

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.X10'12,
June 14, 2012, Beijing, China.
Copyright © 2012 ACM 978-1-4503-1491-6/12/06... $10.00

X10-based Massive Parallel Large-Scale Traffic Flow Simulation

Toyotaro Suzumura1,2, Sei Kato1, Takashi Imamichi1, Mikio Takeuchi1
Hiroki Kanezashi2, Tsuyoshi Ide1, and Tamiya Onodera1

1 IBM Research – Tokyo 2 Tokyo Institute of Technology

Abstract
Optimizing city transportation for smarter cities can have a major
impact on the quality of life in urban areas in terms of economic
merits and low environmental load. In many cities of the world,
transport authorities are facing common challenges such as wors-
ening congestion, insufficient transport infrastructure, increasing
carbon emissions, and growing customer needs. To tackle these
challenges, it is highly necessary to have fine-grained and large-
scale agent simulation for designing smarter cities. In this paper
we propose a large-scale traffic simulation platform built on top of
X10, a new distributed and parallel programming language. Ex-
perimental results demonstrate linear scalable performance in
simulating large-scale traffic flows of the national Japanese road
network and a hundred of cities of the world using thousands of
CPU cores.

Keywords X10; Intelligent Transportation Systems; Large-scale
simulation; Supercomputer

1. Introduction
Optimizing the behavior of all city resources such as the mo-

tion of people and vehicles, logistics, and energy contributes to
humanity at large. Needless to say, such optimization efforts
present enormous business opportunities in terms of intelligent
infrastructure management, but they can also be useful to nor-
malize a city that has lapsed into malfunction through congestion
or disaster, and they can eliminate wasteful consumption. IBM
Research specifically examined the optimization of traffic flows in
a city as an important research subject. The modeling of dynamic
traffic flows, i.e., traffic flows changing over time, is a historied
discipline that has been studied actively since the 1970s. It has two
major approaches in general: one approaches based on time-series
prediction technology, and the other approaches based on simula-
tion.
 Historically, almost all related studies have been concentrated on
the former. However, the latter approach has increased in relative
importance since computer resources improved rapidly from
around 2000. The greatest reason is that simulation can offer the
function of scenario analysis: e.g., "if this route is closed at a cer-
tain instant, then how will traffic flow change in time?", or "what
will happen if the motion control parameter of this signal is modi-
fied?" This requirement is indispensable for optimal urban design.
 IBM Research Tokyo has conducted research for several years on
the IBM Mega Traffic Simulator (Megaffic), a traffic flow simula-
tor that employs agent modeling technology. An agent simulation

enables flexible scenario analysis as described above, but in com-
pensation, it presents disadvantages of very high calculation costs.
For that reason, detailed traffic flow simulation on a city level has
been regarded as impossible to date.

This paper presents a proposal of an approach of parallel dis-
tributed processing using X10 language to break through the prob-
lem of the calculation load that is imposed by conventional agent
simulation. The construction of this paper is the following: Section
2 presents a description of the overall structure of Megaffic and
introduces the mathematical modeling component of a traffic sys-
tem, which is the largest characteristic of Megaffic; Section 3
explains the outline of XAXIS, an agent simulation platform using
X10 language, and a XAXIS-based traffic simulation platform;
Section 4 introduces results obtained experimentally using TSU-
BAME2.0, and finally concludes this paper.

2. Megaffic: Traffic Flow Simulator
Conventionally, a static model such as the user equilibrium as-

signment model has been employed for evaluation of traffic poli-
cies [6][7]. Such an approach that allocates transport demand to
each link can calculate each link traffic and saturation ratio at an
intersection using allocation principles. It excels in predictability
of daily traffic volume. However it cannot estimate the dynamics
that are important for traffic policy evaluation such as generation
and dissolution of congestion, transport demand that varies among
time zones, and signal indication. The analysis of dynamic traffic
flow varying in time and space like congestion requires expression
of the dynamics of vehicles that form traffic flow on a road net-
work. This paper addresses how a driver is modeled to express this
dynamics in Megaffic, and how such a model is connected to traf-
fic flow analysis.

2.1 Outline of Megaffic

The authors have been developing a traffic flow simulator, Meg-
affic, based on component technologies presented in Fig. 1, to
express the dynamic traffic flow that is indispensable for traffic
policy evaluation and to achieve effective traffic policy evaluation.
Megaffic adopts a multi-agent system for traffic flow modeling.
Each vehicle is modeled as an autonomous agent. Multi-agent
systems became prominent against the background of distributed
artificial intelligence in the 1980s, and have been adopted for dis-
tributed cooperative problem-solving or complex system simula-
tion. This multi-agent system will generate feedback that traffic
flow has emerged as a result of interaction between agents and
macroscopic traffic flow affects an individual driver. Consequent-
ly, it is expected that dynamic traffic flow that varies in time and
space can be treated.

Such an approach is related to the following three issues:
1) how to build a detailed driving behavior model incorporating
the dynamics of the dynamic traffic flow described above,
2) how to conduct a high-speed multi-agent simulation to carry out
what-if analysis (an analytic method that evaluates result accord-
ing to various assumptions) on a city traffic policy, and

Figure 1 Construction of Megaffic.

3), which graphical user interface (GUI) is efficient for traffic
policy evaluation using a microscopic traffic flow simulator.

The authors have developed three component technologies to
resolve these three problems; mathematical modeling technology,
simulation platform, and visualization platform, as presented in
Fig. 1.

Conventionally, in construction of the driving behavioral
model of a driver, especially a route choice model, a linear ex-
pected utility function is defined and the weight of each utility is
set up, such as the number of right and left turns, fees, travel times,
and distances. Then the best weight parameter is determined to
reproduce the present condition. Such calibration is not efficient
because it requires repetitive simulation, and no understanding of
the weight obtained is acquired either. Therefore, the authors
adopted an approach to set up these parameters automatically, in
which probe car data that are data of position information related
to vehicles are analyzed, and the cost distribution of each link is
estimated. Then based on this link cost distribution, the parameters
of a driving behavior model considering risks are extracted auto-
matically.

Trade-offs of adopting a highly mathematical driving behavior
model constructed using such an approach include calculation
costs for each agent's decision making in the case of simulating
traffic flow in the road network of the whole city. Accordingly, the
authors have developed a general-purpose platform for the deci-
sion-making of an agent using a parallel distributed programming
language X10. This language allows users not only to conduct run-
time multi-agent simulation but to exploit multi-agent simulators
for such as evacuation behavior efficiently in case of an earth-
quake and population market using this development platform.

Visualization technology is a technology component related to
the third issue. The positions of all vehicles in the whole city at
every moment are computed in microscopic traffic flow simula-
tion. However, these huge simulation results are of no use for city
road planners. It is necessary instead to offer proper GUI for them
for efficient road policy evaluation. The authors therefore provide
a tool that visualizes the sequential motion of vehicles first ob-
tained as a result of a traffic simulation. In addition, the road net-
work editor (Fig. 1 lower left) is software that enables us to edit
objects that form a road network on a computer, such as a road
and an intersection. This enables what-if analyses in cases involv-
ing changes such as a newly constructed highway or modification
of signal indication parameter at an intersection.

3. XAXIS : Massive Agent Simulation
Execution Platform
X10-based Agent eXecutive Infrastructure for Simulation

(XAXIS) is an executive operation platform of a massive agent
simulation mounted using a parallel programming language X10
[2][4]. The outline of X10 is described. Then the massive agent
simulation execution platform XAXIS built on X10 is overviewed.

3.1 Outline of Parallel Programming Language X10

X10 is a novel parallel distributed programming language that
IBM Research is developing. It enables development of highly
efficient applications at high throughput in a distributed system in
a mixed environment with various models comprising multiple
cores, accelerators, etc. In an execution environment equipped
with many execution cores, it is important to demonstrate the par-
allelism and memory configuration to programmers. X10 offers a
global address space that is partitioned into multiple places, called
Partitioned Global Address Space (PGAS). A place is the abstrac-
tion of the locality of memory, and it typically corresponds to one
computer. Activity can be generated dynamically in each place as
an asynchronous execution subject equivalent to a lightweight
thread. Activity can be generated using the syntax of an async
sentence, and can be moved to other places using a sentence. Con-
ventionally, to achieve a simulation using a massive computer
with each node comprising multiple cores and being combined in
the network, the Message Passing Interface (MPI) is used as a
messaging mechanism among nodes. Programming models such
as OpenMP and POSIX thread are employed for thread parallel in
the 1 node. However, the concept of "place" and "activity" of X10
enables one to build an executive operation system on a massive
computer cluster using a unified programming model at high
throughput.

3.2 Architecture of XAXIS

Figure 2 shows the XAXIS architecture, the massive simula-
tion execution platform with X10 mounted. An agent manager
manages agents asynchronously executed by the activity of X10 in
each place in an agent process of a simulation. In case of commu-
nication with agents in other places, a place of which the agent
manager is in charge is chosen based on an agent's identifier, and a
communication message is sent thereto. This communication mes-
sage is hidden from users, and simulation developers are expected
to concentrate only on mounting the logic of the agent. A message
that is developed using X10 can be transmitted and received in
XAXIS without explicit message communication in a distributed
computer, but by calling the method of the agent manager in other
places using at syntax. A mechanism for communication between
places using activity that implements an asynchronous thread and
at syntax enables us to mount the simulation execution environ-
ment itself easily.

However, because traffic simulation Megaffic is originally
mounted on the agent framework IBM Zonal Agent-based Simula-
tion Environment (ZASE) [1] described by Java, it is necessary
that Megaffic be operated transparently on XAXIS. For that rea-
son, we offer the same API as a programming API supplied by
ZASE on XAXIS, so that applications on the execution platform
of an agent simulation can be executed without modification.
Moreover, X10 language offers a mechanism that compiles into
C++ and Java codes. It is also one advantage of X10 because agent
simulation codes in the existing Java written on ZASE can be
executed transparently on XAXIS using its mechanism of transla-
tion to Java code.

Megaffic
“IBM Mega Traffic”

Simulator
Simulation platform

 XAXIS

Mathematical modeling
technology

Risk-based driving action model
Link cost estimator

Starting and terminal point genera-
tor

Visualization platform

Road network editor

Figure 2 XAXIS Architecture.

3.3 Mounting of Traffic Simulation Megaffic on XAXIS

An important decision in mounting Java-based traffic simula-
tion Megaffic on XAXIS is on which unit the activity of X10 is
mapped. The present mounting was conducted by mapping not a
vehicle but an intersection itself on the activity of X10. An inter-
section that operates as an activity controls vehicles (agent) on the
roads flowing therein, such as forward movement of vehicles and
switching multiple lanes. Then asynchronous processing is con-
ducted so that execution waits until processing of the vehicles is
completed, where all the intersections (activity of X10) take
charge of every execution step corresponding to a time instant in a
simulation. The termination of processing of all generated activi-
ties can be postponed for the X10 syntax of finish in mounting.

4. Massive Traffic Flow Simulation using the
TSUBAME 2.0 Supercomputer
A traffic simulation was conducted on XAXIS using the

TSUBAME 2.0 supercomputer at the Global Scientific Informa-
tion and Computing Center, Tokyo Institute of Technology, and
the performance evaluation of XAXIS was conducted. TSUBAME
2.0 is a supercomputer representing Japan, ranked fifth in the
world in the Top500 in the supercomputer ranking and third in the
world in Graph500 as of November, 2011. It comprises 1,442
nodes as a whole. Each node has an Intel Westmere-EP 2.93 GHz
processor and 52 GB of memory.

4.1 The Nationwide Japanese Road Network

The entire Japanese road network is used as a road system for
experimental data of the massive traffic flow simulation, which
includes 993,731 intersections and 2,552,160 roads (link connect-
ing two intersections). The road network consists of one-
dimensional meshes that divide the road system into 128 meshes,
and two-dimensional meshes that further divide the one-
dimensional mesh code. Moreover, the identifier of each intersec-
tion consists of 13 digits, whose first 4 digits represent the primary
mesh code, the next 2 digits denote the secondary mesh code, and
the lowermost 7 digits are characteristic values for each intersec-
tion in the secondary mesh.

4.2 Estimation of Execution Time in One Node

TSUBAME 2.0 carries 52 GB of memory per node, and can
store the entirety of Japan’s road networks in memory. First, a
simulation was conducted with 24 threads using one node (hyper-

threaded, 24 CPU cores). Its execution performance in one node
was measured. To estimate the pure system performance, real data,
which contain trip representing starting points to terminal points
for each vehicle actually passed along, were not employed. Instead,
the following three patterns of trips were generated artificially: (a)
a trip whose starting point and terminal point exist in secondary
mesh codes, (b) a trip whose primary mesh code is the same
whereas secondary mesh code differs, and (c) a trip whose starting
point and terminal point exist in different primary mesh codes.
Although these trips are categorized respectively as short-distance,
medium-distance, and long-distance trips, no significant perfor-
mance difference was observed in execution times.

Then the numbers of steps and trips were varied within 1,000–
20,000 and 10,000–200,000, respectively, and execution times
were calculated, to compute the total estimated time for perform-
ing a simulation for one day using one node. Regression analysis
was conducted using these results for the relation of execution
time and the number of steps and trips. A relation was obtained as
execution time (s) = 0.0197 × (the number of steps) + 1.342 × (the
number of trips) - 350. This regression equation suggests that a
simulation for 24 hr takes 55.83 hr, assuming that a simulation for
24 hr requires 86,400 steps and assuming that one step comprises
50 trips.

4.3 Acceleration by Space Partitioning

Next, acceleration was tried by partitioning the road network
in Japan into multiple domains. The graph partitioning tool
METIS [5] was used for partitioning the network into 100 do-
mains so that intersections were distributed equally to each do-
main. One group (corresponding to one partitioned domain) is
allocated to one node on TSUBAME. One group consisted of
about 10,000 intersections in average, and parallel distributed
processing was executed using 100 nodes and 1,200 CPU cores in
total. A simulation was conducted in conditions of 3,600 steps
(corresponding to 1 hr) and 180,000 trips. Figure 3 shows the re-
sult, where the horizontal axis denotes the identifier of each group
and the vertical axis represents the execution time in seconds. The
simulation was completed within 300 s for almost all domains
except for some groups. The average execution time for the whole
groups was 269.95 s, which corresponds to 1.73 hr for a simula-
tion for 24 hr using 100 nodes. Compared with the execution time
estimate of 58.8 hr with one node in the preceding chapter, 33.9
times greater acceleration was achieved.

More execution time was necessary in some groups in large
cities, even though the numbers of intersections and roads were
distributed evenly among others. Such examples include the fol-
lowing: the whole of Osaka in Group 5; the southeastern part of
Nagoya city, Aichi in Group 12; Sapporo city, Hokkaido in Group
46; and Fukuoka city, Fukuoka in Group 72. This increase in exe-
cution time is attributable to enhanced traffic volume density per
road and subsequent load increase at intersections processed as
agents. This issue can be improved by further partitioning of these
domains using METIS. TSUBAME 2.0 is a supercomputer com-
prising 1,440 nodes (17,280 CPUs). Therefore, further fine-
grained partitioning of the Japan nationwide road network will
enable completion of a simulation of activity for 24 hr within sev-
eral minutes.

Figure 3 Execution time of each group after partitioning.

Figure 4 Simulation execution time for cities of the world.

 Figure 5 Visualization of simulation for Rio de Janeiro, Brazil

4.4 Experiments Using Road System of Cities in the World

Simultaneous simulations for the road networks of 127 major
cities throughout the world, such as Singapore, London, and Mex-
ico City, were also conducted using Open Street Map [3], the
worldwide geographic information data, in addition to the whole
Japanese road network. The Open Street Map is open data pro-
vided under the Eclipse Public License, and almost all global maps
are now available. In this experiment, a traffic simulation for each
city was conducted simultaneously on each computing node using
1,524 cores (127 nodes). Figure 4 presents the result of this exper-
iment with 1,000 steps and 50,000 trips. The horizontal and verti-
cal axes respectively present the ID of cities in the world and
execution time. The scale of a city road network varies in this case,
containing from tens of thousands to 2 million intersections. Com-
putations for a small city were completed within 10 min, although
those for a large city took a correspondingly longer time. It is pos-
sible to accelerate a simulation for large cities taking a long time
by domain partitioning such as the whole Japanese road network

in the future. A screen shot of simulation results for Rio de Janeiro
in Brazil is displayed with the visualization tool of Megaffic as an
example in Fig. 5, with which the movement of vehicles in time
and space can be browsed.

5. Conclusion and Future Direction
This paper introduces an execution platform environment

where X10 language is applied to a massive simulation to break
through the problem of enhanced calculation load in the conven-
tional agent simulation. The contents describe the experimentally
obtained result of performance evaluation using the TSUBAME
2.0 supercomputer with road networks throughout Japan and ma-
jor cities all over the world. A performance evaluation using the
whole Japanese road network indicated that a simulation for 24 hr
with 1 node of TSUBAME took 55.83 hr, although it took only
1.73 hr with the execution environment of 100 nodes (parallel
computation with 1,200 cores). No execution platform operating
in such a massive environment for an agent simulation has ever
existed. In addition, a massive experiment conducted in this study
is the first trial. XAXIS itself is a general-purpose agent simula-
tion. It will enable the conduct of various simulations comprehen-
sively in the future, such as its practical use in consumer behavior
in business, cyber security, and biological simulations at a molecu-
lar level.

References
[1] Yamamoto, G., Tai, H., and Mizuta, H. A Platform for Mas-
sive Agent-based Simulation and its Evaluation. AAMAS 2007,
900-902.
[2] Kawachiya, K. X10: A Programming Language for Multicore
Era. Information Processing, 52(3) (2011), 342-356.
[3] Open Street Map, http://openstreetmap.jp/
[4] Saraswat, Vijay A., Sarkar, Vivek, and von Praun, Christoph.
2007. X10: concurrent programming for modern architectures. In
Proceedings of the 12th ACM SIGPLAN symposium on Princi-
ples and practice of parallel programming (PPoPP '07). ACM,
New York, NY, USA, 271-271.
[5] Karypis, G., and Kumar, V. Multilevel k-way Partitioning
Scheme for Irregular Graphs. Journal of Parallel and Distributed
Computing, 48 (1998), 96-129.
[6] Florian, M. A Traffic Equilibrium Model of Travel by Car and
Public Transit Modes. Transportation Science, 11(2) (1977), 166-
179.
[7] Wardrop, J.C. Some Theoretical Aspects of Road Traffic Re-
search. Proc. Institute of Civil Engineers Part 2, 9 (1952), 325-378.

