

Monitoring Entire-City Traffic using Low-Resolution Web Cameras

Tsuyoshi Idé, Takayuki Katsuki, Tetsuro Morimura
IBM Research – Tokyo

{goodidea, kats, tetsuro}@jp.ibm.com

Robert Morris
VP of Global Labs, IBM Research

rjtm2@us.ibm.com

ABSTRACT
We propose a new approach to intelligent transportation systems for developing countries. Our
system consists of two major components: (1) Web-camera-based traffic monitoring and (2)
network flow estimation. The traffic monitoring module features a new algorithm for computing
the vehicle count and velocity from very low-resolution Web camera images, while the network
flow estimation module features a traffic flow estimation algorithm at every single link, based on
measurements at a limited number of links with the cameras. Using real Web cameras deployed
in Nairobi, Kenya, we assessed the accuracy of our approach. To the best of the authors’
knowledge, this is the first practical framework for monitoring an entire city’s traffic without
special expensive infrastructure and time-consuming data calibration.

Keywords: Traffic Monitoring, Image Recognition, Network Analysis, Frugal Innovation

1. INTRODUCTION
Traffic congestion is a major problem in the urban regions of most developing countries, where
mismatches are found between rapidly growing economies and the municipal infrastructures.
Intelligent transportation systems (ITS) provide a basic framework for traffic management.
Unlike urban areas in relatively mature countries, cities with rapid economic growth require a
lightweight ITS to adapt to the dynamically changing environment.

This paper presents such a “frugal” approach [1] to ITS. With Nairobi City, Kenya, for our
prototype, we developed a traffic monitoring system for the entire city. A major feature of our
system is that it imposes only a minimum cost beyond the road infrastructure itself. Instead of
using traditional road-side sensors, the system
takes advantage of the existing Web cameras of
AccessKenya.com [5], most of which are
mounted on commercial buildings and individual
residences, and the traffic information is
monitored through Web browsers. This system
needs no expensive infrastructure, but we have to
overcome several technical hurdles.

Heavy

occlusion

Low

resolution

Fig 1. Examples of very low quality images

The first challenge is how to handle Very Low-Quality Images (VLQI; see Fig.1 for
examples). Due to cost and antitheft concerns, special-purpose close-view cameras are not
suitable in most developing countries. In our system, the Web cameras are general-purpose
cameras typically mounted on buildings, and their image quality is extremely low. Standard
object recognition technologies such as those used in number plate recognition [3] are useless.

The second challenge is how to eliminate the time-consuming step of calibration in the
image processing. Most of the existing video-based technologies for traffic monitoring require an
elaborate design to select image features for object recognition. For example, Robert [2] presents
a video-based vehicle tracking system, where image patches are compared with template images
of windshields and headlights to identify vehicles. For accurate matching, each camera needs to
undergo rather tedious calibration steps on camera positions and distances.

The third challenge is how to derive city-wide information from a limited number of Web
cameras. In particular, what-if simulation for optimized city planning calls for estimating the
traffic flow in every single link of the road network. This task is similar to network tomography,
whose application to ITS was first proposed in [4], but differs in that we need to infer all of the
link costs instead of just the origin-destination flows.

We tackle these challenges with sophisticated machine learning techniques. First, for the
first and second challenges, instead of the standard template-matching approach, we propose to
use a simple regression model combined with an optimal threshold for binarization. Our
algorithm (in Section 2) allows accurately estimating the vehicle flow at the locations monitored
by Web cameras even when the quality of the images is too low for template matching. Second,
we develop a new inference method on road networks to estimate the traffic flow at an arbitrary
link without direct observation by Web cameras. The idea is to take advantage of the correlations
between links. For example, imagine there is only a single highway in a region, and the highway
consists of a number of consecutive links. In this case, if the traffic flow for a single link is given,
we readily see the flow of the neighboring links will be the same. For more complex network
having many branching points, we can extend the idea by using a mathematical technique of
regularization (described in Section 3). Finally, in Section 4, we show some experimental results
for our prototype based on the actual traffic in Nairobi, Kenya.

Manually selected focus area

of vehicles

Congestion level

A. Optimized binarization B. Regression analysis

Fig.2. Outline of vehicle counting algorithm

2. CALIBRATION-FREE VERY LOW QUALITY IMAGE ANALYAIS
This section presents an approach to calibration-free VLQI analysis to estimate the traffic
volume. Figure 2 shows an outline of our approach. We assume that a number of Web cameras
are monitoring the traffic in a city. In our prototype in Nairobi, there are 27 Web cameras. For
each Web camera, we manually define a region of interest (ROI) depending on the location and
the distance to the link of interest, as highlighted by the black region in the figure. The ROI
selection is performed only once, depending on user’s preference, and requires no fine tuning.

Since the Web cameras are analyzed independently, we focus on a single Web camera in
the rest of this section. We assume that we are given a training data set for the camera, which
contains N images. Each of the images is assumed to have M pixels, and each of the pixels takes
a value out of 256 levels representing luminance. As a preprocess, we subtract from the pixel
values of each image the median of its M pixels to handle the variation in luminance. For
example, there is considerable luminance difference between rainy and clear days. We denote the
normalized pixel value by zi

(n) for the i-th pixel of the n-th image (i = 1, 2, …, M ; n = 1, 2, .., N).
We also assume that each of the images is associated with the vehicle count, y(n) for the n-th
image, which is assumed to be obtained by manual counting or other means. To summarize, our
training data set can be represented as { (y(n), z1

(n), … , zM
(n)) | n = 1, 2, .., N }.

2-1. Optimized binarization
As indicated in Fig. 2, the first step is to transform the normalized images into black-white
images to highlight the individual vehicles. The rule for transformation (binarization) is simple:
if the normalized pixel value is greater than a threshold, k, the pixel value is replaced with 1.
Otherwise, it is set to 0. Now our task is to find the optimal binarization threshold k.
 Figure 3 shows an example of the distribution of pixel values of the training set, where
the red bar separates the black (called class 1) from the white (class 2) pixels. There are MN pixel
values in the data. Let nl be the frequency of the l-th level. By definition,

∑∑
= =

==
N

n

M

i

n
il lzIn

1 1

)()(,

and n0 + n1 + … + n255 = MN. In this definition,)(⋅I is the indicator function that gives 1 when

luminance level

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255

Class 1 (black) Class 2 (white)

Fig. 3. Luminance distribution of a data set.

the argument is true, 0 otherwise. To determine the optimal threshold, we follow the method in
[6]. The idea is to maximize the statistical variance between the white and the black pixels. Let
m1(k) and m2(k) be the mean luminance values of the classes 1 and 2, respectively. Obviously,
these are functions of the threshold k. Also, let mT be the total mean. Then, the between-class
variance sB

2 is defined as the variance of a population with the mean mT, which includes only
two samples at m1(k) and m2(k). The value of sB

2 will be large when the distribution has two
distinct peaks and the threshold separates them very well, as shown in the figure. The optimal
threshold k* is found as

k* = arg maxk sB
2 (k). (1)

A straightforward approach to this optimization problem is to evaluate sB
2(k) at 256 different

values of k, and pick one giving the maximum.

2-2. Regression model
Given the optimized threshold k*, our next step is to find the relationship between the vehicle
count and the number of white pixels. Let x(n) be the number of white pixels in the n-th image,
calculated based on the optimal threshold. Now our task is to find a functional relationship
between y (vehicle count) and x (number of white pixels), based on the training set { (x(n), y(n)) |
n = 1, …, N}.
 For this task, we propose a simple regression model. We assume a linear model between
x and y as baxy += , and determine the parameters a and b, based on the training data. Formally,
our problem is stated as

()
2

1

)()(
,

** minarg),(∑
=

−−=
N

n

nn
ba baxyba , (2)

from which we have a model to predict the vehicle count y for an arbitrary image having x white
pixels as y = a*x + b*.

2-3. Summary
 In summary, here is how our vehicle counting algorithm works. In the training phase,
for each Web camera, the prediction model is identified:
l Input: training data containing N images as { (y(n), z1

(n), … , zM
(n)) | n = 1, 2, .., N }, where y(n)

is the vehicle count and zi
(n) is the normalized pixel value of the i-th pixel.

l Output: Optimal binarization threshold k*, predictive model parameters a* and b*.
l Algorithm:

1. Find the optimum threshold k* by solving Eq. (1).
2. Binarize the N images to get { (x(n), y(n)) | n = 1, …, N}, where x(n) is the number of

white pixels of the n-th image. Note that this depends on k*.
3. Solve Eq. (2) for the predictive model y = a*x + b*.

In the prediction phase, the vehicle count is estimated based on the model:
l Input: A median-normalized image. Parameters k*, a*, and b*.

l Output: Vehicle count y.
l Algorithm:

1. Binarize the image using k* to get the number of white pixels x.
2. Compute y using y = a*x + b*.

Note that this model does not use any handcrafted features of the images. After the ROI

selection, all of the steps rely only on simple calculation without any hand-tuning. This is in
sharp contract to feature-based approaches, and clearly the best approach for VLQI. While we
discussed only vehicle counting, we can extend our approach to compute other metrics such as
the average velocity or the congestion level. These details appear in another paper [7] due to the
space limitations. We will use the term flow in a general way to symbolically represent such
quantities related to traffic volume.

3. NETWORK INFERANCE FOR TRAFFIC FLOW ESTIMATION
Using the algorithm in Section 2, we can estimate the vehicle flow at any instant. However, this
is only for the locations where Web-cameras exist. Since the number of cameras is always much
smaller than the number of links in the road network, we need some technology for extrapolation
to monitor and manage the traffic over an entire city. That was our third challenge as mentioned
in the Introduction. Our goal is to estimate the
traffic flow in an arbitrary link of a network,
given the observed traffic flows on a limited
number of the links, as illustrated in Fig. 4. Our
problem resembles network tomography [4][8]
and link-cost prediction [9]. However, unlike
network tomography, we need to infer all of the
link traffic instead of source-destination
demands, and, unlike link-cost prediction, our
inputs are stationary observations instead of
trajectories.

3-1. Inverse Markov chain problem
We formalize this problem as a form of inverse Markov chain problem: Find the Markov
transition probability p(i | j) from an arbitrary link j to a link i, given a stationary distribution
over the links, d(i), i =1, .., L. Here d(i) denotes the stationary state probability on the i-th link,
and L denotes the number of links in the network. The basic assumption to relate the distribution
to observed flows is

)()(icdiy = , (3)
where y(i) denotes the observed traffic flow for the i-th link (typically estimated from the
approach in the previous section), and c is an unknown constant to be determined. Obviously, p

Fig. 4. Network flow inference problem.

and d satisfy

∑
=

=
L

j
jdjipid

1

)()|()(, (4)

which is also the definition of the stationary state probability. In matrix form, this equation is
written as Pd = d in the obvious notation.

Here is the high-level procedure of the traffic flow estimation problem. Starting from Eq.
(3), which holds only at the links having observed data, we solve the inverse Markov chain
problem to get P for arbitrary pairs of links. Then we re-compute d using Eq. (4), which is done
though eigendecomposition of the probability matrix P, to recover the flows at arbitrary links
with and without observed data.

3-2. Parameterizing the transition model

We parameterize the probability distribution p(i | j) as
);();|()1()|(vu irjiqjip ⋅+−= γγ , (5)

where 10 << γ is called the restart probability (assumed to be a fixed parameter), and u and v

are the model parameters to be learned. In this decomposition, r is interpreted as the initial
probability distribution over the links, while q is interpreted as the “partial” transition probability
distribution. This type of decomposition is natural for traffic analysis on road networks since it is
consistent with a typical data generation process in traffic simulation. Specifically, when we
generate traffic data using a multi-agent simulator [10], we first generate the starting locations
and then generates finite-length paths according to a given transition rule.
 For r and q, we use these particular forms:

{ }
()i

ji

vir
iiNhujiuujiIjiq

exp);(
)](type),([)|cos(exp)~();|(L10,

∝

++∝

v
u

, (6)

where)(⋅I is the indicator function as previously defined, and i ~ j represents a connection
from the j-th to the i-th links. The function h[,] is the weighting factor depending on the number
of lanes NL(i) and the road type of the i-th link. Based on the attributes available in a digital road
map, we defined 12 road types, as explained in Section 4. Also,)|cos(ji is the cosine between
the i-th and j-th links. This model naturally reflects shared knowledge about the traffic. For
example, if the j-th link points in the opposite direction as the i-th link, the transition probability
between them should be down-weighted. If they point in the same direction, then that transition
should occur more often.
 Combining Eqs. (4), (5) and (6), we obtain the stationary distribution d(i) as a function
of the model parameters u = [u0, u1, u1,1, …, uL,L]T and v = [v1, …, vL]T, where T denotes the
transpose and ui,j’s for unconnected pairs are omitted. Optimal model parameters are those that
minimize the discrepancies between the left and right hand sides of Eq. (3). The key question is
how to measure and minimize the discrepancy, which will be studied in the next subsection.

3-3. Designing the objective function

The starting point of our formulation is Eq. (3), which associates the model with observables at
the links having cameras. To measure the discrepancy between d(j) and cy(j), one natural choice
may be [])()(ln icyid , which is suggested by the Kullback-Leibler (KL) divergence. The KL
divergence can be interpreted as the expectation of entropy loss in modeling the true distribution.
Thus the term [])()(ln icyid represents the local information loss at link i. Since we are
interested in the stationary state, the information loss on the network should be as uniform as
possible. If there is a big loss at a particular link, it should be dissipated through the transition
process. With this intuitive picture in mind, we define a loss function to minimize both the
information loss and the non-uniformity of the loss. Due to space limitations, however, we leave
the details to a companion paper [12]. Using the loss function L(u, v), which depends on u and v
through d(i), the objective function to be minimized is given by

++++

++++≡Ω ∑∑∑∑

==

L

l
l

ji
ji

L

l
l

ji
ji vuuuvuuuL

1

2

~

2
,

2
1

2
02

1~
,101 ||||||||),(),(λλvuvu , (9)

where the second and the third terms on the right hand side are L1 and L2 regularizers,
respectively. Although the model is highly redundant and ill-posed, the regularization terms
allow giving a sensible solution. The parameters 21,λλ control the strength of regularization,
and are determined through cross validation.

3-4. Solving the optimization problem
To minimize),(vuΩ , we employ the gradient method. We developed an efficient algorithm
based on the notion of natural gradient [11], but details are omitted due to space limitations. For
the details of the gradient method and others, see the companion paper [12].
 Once the minimizer u*,v* of),(vuΩ is found, one can determine an optimal c (denoted
by c*) by solving the least squares problem:

[]∑
∈

−=
Cjc

jcdjyc 2***),;()(minarg vu . (10)

Finally, the network inference algorithm is summarized as follows:
l Input: Observed traffic flows at a limited number of links{y(i)}.
l Output: u* , v*, and c* to compute the predicted flow as c*d(i ; u*, v*) at the link i.
l Algorithm:

1. Initialize u and v.
2. Solve Eq. (3) to find d(i ; u, v).
3. Compute the gradient of),(vuΩ to update u and v.
4. Proceed to 5 if there is no significant change, otherwise return to Step 2.
5. Compute c* using Eq. (10).

4. EXPERIMENTS
We prototyped our traffic monitoring system using Web cameras in Nairobi, provided by

AccessKenya.com [5]. In the downtown area of Nairobi, there are 1497 links, while only 52
links are monitored by the Web cameras (about 3.5%).

4-1. Vehicle counting
Figure 5 compares the actual and predicted numbers of vehicles. We used N=100 images for
training. Among the 52 links, we picked only two locations for illustration. In the figure, the
algorithm is tested for three different images with different time stamps. The original images
appear on the left side, and the middle column shows the ROIs and binarization results. The
rightmost column compares the number of vehicles between the actual and predicted counts
(denoted by “pred.”). Notice that the bottom row of images was taken at night.

From the figure, we see that our algorithm works quite well even when the image
quality is too low to identify particular features of the vehicles such as windshields or headlights.
Our method is robust to the low resolution and occlusions as well as the variation in luminance.
For the nighttime images at the bottom row, in spite of the significant change in the luminance,
we see that our method including the median normalization scheme works extremely well.

4-2. Network inference
We evaluated the accuracy of the algorithm in comparison to a standard method. For parameters,
we fixed 11 =λ , and initialized {vi , ui,j} to 0, while other parameters in Eq. (6) are initialized to
unity. For the road-type weight h, we used ln[NL(i) + 1] multiplied by the values listed in Table 1.
For 2λ and γ , we used cross-validation to choose the values. Thanks to the L1 regularizer,
more than 70% of {vi , ui,j} became zero after optimization.

The method compared is Nadaraya-Watson kernel density estimation, where the flow of
an arbitrary link is estimated simply as a linear combination of the observed values, and the
coefficients (kernel functions) are computed based on the number of hops in the road network
[13]. Based on a leave-one-out evaluation, we confirmed our approach is about two times better
than the standard method in terms of the relative root mean absolute error.

Fig. 5. Results of vehicle counting.

Table 1. Road type weight for Eq. (6).

motorway 1.5 primary 0.7 tertiary -0.l

motorway_link 1.3 primary_link 0.5 tertiary_link -0.3

trunk 1.1 secondary 0.3 unclassified -0.5

trunk_link 0.9 secondary_link 0.1 other -0.7

Figure 6 shows an example for our results of network inference. We initially measured the

vehicle flow at 36 locations [5] in Nairobi using the VLQI analysis algorithm presented in
Section 2, and then estimated the flow on every link of the road network. In the right-hand panel
of Fig. 6, the red and yellow roads are most congested, while the traffic on the blue roads is
flowing smoothly. The congested roads from our analysis are consistent with those from a local
traffic survey report [14].

5. CONCLUSION
We have proposed a new approach to ITS. Our system consists of two major components: (1)
Web-camera-based traffic monitoring and (2) network flow estimation. The traffic monitoring
module features a new algorithm for computing the traffic flow from very low-quality Web
camera images, while the network flow estimation module features a traffic flow estimation
algorithm for every single link, based on camera-based measurements at a limited number of
links. Using real Web cameras deployed in Nairobi, Kenya, we assessed the accuracy of our
approach. To the best of authors’ knowledge, this is the first practical framework for monitoring
an entire city’s traffic without special and expensive infrastructure and time-consuming data
calibrations.

REFERENCE
[1] Navi Radjou, Jaideep Prabhu, Simone Ahuja, Jugaad Innovation, Jossey-Bass, 2012.

Web-cam observations Estimated traffic flows

Fig. 6. Results of network flow estimation for Nairobi.

[2] Kostia Robert, “Video-based traffic monitoring at day and night vehicle features detection
tracking,” Proceedings of the 12th International IEEE Conference on Intelligent
Transportation Systems (ITSC '09), pp.1-6, 2009.

[3] Norbert Buch, Sergio A. Velastin, and James Orwell, “A Review of Computer Vision
Techniques for the Analysis of Urban Traffic,” IEEE Transactions on Intelligent
Transportation Systems, 12(3), pp.920-939, 2011.

[4] Simone Santini, “Analysis of traffic flow in urban areas using Web cameras,” Proceedings
of IEEE Workshop on Applications of Computer Vision, pp. 140-145, 2000.

[5] AccessKenya.com, http://traffic.accesskenya.com/.
[6] N. Otsu, “A threshold selection method from gray-level histogram,” IEEE Transactions on

Systems, Man and Cybernetics, Vol.9, pp.62-66, 1979.
[7] T. Katsuki, T. Morimura, T. Idé, “Bayesian Unsupervised Vehicle-Counting,” in

preparation.
[8] Y. Zhang, M. Roughan, C. Lund, and D. Donoho, “An information-theoretic approach to

traffic matrix estimation,” In Conference on Applications, technologies, architectures, and
protocols for computer communications, pp. 301–312. ACM, 2003.

[9] T. Idé and M. Sugiyama, “Trajectory regression on road networks. In Proceedings of AAAI
Conference on Artificial Intelligence,” pp. 203–208, 2011.

[10] T. Osogami, T. Imamichi, H. Mizuta, T. Suzumura, T. Idé, “Toward simulating entire cities
with behavioral models of traffic,” IBM Journal of Research and Development, 57 (5),
2013, to appear.

[11] S. Amari. “Natural gradient works efficiently in learning,” Neural Computation,
10(2):251–276, 1998.

[12] T. Morimura, T. Osogami, T. Idé, “Solving inverse problem of Markov chain with partial
observations,” in preparation.

[13] T. Idé, S. Kato, “Travel-Time Prediction using Gaussian Process Regression: A
Trajectory-Based Approach,” Proceedings of 2009 SIAM International Conference on Data
Mining (SDM 09), pp.1185-1196, 2009.

[14] Eric J. Gonzales et al., Multimodal transport in Nairobi, Kenya: Insights and
recommendations with a macroscopic evidence-based model. Paper Number 11-3045.
Transportation Research Board 90th Annual Meeting, 2011.

