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Problem: Predict the “cost” of an arbitrary path on
networks

olnput: arbitrary path on a network w
—A sequence of adjacent link IDs destination

oOutput: total cost of the path origin
—Scalar (e.g. travel time) ﬁ‘

oTraining data:
D = {(x(”),y(”))m =1,2,....N}

« x(M : n-th trajectory (or path) y T f ( I/ )

 y(" : n-th cost
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Why Is this problem interesting?

oThis is a new regression problem

—The input is not a vector

oThis task appears in several real problems
—Travel-time prediction on road networks
—Energy consumption prediction in steel rolling process
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We focus on travel-time prediction

0GPS produces a sequence of

and coordinate : GPS coordinate
points -
—Very hard to measure the cost of —
individual links precisely l
oTotal cost can be precisely ', 11
measured even in that case W
—Simply computed as the time difference

between O and D:

Brakatsoulas et al., "On map-
matching vehicle tracking data,"
Proc. VLDB '05, pp.853--864
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Agenda

oProblem setting

oFormulation

oRelationship with Gaussian process regression

oExperiments
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y(x) — Z Ce cost of link e ﬁ\destmaﬂon

ecx

Representing the total cost using latent variables

for all links included origin
iInput path x

origin 4
destination

Our goal is to find cost deviation { fe } from the baseline

Ce E"/\l/é(gbg + fe)
I Cost deviation per unit

Link length :
length from the baseline

(known) Baseline unit cost

(known from e.g. legal speed limit)
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Setting two criteria to determine the value of {fe}

oThe observed total cost must oNeighboring links should have

be reproduced well similar values of cost deviation

— Minimize: —While keeping this constant

2
[,
n 2

Z Y - Z Ce(fe) 7 S: See’|f€ fe’|

n=1 eEgp(n) e=1e=1
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Example of definition of link similarities

S = wl-l-d(e,e’)’ d(e, 6,) < dp
i
0, otherwise

d = (# of hops
between edges)

In this case, d(e,e’)=2
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Final objective function to be minimized

N \ M M
\V(f|>\) — Z y(n) — Z Ce(fe) _|'§ z Z Se,e’ ‘fe — fe’|2
n=1 ecg(n) e=1¢e/=1

“Predicted cost should be * “Neighboring links should
close to observed values” take similar values”

S Is the similarity matrix
between links
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This optimization problem can be analytically solved

Matrix representation of the objective
2
V() = luv—QTf|| "+ arTLf
Lijj = 0iy Z Sik —

q(n) _ { le, fOr e € (")

: : 0, otherwise
Analytic solution

f=[QQT + AL Quy

Lambda is determined by cross-validation

(D, @, )T
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The link-Laplacian matrix bridges the two
approaches

Kernel-based [Idé-Kato 09]

Proposition:

y J— f ( _//—/ )— These two approaches are
equivalent if the kernel matrix is
chosen as

Kn,n’ — q(n) ! I—Tq(n,)

e Feature-based (this work)
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Practical implications of the link-Laplacian kernel

oThe proposition suggests a
natural choice of kernel

—In the kernel regression approach,
the choice of kernel is based on
just an intuition

—Since a link-similarity is much
easier to define, our approach is
more practical than the kernel
method
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(a) Road network

(b) Link network
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Traffic simulation data on real road networks

35.025
oNetwork data

— Synthetic 25x25 square grid S Sime

—Downtown Kyoto R '

E 35005 1 NS o

oTrajectory-cost data B

— Generated with IBM'’s agent-based g ’

traffic simulator 34.985 -
. 135.74 135.76
— Data available on the Web long

135.78

Figure 2: Downtown Kyoto City map of Kyoto data.

oMethod compared
—Legal: perfectly complies with the legal

Table 1: Summary of data.

speed limit Gr1d25x25 | Kyoto

. . [ 25 B18

—GPR: Gaussian process regression ilﬁie: Qﬁi[“][} Llj) i},g
. . : , '

with a string kernel # generated paths 1200 1739

—RETRACE: proposed method
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Grid25x25 Kyoto :

+ legal

Proposed methods gave
the best performance

predicted

oLegal

predicted travel time

—Does not reproduce traffic
congestion in Kyoto

oGPR £ o
—Worst % ]
—Due to the choice of kernel that g
can be inconsistent to the §
network structure a4 . | |
actual travel time ” T
ORETRACE (proposed)
—Clearly the best £l rReTRACE 7| [
—Qutliers still exist: cannot S ]
handle dynamic changes of =
traffic =y
©
2 |
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Concluding remarks

gSummary oFuture work
— Proposed the RETRACE — To test the algorithm using probe-
algorithm for trajectory regression car data
—RETRACE has an analytic —To study how to improve the
solution that is easily implemented scalability

— Gave an interesting insight to the
relationship with the GPR
approach
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