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Abstract—Supporting human decision making is a major
goal of data mining. The more decision making is critical, the
more interpretability is required in the predictive model. This
paper proposes a new framework to build a fully interpretable
predictive model for questionnaire data, while maintaining
high prediction accuracy with regards to the final outcome.
Such a model has applications in project risk assessment,
in health care, in sentiment analysis and presumably in any
real world application that relies on questionnaire data for
informative and accurate prediction.

Our framework is inspired by models in Item Response
Theory (IRT), which were originally developed in psychomet-
rics with applications to standardized tests such as SAT. We
first extend these models, which are essentially unsupervised,
to the supervised setting. We then derive a distance metric
from the trained model to define the informativeness of
individual question items. On real-world questionnaire data
obtained from information technology projects, we demon-
strate the power of this approach in terms of interpretability
as well as predictability.

To the best of our knowledge, this is the first work that
leverages the IRT framework to provide informative and
accurate prediction on ordinal questionnaire data.

Index Terms—psychometrics, questionnaire data, item re-
sponse theory, metric learning

I. INTRODUCTION

Supporting human decision-making is one of the most
important goals of data mining. In recommender systems
for example, certain actions are recommended. Depending
on the domain these actions could vary from being buying
decisions [1] for shoppers to being important business
decisions that are recommended to executives or managers
based on historical data. Irrespective of the domain the
final recommended action presented by itself is rarely
sufficient to convince the decision maker of its “plausibil-
ity”. Ordinarily, additional supporting evidence needs to be
provided in support of the recommendation. Hence, a lower
likelihood recommendation from a learning model may be
a better choice if it can be clearly justified.

The plausibility, or more precisely interpretability, is in
fact a critical success factor in many business applications.
For example, imagine that you are a manager of a company
and you are making decisions of lay-offs based on a score-
card for individual employees, which includes a number
of qualitative questions such as “Has he/she made good
enough contributions to teamwork?” You have a database
of the historical records of best practices, which contains a
collection of pairs (x, y), where x is a filled scorecard as
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Fig. 1. Questionnaire-based diagnosis is ubiquitous. In many real appli-
cations, black-box predictive models are not practical. Full interpretability
is often required at all instance-, dimension-, and ordinal grade-levels (see
the text).

represented by a binary or graded vector (see Fig. 1) and y
is the binary indicator to represent termination (y = 1) or
not (y = 0). Although the problem can be viewed formally
as simple binary classification to predict y given x, the
nature of the problem is glaringly different in at least two
aspects.

First, the input data are typically ordinal. In general it is
not valid to naively use standard probabilistic assumptions
such as the Gaussian-distributed noise for ordinal variables.
Second, the model must have a high degree of interpretabil-
ity. For the year-end assessment meeting, you as a manager
will want to be very clear on the rationale of the suggested
outcome from at least three perspectives:

1) Comparison to other employees: What is the difference
between lay-off and no lay-off groups?

2) Comparison between different questions in the score-
card: What kind of weighting is used for individual
questions? How can we justify the weighting?

3) Comparison between different question choices: Some
questions may be easily achieved and others may not.
How can we quantify the heterogeneity?

In other words, we need to ensure at least three different in-
terpretabilities: instance-wise, dimension-wise, and ordinal-
grade-wise interpretabilities. As long as a predictive model
is used to support critical decision-making, the model must
be fully interpretable in this sense. This is especially true in
applications such as healthcare, project audit, and company
reputation analysis, as illustrated in Fig. 1.

The goal of this paper is to introduce a new framework
to build a fully interpretable predictive model for question-
naire data. Our method is inspired by the item response
theory (IRT) [2], which was originally developed in psy-



chometrics with applications to standardized academic tests
such as SAT [3]. As explained later, IRT provides a natural
way to ensure dimension-wise (i.e. between individual
question items) and grade-wise (i.e. between individual
question choices of each question item) interpretabilities.
However, the original IRT has two limitations when ap-
plying to our setting as in Fig. 1. First, the original IRT
framework is unsupervised and does not incorporate the
outcome variable y. Second, related to the first point, there
is no direct method to evaluate the informativeness of each
question items in terms of predictability of the outcome
variable.

To address these limitations, we extend the original IRT
to the supervised setting and incorporate it into a framework
of distance metric learning [4]. Metric learning plays an
important role to ensure full interpretability from two
perspectives. First, as shown later, the learned Riemannian
metric directly serves as the informativeness score, which
is non-negative and bounded. Second, it provides us with a
metric space, where different instances (i.e. scorecards in
the employee evaluation example) are quantitatively com-
pared through Riemannian distance, leading to instance-
wise interpretability when combined with the k-nearest
neighbor (k-NN) classifier. Note that the original ordinal
data x is not defined in a metric space, and thus the distance
between different instances is not well-defined.

To the best of our knowledge, this is the first work to
• propose a supervised extension of IRT, and
• propose an IRT-based metric learning framework for

questionnaire data.

II. RELATED WORK

There are four categories of previous work that is relevant
to the present study.

The first category is obviously standard classification
methods. As mentioned in Introduction, our task in Fig. 1
mirrors the task of binary classification. However, standard
binary classifiers are not very useful in terms of analyzing
the quality of the questions. For instance, support vector
machines (SVMs) [5] or regularized logistic regression
(LR) [5] may be accurate in predicting the outcome variable
y, but the information they provide about the questions
is in the form of unbounded signed weights, which can
be difficult to interpret. On the other hand, in decision
trees [5] it can be challenging to evaluate the importance of
a variable as it might occur at different levels in different
parts of the tree. Ensemble methods [5] may help compute
variable importance, but they end up with losing instance-
level information. We thus want a systematic way of eval-
uating the quality of the questions that is more informative
and easier to digest, while maintaining predictability.

The second category is about modeling of human cogni-
tion. As Fig. 1 illustrates, we are interested in modeling the
generative process of questionnaire answers. It amounts to
modeling the decision-making process of humans, which
is one of the typical examples of dynamics of complex

systems. To model complex systems, deep learning has
become a more and more practical tool in recent years, and
dramatic successes in image and speech recognition [6],
[7] are well-known. Also, if a fair amount of text data is
given, sentiment analysis [8] for text documents provides
a powerful method to understand the human cognition. Al-
though we share a part of research motivation of modeling
complex dynamics of human decision making, we pursue
a completely opposite direction from those approaches that
are mostly black-box: we request that our model should
achieve interpretability at all different levels of instance,
question item, and answer choices within each question.
While some recent work addresses personal cognitive pro-
cess in decision making [9], [10], which may be relevant
to questionnaire analysis, our work differs in that we are
interested in handling questionnaire data as the primary data
source.

In psychometrics, on the other hand, quantitatively mod-
eling human cognition bias has been an important topic for
years. For a useful review, the reader may refer to Baker
and Kim [11]. In the machine learning community, Lan et
al. [12] recently extended the original IRT to incorporate
factor analysis in an unsupervised setting. As explained
in a later section, the original motivation of IRT was to
quantitatively estimate the ability of examinees and the
difficulty of individual question items in academic tests. If
we are allowed to rephrase the ability as, e.g., the medical
risk in the case of diagnosis questionnaire, this is exactly
what we want. Unlike the traditional setting of academic
tests, however, we assume additional data of the final
outcome such as occurrence of serious side effects, project
failure, or termination of employment. In the context of the
SAT test, in addition to the SAT scores themselves, we were
as if we had information that the individual examinees had
succeeded in their life later on. Using the information on
the final outcome, we should be able to evaluate the true
informativeness of the test items. To the best of the authors’
knowledge, little attention has been paid to such a problem
setting in psychometrics and data mining.

The third category is the study on ordinal data. Modeling
ordinal data has been one of the major research topics in
statistics and statistical data mining. Well-known examples
include ordinal regression [13] and learning to rank [14].
Rank-constrained nonlinear discriminant analysis [15] is
another recent instance. These assume that the response
variable is ordinal. In our case, however, we are interested
in handling ordinal predictor variables instead. From this
perspective, the most relevant work will be Koren and
Sill [16], [17], which addresses the ordinal nature of human
rating in collaborative filtering, although their problem
clearly differs from ours.

The fourth category is metric learning. Since the advent
of the seminal paper of Xing [4], metric learning has
been one of the most active areas in the data mining
communities [18], [19], [20], [21]. For a recent review,
the reader may refer to Bellet et al. [22]. By definition



of the task, metric learning (often implicitly) assumes that
the samples distribute in a metric space, just like dots
placed on a piece of paper, whose coordinates and the
distance are well-defined and ready to be calculated using
e.g. the Euclidean distance. However, it is clear that a
special attention is required when handling ordinal variables
since the ordinal scale distinguishes only relative goodness
or badness. For example, an ordinal variable may ask about
the goodness of personal relationship with your boss, and
another ordinal variable may be the level of satisfaction to
your family life. It is clear that relative comparison between
two different ordinal variables is not trivial at all [23]. In
spite of the popularity of metric learning research, only
limited attention has been paid to metric learning for ordinal
variables.

Recently, Ouyang and Gray proposed a rank-constrained
approach to kernel learning. Also, Terada and Luxburg [24]
proposed a method for order-preserving embedding. These
works are somewhat relevant to ours, but their setting
differs from ours in that they assume that the ordinal
relationship between the instances is given; in our case,
what is given is the final rating of projects, which is
by no means sufficient to define the total order. Another
relevant piece of work is ground metric learning [25], which
handles the ordinal nature of the variables by considering
histograms. However, their problem setting differs from us
since we need to make a prediction for a single project,
rather than for a histogram as a collection of projects.

Our framework for informative prediction attempts to
achieve practical interpretability and predictability by com-
bining a psychometric model with metric learning. To
bridge the two, we use a particular form of probability den-
sity of neighborhood component analysis [21]. Instead of
solving semi-definite programming as large-margin nearest
neighbors [18], we take the path of Kostinger et al. [20],
which first proposed an “optimization-free” method to
metric learning and achieved a state-of-the art performance
in the image classification task. As explained in a later
section, we introduce an information-theoretic view to their
approach.

III. PROBLEM DEFINITION AND MOTIVATION

We first formally describe our problem setting. We then
provide real world examples of where we encounter this
setting thus showcasing its wide presence.

A. Problem Statement

Imagine we have a questionnaire containing M question
items and N subjects (patients, projects, employees, etc.)
take the questionnaire to answer the questions. Our training
data set can be formally represented as

D = {(x(n), y(n)) | n = 1, 2, . . . , N}, (1)

where x(n) is an M -dimensional vector representing the
questionnaire answers of the n-th subject, and y(n) is the
class label for the n-th subject. Our goal is to build a

Fig. 2. Above is a brief snapshot of a 2014 flu shot vaccination
questionnaire.

fully interpretable model to predict y given a new x, and
to evaluate the informativeness of the individual question
items, through which a qualitative feel to the user in terms
of the predictability of the final outcome is provided.

Here we say that a model is fully interpretable if a
predictive model allows
• quantitative comparison between subjects in terms of

their importance,
• quantitative comparison between question items in

terms of their importance,
• quantitative comparison between answer choices in

terms of probability of choosing each option,
while maintaining a comparable accuracy to other less
interpretable methods.

B. Application Domains

We now instantiate the above problem definition to
different domains.

Project Risk Assessment: In our motivating example, x(n)

is an M -dimensional vector representing the questionnaire
answers, and y(n) is the health rating indicating the
troubled or healthy status. Each of the dimensions of x(n)

takes an integer value in the predefined risk levels, while
y(n) takes either of +1 or −1 (troubled or non-troubled).
It is known that {x(n)} has human bias which modulates
the true risk levels of projects in some nonlinear fashion.

Health Care: Before administering any treatment doctors
require patients to fill up (yes/no) questionnaires indicative
of their condition. An example, flu shot questionnaire from
last year is depicted in figure 2. Here the x(n) are binary
yes/no questions and y(n) indicates if the treatment was
successful or not, i.e., in our example if the person got flu
or not.

Sentiment Analysis: In document sentiment analysis,
pre-selected important keywords and/or expressions, which
may be related to positive or negative sentiment, are often
used to characterize a document. This can be thought of
as questionnaire data, where the x(n) indicate inclusion or
non-inclusion of the keywords with different levels of the
strength of sentiment. For example, if a word expressing



a negative sentiment appears, you could assign a value
−1. If an expression expressing a positive feeling appears,
you could assign a value +1. The y(n) here indicates if
the overall document has a positive or negative connotation.

Employee Evaluations: See Introduction.

IV. OUTCOME-AWARE ITEM RESPONSE MODEL

This section introduces a probabilistic framework to-
wards informative prediction to meet the requirements
explained in Subsection III-A.

A. Probabilistic Model for Answer Choice

To allow flexible modeling, we introduce a latent variable
θ to represent the internal state of the system. The latent
variable θ can be the ability of an examinee in the case
of academic tests, the true failure tendency of an IT
development project, the health state of a patient, etc.,
depending on applications. To be specific, let us take project
risk management as a running example hereafter. In this
case, the questionnaire questions are about project risks
and are assumed to be bi-level 1, where the probability
answering as at-risk should be a monotonically increasing
function of θ. For the i-th question, one of the simplest
models for such probability will be

P (θ, ai, bi, ci) ≡ ci +
1− ci

1 + e−ai(θ−bi)
, (2)

whose functional form is given in Fig. 3. In psychomet-
rics, this model is called three-parameter item response
model [11], and the S-shaped curve in the figure is often
called the item characteristic curve (ICC). Also, the param-
eters ai, bi, ci are called the discrimination, difficulty, and
guessing parameters, respectively. Literally, ai represents
the discriminablity or sensitivity to get, e.g., the at-risk
option and bi represents the difficulty of the i-th question.
The parameter ci represents the probability of picking the
at-risk option even when θ → −∞, and thus corresponds
to selection just by guess. Comparing ICCs across different
question items, we can obtain vivid information about the
individual question items.

By stacking M ICCs, we have the probability of an
answer pattern x, given θ and model parameters a, b, c,
as

p(x|θ,a, b, c) = (3)
M∏
i=1

P (θ, ai, bi, ci)
δ(xi,1)[1− P (θ, ai, bi, ci)]

δ(xi,0)

where δ represents Kronecker’s delta.

B. Prior Distribution to Latent State Variable θ

Although the original IRT assumes that the latent state
variable θ follows a single prior, in the present setting,

1For extensions for multi-level, see Sec. V-D.
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Fig. 3. Item Characteristic Curve for the example of project risk
management.

where the outcome variable y is available, it makes sense
to consider a prior distribution conditioned on y:

f(θ|y) =

{
γ√
2π

exp
(
−γ2 θ

2
)

for y = −1,
γ√
2π

exp
(
−γ2 (θ − ω)2

)
for y = +1,

(4)

where γ and ω are hyper-parameters to be learned from
the training data. This is a natural extension of the original
IRT, which assumes that all of the subjects form a single
cluster around the value of zero.

C. Maximum Likelihood for Model Parameters, a, b, c

Now the log likelihood function of the model is written
as follows:

L(a, b, c|D) =

N∑
n=1

ln
[
π(y(n))p(x(n)|a, b, c, y(n))

]
(5)

p(x(n)|a, b, c, y(n)) ≡∫ ∞
−∞

dθ(n) p(x(n)|θ(n),a, b, c) f(θ(n)|y(n)) (6)

where D symbolically represents the dependency on the
training data, and y(n) is the variable representing the n-
th project health indicator. The distribution π(y(n)) is the
prior distribution for y(n), which is assumed to be the same
as the ratio of each of the labels to N .

In Fig. 4, we summarize the probabilistic model using
the plate notation of probabilistic graphical models.

The model parameters a, b, c can be found by maximiz-
ing the likelihood:

(a∗, b∗, c∗) = arg max
a,b,c

L(a, b, c|D) (7)

subject to 0 ≤ ci ≤ 1 (i = 1, . . . ,M)

One well-known technical challenge in IRT is that the
particular model of P (θ, ai, bi, ci) does not have a con-
jugate prior, and thus the integration in (6) cannot be
performed analytically. Fortunately, however, there is a very
useful mathematical trick to perform integration. Specifi-
cally, using the orthogonality of Hermite polynomials, the



Fig. 4. Graphical model of outcome-aware IRT model.

following approximation holds [26]:∫ ∞
−∞

dθ f(θ|y) p(x|θ,a, b, c)

≈
Nh∑
i=1

wi p

(
x

∣∣∣∣√ 2

γ
θi + ωδ(y, 1), a, b, c

)
, (8)

where practically good enough approximation is obtained
by taking Nh ≈ 20. The coefficients {wi} are defined by

wi ≡
2Nh−1Nh!

N2
h [HNh−1(θi)]2

,

and the position of break points {θi} is determined by the
roots of the Hermite polynomial HNh

(θ), which are tabu-
lated [26]. The approximation (8) means that the integration
is readily performed by performing summation over about
20 terms for arbitrary values of a, b, c. Thus the use of
gradient method for solving the optimization problem (7)
should not be a problem.

The box constraints on the guessing parameter {ci} are
easily handled by the method of barrier function:

L̃(a, b, c|D) ≡L(a, b, c|D) (9)

+ µ1

M∑
i=1

ln ci + µ2

M∑
i=1

ln(1− ci)

We simply solve the unconstrained optimization problem
using the gradient method combined with line search for the
step width [27]. Typically, the solution is not very sensitive
to the choice of the coefficients µ1 and µ2. We set µ ≡
µ1 = µ2, and determine the value by cross validation along
with the hyper-parameter ω.

Algorithm 1 describes the major steps to learn the model
parameters. We call it outcome-aware IRT (oIRT). The
computational complexity is the same as the original IRT,
which is NM2 [11].

For the hyper-parameters γ, ω, one practical approach is
as follows. We first assign initial values such as (γ, ω) =
(1, 1), and perform optimization for a, b, c. Then we max-
imize the log-likelihood with respect to γ, ω given the
a∗, b∗, c∗. Otherwise, for a given a∗, b∗, c∗, the hyper-

Algorithm 1 Outcome-aware IRT algorithm.
Input: Training data D. Hyper-parameters µ, ω. Initial
values of the model parameters a0, b0, c0.
Output: The maximizer a∗, b∗, c∗.
repeat

Compute the gradient of L̃(a, b, c|D) with respect to
a, b, c.
Determine the best step size η using the line search.
Update the parameters as a ← a − η ∂L̃∂a and analo-
gously b, c.

until Convergence
Return a, b, c.

parameter can be tuned to maximize another performance
criteria such as the prediction accuracies.

V. EVALUATING THE INFORMATIVENESS OF ITEMS

As discussed in the previous section, once {a, b, c}
are determined, ICCs allow comparing different question
items and different answer choices. The next question is
how to leverage the (dis)similarity between subjects for
further interpretability. For that purpose, in this section,
we combine the oIRT with k-NN framework. To ensure
a practical accuracy, we develop a new metric learning
method and show that a learned Riemanian metric serves
as the informativeness score.

A. Making Prediction

To maintain the interpretability on the predicted result,
we use the k-NN method to predict y. The k-NN algorithm
first finds k nearest neighbors from the training data. To
capture complex dependencies in the space defined by
ordinal variables, we use the Riemannian distance

d2A(x,x′) ≡ (x− x′)>A(x− x′) (10)

for the distance measure. The Riemannian metric A is
optimally determined from D as explained later.

Then we compute the local probability distribution for y
as:

p(y|x, k) =
1

k

∑
n∈N (x)

δ(y, y(n)) (11)

where N (x) is the set of k nearest neighbor of x. Based
on If

ln
p(y = +1 | x, k)

p(y = −1 | x, k)
(12)

exceeds a certain threshold, the sample x is predicted as
y = +1. The threshold is determined typically by leave-
one-out (LOO) cross validation (CV).

Note that the use of k-NN is strongly motivated by prac-
tical applications. For example, in healthcare questionnaire
analysis, finding similar subjects or patience is a part of
doctors’ daily routines. In project risk management, lessons



and learned from historical records is also an important part
of the quality assurance process.

B. Deriving Distance Metric from oIRT

Our next step is to learn the metric tensor A from the
oIRT model and interpret it as the informativeness. To
establish the relationship between the metric and oIRT,
we start with the probability distribution of neighborhood
component analysis (NCA) [21] as

pNCA(x | x′) =
1

ZA
exp

[
−d2A(x,x′)

]
,

where ZA is the normalization constant. This distribution is
defined in the neighborhood of x′ and thus, in general, A
depends on x′, although we omitted the dependency from
the notation for simplicity. Due to the finite range, ZA can
be a complex function of A unlike the Gaussian distribution.

The metric A governs local geometric structure in the
x-space. To associate it with oIRT, which is a probabilistic
model, we consider the following equation〈

ln
p(x | φ∗, y = +1)

p(x | φ∗, y = −1)

〉
= 〈− ln pNCA(x | x′)〉 , (13)

where φ∗ is a shorthand notation of (a∗, b∗, c∗), and 〈·〉
represents the average with the empirical distribution over
x. The left hand side represents the Kullback-Leibler (KL)
divergence between the distributions of different labels of
the outcome variable, which measures the distance in the
information-theoretical sense [28]. The right hand side is
the entropy. The above equation means that the distance
metric A is determined so that A compensates the KL
divergence with the information pNCA holds. The above
equation can be called the entropy equation.

By inserting the definition of pNCA, we have

lnZA + Tr(AΣx′) =

〈
ln
p(x | φ∗, y = +1)

p(x | φ∗, y = −1)

〉
, (14)

where Σx′ is the local covariance matrix defined by

Σx′ ≡ 1

|N (x′)|
∑

n∈N (x′)

(x(n) − x′)(x(n) − x′)>.

The set of nearest neighbors of x′ is denoted by N (x′),
and its size is denoted by | · |.

Although it is not straightforward to solve Eq. (14),
we can derive an analytic approximated solution. First, to
compute the right hand side, we exploit the conditional
independence between different items in Eq. (3). Specifi-
cally, if we approximate the prior Eq. (4) as Dirac’s delta
functions, i.e., γ →∞, we have〈

ln
p(x | φ∗, y = +1)

p(x | φ∗, y = −1)

〉
≈
〈

ln
p(x | θ+1,a

∗, b∗, c∗)

p(x | θ−1,a∗, b∗, c∗)
,

〉
(15)

where θ+1 = ω and θ−1 = 0. We assume that the hyper-
parameter ω is optimized in the way described in Sec. IV-C.

Considering the fact that, from the form of Eq. (3), the

right hand side is represented as the summation over M
terms, we put an additional constraint that A is diagonal.
We readily see that the left hand side of Eq. (14) can be
written

M∑
i=1

{
lnZAi,i

+Ai,i[Σx′ ]i,i
}
, (16)

where

lnZAi,i
≡ ln

∫
x∈N (x′)

dxi exp
[
−Ai,i(xi − x′i)2

]
.

This term changes much more slowly with respect to
Ai,i than the second term of Eq. (16). By dropping this
unimportant term and putting Eqs. (13), (15), and (16)
together, we have

Ai,j =
δi,j

[Σx′ ]i,i

〈
ln
p(xi|θ+1, a

∗
i , b
∗
i , c
∗
i )

p(xi|θ−1, a∗i , b∗i , c∗i )
,

〉
(17)

where δi,j Kronecker delta, and we defined

p(xi|θ, a∗i , b∗i , c∗i ) ≡ P (θ, a∗i , b
∗
i , c
∗
i )
δ(xi,1)× (18)

[1− P (θ, a∗i , b
∗
i , c
∗
i )]

δ(xi,0) .

To get the global metric, it makes sense to further ap-
proximate Eq. (17) by replacing the local variance [Σx′ ]i,i
with the global variance (i.e. based on all of the samples)
of the i-th variable, σ2

i , resulting in

Ai,j =
δi,j
σ2
i

〈
ln
p(xi|θ+1, a

∗
i , b
∗
i , c
∗
i )

p(xi|θ−1, a∗i , b∗i , c∗i )

〉
. (19)

This is the equation that bridges oIRT and the Riemanian
metric.

C. Informativeness Scores

We have derived the distance metric in Eq. (19), which
bridges the oIRT model with the k-NN prediction. The
interpretation of this equation is Eq. (19) is clear. Since A
corresponds to the inverse of the covariance matrix in the
Gaussian distribution, it is natural that Ai,i is proportional
to σ−2i . The factor 〈·〉 is the log-likelihood ratio between
the two distributions corresponding to the two different
classes. The role of the likelihood ratio in metric learning
was first suggested by Kostinger et al. [20]. Also, as our
approach, some authors explicitly use the KL divergence to
derive information-theoretic metric [29], [30]. The expres-
sion Eq. (19) is new in the sense that it uses the particular
form of oIRT model.

To get further insights from the result Eq. (19), we
prove the following proposition that hold generally for a
distribution of xi conditioned on yi.

Proposition 1: Consider a decision rule of classification
for an instance x

y = +1, if a(x) > 0

y = −1, if a(x) ≤ 0,



where
a(x) = ln

p(x | y = +1)

p(x | y = −1)
. (20)

We call the class y = +1 the minor class, and y = −1 the
major class. This criterion (20) is optimal in the sense that
it maximizes the minor sample accuracy while keeping the
major sample accuracy constant.

Proof: To prove this proposition, by the definition of
the major and minor sample accuracy, the optimal decision
criterion a∗ can be formally written as

a∗ = arg max
a

∫
dx I [a(x) ≥ τα] p(x|y = 1),

where α is a given major sample accuracy and I[·] is the
indicator function. The constant τα satisfies∫

dx I [a(x) ≥ τ ] p(x|y = 0) = 1− α

Using a Lagrange multiplier λ, this problem can be
rephrased as the minimization of Ψ[a|λ] with respect to
a:

Ψ[a|λ] =

∫
dx I [a(x) ≥ τα] {p(x|y = 1)− λp(x|y = 0)}

To maximize the integral, the indicator function I[·] must
be 1 wherever {·} > 0. The condition is readily given as

a(x) =
p(x|y = 1)

p(x|y = 0)
, λ = τα (21)

If we re-define a new criterion by transforming it using the
logarithm function as a(x), this coincides with Eq. (20).

Proposition 1 show that Eq. (19) is the product between
the scaling factor (σ−2i ) and the optimal classification
criterion. Although Eq. (19) is an approximated solution,
this means that by selecting the metric by Eq. (19), we
should be able to achieve the maximum benefit in terms of
classification accuracy (Note that Proposition also ensures
the optimality of the criteria Eq. (12) via Bayes’ theorem).
Thus it is reasonable to take Ai,i as the definition of the
informativeness of the i-th question item.

One issue in Eq. (19) as the informativeness is that
it does not have a clear upper bound. Considering the
fact that the KL distance measures the distance between
distributions, we could use a different divergence measure
such as Kolmogorov-Smirnov (KS) goodness-of-fit statistic:

Ai,i = |p(xi = 1|y = +1,D)− p(xi = 1|y = −1,D)|
(22)

after standardizing the data to have unit variance. A major
advantage of this choice is that it has a clear interpretation
of the difference between probability values, and thus, it is
bounded within [0,1].

The major steps in our questionnaire-based prediction
approach are given in algorithm 2.

Algorithm 2 Questionnaire-based informative prediction.
Input: Training data D. Hyper-parameters µ, ω. Initial
values of the model parameters a0, b0, c0. The number
of NNs, k.
Output: Informativeness scores {s1, ..., sM} and the
predicted label y for a new entity x.
Determine the solution of oIRT as a∗, b∗, c∗ using algo-
rithm 1.
Learn the distance metric A based on Eq. (19) or (22)
and return si = Ai,i.
For a new x, find k NNs in D based on the A.
Compute p(y|x, k) for both y = +1 and y = −1 using
Eq. (11).
Use Eq. (12) to decide a predicted label y.
Return y.

TABLE I
SUMMARY OF SYNTHETIC DATA.

x (y = +1) (y = −1)
(0,0) 8 9
(0,1) 6 16
(1,0) 20 20
(1,1) 16 16

D. Discussion

So far we have assumed that question items are bi-
level. To extend the framework to multi-level questions, one
approach is to leverage so-called 1-of-K notation for the
binary {xi}. This amounts to decomposing each K-level
question into K bi-level questions. This can be viewed as
an approximation that disregards the order of the levels. To
take account of the level order, one may use multi-graded
IRT models [11], which is left to future work.

VI. EXPERIMENT

This section presents results of experimental evaluation
of our metric learning framework based on oIRT. We first
use a synthetic data set for illustration. Then we show
results based on two real project review questionnaire data.

A. Illustration using synthetic data

To explain why informativeness matters, we randomly
generated a questionnaire data of M = 2, N = 100 as
summarized in Table I, where the numbers of generated
samples are described. In this 2-dimensional setting, we
have only four choices in x. For comparison with the oIRT,
we trained the L1-regularized logistic regression (LR) [31],
whose central model is given by

ln
p(y = +1 | x)

p(y = −1 | x)
= α>x+ β.

The parameters α ≡ (α1, α2)> and β are learned via
maximum likelihood under an L1 constraint on α. The
regularization constant was optimized using LOO CV.

Learned coefficients of LR are shown in Fig. 5. As shown
in the figure, α2 takes a relatively large negative value,
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Fig. 5. Learned coefficients of regularized logistic regression for the
synthetic data.
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Fig. 6. Item characteristic curves and informativeness score for the
synthetic data.

and almost the only conclusion we can draw would be
something like “you cannot ignore either one”.

Figure 6 shows results of oIRT, where we fixed c1 =
c2 = 0 for simplicity. The informativeness score calculated
by Eq.(19) clearly shows that x1 is more important than
x2. This is confirmed by the ICC, where x2 is less sensitive
and even negatively depends on θ. If this is a diagnostic
inquiry and a doctor is trying to infer the level of medical
risk, the doctor may decide to use only the inquiry x1
based on the ICCs to distinguish between low risk (small
θ) and high risk (large θ) subjects. We see that decision-
making becomes much easier with the aid of ICCs. Note
that putting a stronger regularizer on LR and thus getting a
sparser solution does not improve the situation because the
LR coefficients still look like black-box metric that may
take negative values.

B. Project Risk Assessment: Learning oIRT Model

Data set: We applied our method to real IT project as-
sessment data called CRA (Contractual Risk Assessment)
and PBA (Project Baseline Assessment). For both data sets,
question items takes Y(at-risk) or N(no-risk), and each of
filled questionnaires are associated with the label of project
success (y = −1) or non-success (y = +1). For the data
size, (N,M) = (262, 22) and (1056,56) for CRA and PBA,
respectively. The latter is perhaps the biggest project risk
assessment data studied so far. For details of IT project risk

management process and how the data is collected, see [32].
Informativeness: We calculated {a∗, b∗, c∗, } based on the
CRA and PBA data. For the hyper-parameters ω and µ, we
used the values of 1.85 and 1.0× 10−6 for CRA, and 3.03
and 0.011 for PBA, respectively. These were determined
by LOO CV to maximize the F-value defined later. For the
initial values, we used ai = 1.0, bi = 0.5, ci = 10−5. To
handle the imbalanced nature between troubled and healthy
samples, we did bootstrap resampling for the non-success
instances to obtain the same sample size in either class.

Figure 7 shows the oIRT parameters and the informa-
tiveness for CRA. We see that the 7th and 9th questions
have major informativeness. Interestingly, these ones have
negative discrimination parameters. This is due to the nature
of risk management process. Since this risk assessment
is done after completing all of risk mitigation actions,
significant indication of risks that is readily visible to
auditors cannot exist. Instead, some of them tend to be‘
‘unnaturally good”, ending up with the negative {ai}’s.
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Fig. 7. IRT parameters learned for the CRA data.

ICCs: Figure 8 shows some examples ICCs. We drew
P (θ, ai, bi, ci) with the solid lines as well as [1 −
P (θ, ai, bi, ci)] with the dashed lines as before. We clearly
see that the 10th question is hardly informative, being
consistent to the negligible informativeness score in Fig. 7.
Interestingly, this question is about future project plan after
contract signing, which will be conducted by a different
team from the one being reviewed. Thus negligible infor-
mativeness makes a lot of sense.

C. Project Risk Assessment: Predicting Project Failure

We compared prediction performance of our approach
with alternatives. For performance criteria, we used
• r1: Major sample prediction accuracy (accuracy in the

healthy projects),
• r2: Minor sample prediction accuracy (accuracy in the

troubled projects),
• f = 2r1r2/(r1 + r2): F-value. The harmonic mean

between r1 and r2.
To compute these metrics, we used LOO CV. For example,
to check hit or miss for the n-th sample in the training
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Fig. 8. Examples of ICCs for the CRA data.

data set D, we held out the sample from D, and learned the
model from the remaining N−1 samples to make prediction
for that sample. The number of NNs as well as the other
hyper-parameters µ, ω were determined so as to maximize
the F-value evaluated by LOO CV.

In addition to KL and KS-based metrics of Eqs. (19)
and (22), we tested large-margin nearest neighbor
(LMNN) [18], which is the standard baseline method in
metric learning. In LMNN, the full Riemannian metric A
is determined by minimizing the objective function

E(A) =
1− µ
N

N∑
n=1

∑
j∈Nn

d2A(n, j)

+
µ

N

N∑
n=1

∑
j∈Nn

∑
l: y(l) 6=y(n)

[
1 + d2A(n, j)− d2A(n, l)

]
+
,

where d2A(n, j) is a shorthand notation of d2A(x(n),x(j)),
Nn represents the set of the nearest-neighbors of x(n)

chosen from the same label samples, i.e., y(j) = y(n), and
[h]+ = max{0, h} for ∀h ∈ R. LMNN can be thought
of as an improved version of NCA and is believed to be
one of the best off-the-shelf metric learning methods [22],
thanks mainly to the hinge loss function and its convex
formulation [18].

We also tested L1 regularized logistic regression
(LR) [31] as a representative linear classifier, as well as
the k-NN classifier with uniform weights (i.e. Aii = 1).

Upon training the model, we did bootstrap resampling
for the troubled projects to obtain the same sample size
in either class. We optimized the classification threshold
for Eq. (12) to achieve the best LOO CV F-value. The L1

regularization constants of LR and the number of NN for
k-NN of uniform weight was also determined using LOO
CV.

Table II shows the comparison of the classification ac-
curacies at the optimized parameter sets. We see that oIRT
achieved better F-values than alternative approaches. The
accuracy of KS is almost the same as KL. We see that
the KS-based informativeness can be a reasonable choice
in practice due to the good accuracy and its positive and

TABLE II
BEST CLASSIFICATION ACCURACIES.

CRA PBA
r1 r2 F r1 r2 F

oIRT (KL) 0.814 0.733 0.771 0.612 0.701 0.653
oIRT (KS) 0.781 0.733 0.757 0.651 0.650 0.650
LMNN 0.757 0.733 0.745 0.550 0.693 0.614
LR 0.591 0.600 0.596 0.620 0.628 0.623
k-NN 0.648 0.533 0.585 0.585 0.647 0.566
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Fig. 9. Comparison of F-values (BN and NN are not visible for PBA).

bounded natures.

It is very interesting to see that the simpler oIRT
method using only the binary input and diagonal metric
is competitive over e.g. LMNN, which optimizes the full
Riemannian metric. This clearly suggests the importance of
the nonlinear transformation by the logistic curve of IRT,
and the risk of naively applying metric learning in non-
metric spaces.

In Fig. 9, in addition to the alternatives shown in Table II,
we further added commonly used classification techniques
such as support vector machines (SVM), Neural Networks
(NN), decision trees (C5.0) and Bayesian network (BN).
All parameters for the models were chosen based on 10
fold cross validation. For SVM, we used RBF kernel. For
BN, the structure was learned using tree augmented naive
Bayes [33]. For NN, we used three hidden layers. All other
parameters, and settings were fixed to the default ones of
SPSS Modeler 15.0 including the numbers of nodes in
NN. Again, for the both data set, oIRT achieves the best
performance. LMNN, LR, and SVM were comparable and
slightly worse than oIRT. For CRA, C5.0 achieved a good
accuracy, but very bad for PBA. The accuracies for BN and
NN were too low for PBA and the histograms are not visible
in the graph. All these results clearly demonstrates that
explicitly taking account of human cognition bias is critical
in questionnaire data analysis. Our approach successfully
captured the latent failure tendency with the aid of the
psychoanalytical approach.



VII. CONCLUDING REMARKS

We have addressed the task of informative prediction
for questionnaire data. Our primary goal was to establish
a method to quantitatively evaluate the informativeness
of question items based on the predictability of the final
outcome of individual samples.

To tackle the task, we introduced a new framework of
outcome-aware item response theory (oIRT) by extending
an existing theory in psychometrics. We have proposed two
new ideas. One is to extend the prior distribution for the
latent variable to include multiple states. The other is to
define a Riemannian metric based on oIRT to improve the
k-NN prediction. In spite of the simplicity of the algorithm,
experiments using real questionnaire data showed that our
method outperforms alternatives such as LMNN in terms of
project failure prediction, while producing practical infor-
mation on how individual question items work. Although
the ordinal nature has not been seriously considered in
many data mining tasks so far, this work demonstrates that
adequately treating the ordinal nature is practically quite
important.
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