1. Summary of SIMULATOR data set
training data SoC cycle pattern DoD
bat-tr-1 0% - 100% 100%
bat-tr-2 0% - 20% 20%
bat-tr-3 20% - 40% 20%
bat-tr-4 40% - 60% 20%
bat-tr-5 60% - 80% 20%
bat-tr-6 80% - 100% 20%

test data SoC cycle pattern DoD
bat-ts-1 0% - random random
bat-ts-2 20% - random random ≤ 80%
bat-ts-3 40% - random random ≤ 60%
bat-ts-4 60% - random random ≤ 40%
bat-ts-5 80% - random random ≤ 20%

The ENDURANCE data is a real-world Li-ion battery
data set. In this data, we tested hundreds of batteries un-
der various temperature and charge-discharge patterns.
We also performed additional tests under some realistic
situations to validate the performance of our approach.
The details are omiited due to space limitations.



5.2. Methods compared

We compared the proposed approach (denoted by
PROPOSED) with k-nearest neighbor regression (KNN).
In KNN, given an input trajectory, the regression func-
tion selects its neighbors N in the training data. The
neighbors N are selected based on the Euclidian dis-
tance in the three-dimensional state space spanned by
temperature, SoC, and DoD. A predicted value is com-
puted as the average of the neighbors’ y.

5.3. Results

Table 2 shows the relative squared errors versus
PROPOSED. We see that our approach is about 1.9 -
2.2 times better than KNN for both data sets. Figure
2-a compares the actual and predicted values of y as
measured by capacity retention in the SIMULATOR data
set. We clearly see that PROPOSED gives a much closer
curve to ACTUAL than KNN.

The poor performance of KNN can be attributed to
its inability to extrapolate. For example, as one of the
characteristic properties of the SIMULATOR data set,
the degradation is especially significant around 100%.
Thus the 0%-100% cycle is much faster than the 0%-
80% cycle. However, KNN selects the 0%-100% cycle
(bat-tr-1) as a neighbor of the 0%-80% cycle. This
explains why KNN always predicts a faster degradation
rate than ACTUAL.

Figure 2-b shows the coefficients in the dimension
of SoC for SIMULATOR. We see that PROPOSED pro-
duces a smoother distribution of the coefficients, in spite
of the fact that we used only the 6 cycle patterns for
training.

Table 2. Relative squared error
PROPOSED KNN

SIMULATOR 1 2.20
ENDURANCE 1 1.89

6. Conclusion

We formulated the task of battery life prediction as
a trajectory regression, where a battery usage pattern
is represented as a trajectory in a feature space. We
showed that our trajectory regression framework cor-
responds to a novel regularized linear regression. We
demonstrated the high predictability of our method with
real-world Li-ion battery data. For future work, we will
look further into mathematical properties of the objec-
tive Eq. (10), particularly in the context of Laplacian
regularization.
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Figure 2. Result of SIMULATOR

References
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