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Abstract—We propose a new approach to anomaly detection
from multivariate noisy sensor data. We address two major
challenges: To provide variable-wise diagnostic information
and to automatically handle multiple operational modes. Our
task is a practical extension of traditional outlier detection,
which is to compute a single scalar for each sample. To
consistently define the variable-wise anomaly score, we leverage
a predictive conditional distribution. We then introduce a
mixture of Gaussian Markov random field and its Bayesian
inference, resulting in a sparse mixture of sparse graphical
models. Our anomaly detection method is capable of auto-
matically handling multiple operational modes while removing
unwanted nuisance variables. We demonstrate the utility of our
approach using real equipment data from the oil industry.

1. Introduction
Anomaly detection from sensor data is one of the critical

applications of data mining. In the standard setting, we are
given a data set under a normal operating condition, and
we build a statistical model as a compact representation of
the normal state. In operation, when a new observation is
provided, we evaluate the discrepancy from what is expected
by the normal model. This paper focuses on a different
anomaly detection scenario where the dataset has multiple
normal operating conditions. Moreover, instead of reporting
a single anomaly score, the goal is to compute anomaly
score for each variable separately.

In spite of the long history of research in statistics,
as represented by the classical Hotelling’s T 2 theory [1],
anomaly detection in modern condition-based monitoring
applications is still challenging due to various reasons. Ma-
jor requirements suggested can be summarized as follows.
First, an anomaly detection algorithm should be capable
of handling nuisance variables, which behave like random
noise even under normal conditions. We wish to automat-
ically down-weight such unimportant variables as a result
of model training. Second, it should be capable of handling
dynamic state changes over time. The assumption of sin-
gle Gaussian distribution in the T 2 theory is sometimes
not appropriate. We wish to capture multiple operational
modes due to dynamic changes in operational conditions of
the system. Third, it should be capable of giving action-
able or diagnostic information. For that direction, providing
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Figure 1. High-level picture of variable-wise anomaly scoring using Gaus-
sian Markov random fields (GMRF). Intuitively, the anomaly score for
the i-th variable measures the discrepancy from what is expected by its
neighbors ({xl1 , xl2 , xl3} in this case) in the GMRF sense.

variable-wise anomaly scores will be a promising approach,
instead of giving a single scalar as is the case in most of
the traditional outlier detection methods.

To overcome the limitations of the traditional approach,
much work has been done in the data mining community.
Major approaches include subspace-based methods [2], [3],
[4], [5] distance-based methods [6], [7], and mixture mod-
els [8], [9], [10]. However, the goal of these approaches is
basically to provide a single scalar representing the degree
of outlierness of a sample, and it is generally not straight-
forward to produce variable-wise information. Although the
tasks of anomaly analysis [11] and anomaly localization [12]
have been proposed recently, they are not readily applicable
to our problem of multivariate but variable-wise anomaly
scoring.

This paper presents a statistical machine learning ap-
proach to anomaly detection that can 1) automatically re-
move unwanted effects of nuisance variables, 2) handle
multiple states of the system, and 3) compute variable-
wise anomaly scores. Specifically, we focus on Gaussian
Markov Random Fields (GMRF) that provide us a natural
way to calculate variable-wise anomaly scores (see Fig. 1).
To handle multiple operational modes, we then introduce a
mixture of GMRF and propose a novel method to define
the conditional distribution from the mixture consistently.
Also, to handle nuisance variable, we propose an approach
to learning a sparse mixture of the sparse graphical Gaussian
model (GGM) [13]. We leverage not only `1 regularization
to achieve sparsity in the variable dependency, but also the
automated relevance determination (ARD) mechanism [14]
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to achieve sparsity over mixture components. To the best of
our knowledge, this is the first work for anomaly detection
that extends GMRFs and sparse GGMs to mixtures. Using
real sensor data of an oil production compressor, we show
that our model is capable of capturing multiple operational
conditions and significantly reduce false alerts that have
been thought of as unavoidable.

Regarding related work, in the area of image processing,
GMRFs have been extensively studied for the purpose of
denoising [15], [16]. However, most of them are based
on single component GMRFs, not on mixtures. To the
best of our knowledge, practical procedures to derive the
conditional distribution from GMRF mixtures are not known
at least in the context of anomaly detection.

2. Problem setting

We are given a training data set D as

D = {x(t) ∈ RM | t = 1, . . . , N}, (1)

where N is the number of observations and M is the
dimensionality of the samples, or the number of sensors.
We represent the dimensions by subscripts and the sample
indexes by superscripts, e.g. x(n)i . The training data D is
assumed to be collected under normal conditions of the
system. One of the major assumptions is that the data gen-
erating mechanism may include multiple operational modes
and would not be captured by a unimodal model.

Our goal is to compute the variable-wise anomaly score
for a new sample, x. For the i-th variable, it can be generally
defined as

ai(x) = − ln p(xi | x−i,D), (2)

where p(xi|x−i,D) is the conditional predictive distribution
for the i-th variable, given the rest of the variables x−i ≡
(x1, . . . , xi−1, xi+1, . . . , xM )>. Intuitively, ai computes the
degree of discrepancy between an observed xi and what is
expected by the rest variables x−i (see Fig. 1).

This definition is a natural extension of Hotelling’s T 2,
which computes the outlier score with − lnN (x | µ,Σ) up
to unimportant constant terms and a prefactor. Here N (· |
µ,Σ) denotes the Gaussian distribution with the mean µ and
the covariance matrix Σ. Notice that aT 2 is just a single
scalar even when x is a multivariate sample. Our task is
more general than traditional outlier detection.

3. Gaussian Markov random field mixtures

This section describes how to derive the conditional pre-
dictive distribution p(xi|x−i,D) from a mixture of Gaussian
Markov random field, given the generative process of x.

3.1. Gaussian Markov random field

For the conditional predictive distribution, we assume
the following mixture model:

p(xi|x−i,D) =

K∑
k=1

gik(x) N
(
xi | uki , wki

)
, (3)

where gik(x) is a function called gating function that is
learned from the data (see Eq. (21) and its footnote). Each
k specifies a mixture component. Since we are interested
in modeling the conditional distribution, unlike standard
mixture models, the mixture weights depend on the in-
dex i. We also assume that the data generating process
of x is described by a K-component Gaussian mixture
p(x|D) =

∑K
k=1 πkN (x|mk, (Ak)−1). The means and the

precision matrices {mk,Ak} as well as the optimal number
of K are also learned from the data (see Sec. 4), but let us
assume that they are given for now.

For the mean uki and the variance wki in Eq. (3), we use
a particular form of

uki = mk
i −

1

Aki,i

M∑
l 6=i

Aki,l(xl −mk
l ), (4)

wki =
1

Aki,i
. (5)

Gaussian distributions having these expressions are gen-
erally called the Gaussian Markov random field (GMRF).
The term “Markov” highlights the property that only direct
neighbors as defined by nonzero entries of Ak can affect
the distribution of xi (see Fig. 1). For the derivation of
the functional form, see Theorem 2.3 in [17]. Note that the
problem is trivial when K = 1. In this case, the anomaly
score (2) is readily given by

ai(x)K=1 =
1

2Ai,i
[A(x−m)]i

2 − 1

2
ln
Ai,i
2π

, (6)

where we dropped the superscript k and [·]i denotes the i-th
entry of a vector inside the square bracket. This paper is all
about how to handle difficulties when K > 1.

3.2. Variational inference for GMRF mixture

Now let us consider how to find the gating function in
Eq. (3) under the assumption that {(mk,Ak)} are given.
With a cluster assignment indicator for the i-th variable, hi,
we consider the following model:

p(xi | x−i,hi) =

K∏
k=1

N
(
xi | uki , wki

)hik , (7)

p(hi | θi) =

K∏
k=1

(
θik
)hik , (8)

p(θi | αi) =
Γ(αi1) · · ·Γ(αiK)

Γ(ᾱi)

K∏
k=1

(θik)α
i
k−1 (9)

2
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where
∑K

k=1 θ
i
k = 1, Γ(·) is the gamma function, and

ᾱ ≡
∑K

k=1 α
i
k with αik being a hyper parameter treated as

a given constant. Alternatively, p(θi|α) may be denoted by
Dir(θi|α), the Dirichlet distribution. As usual, hik ∈ {0, 1}
and

∑K
k=1 h

i
k = 1. Based on this model, the complete log

likelihood is written as

lnP (D,Hi | θi) =

N∑
n=1

K∑
k=1

h
i(n)
k ln

{
θikN (x

(n)
i |u

k
i , w

k
i )
}

− ln Γ(ᾱ) +

K∑
k=1

{
ln Γ(αk) + (αk − 1) ln θik

}
, (10)

where hi(n) is the indicator vector for the n-th sample and
Hi is a collective notations for {hi(n) | n = 1, . . . , N}.

To infer the model, we use the variational Bayes (VB)
method [14]. We assume the functional form of the posterior
distributions as

q(Hi) =

N∏
n=1

K∏
k=1

{
g
i(n)
k

}hi(n)
k

, (11)

q(θi) = Dir(θi | ai). (12)

VB and point-estimation equations are given as

ln q(Hi) = c.+
〈
lnP (D,Hi | θi)

〉
θi

(13)

ln q(θi) = c.+
〈
lnP (D,Hi | θi)

〉
Hi
, (14)

where c. symbolically represents a constant. 〈·〉Hi and 〈·〉θi
represent the expectation by q(Hi) and q(θi), respectively.
Using the well-known result

〈
ln θik

〉
θi

= ψ(aik) − ψ(āi),

where ψ(·) is the di-gamma function and āi ≡
∑K

k=1 a
i
k,

we can easily derive VB iterative equations as

aik ← αk +N i
k, (15)

θ̄ik ← exp
{
ψ(aik)− ψ(āi)

}
, (16)

g
i(n)
k ← θ̄ikN (x

(n)
i |uki , wki )∑K

l=1 θ̄
i
lN (x

(n)
i |uli, wli)

for all n, (17)

N i
k ←

N∑
n=1

g
i(n)
k , (18)

These substitutions are performed until convergence. Re-
peating over i = 1, . . . ,M and k = 1, . . . ,K, we obtain a
M ×K matrix Θ = [θik].

3.3. Predictive distribution for GMRF mixture

The predictive distribution in Eq. (2) is formally defined
as

p(xi|x−i,D) =

∫
dhi q(hi) p(xi | x−i,hi). (19)

To find q(hi), which is the posterior distribution for the
indicator variable associated with a new sample x, consider

… 

(removed) Surviving patterns with 
adjusted parameters 

Figure 2. Overview of the sGMRFmix algorithm. Starting from K initial
patterns that may be redundant, a sparse mixture of sparse graphical models
is learned, from which p(xi|x−i,D) is derived.

an augmented data set D∪x. In this case, the log complete
likelihood is given by

lnP (D,x,Hi,hi | θi) = lnP (D,Hi, | θi)+
K∑
k=1

hik ln
{
θikN (xi|uki , wki )

}
. (20)

Corresponding to this, let the posterior be

q(Hi,hi) = q(Hi)×
K∏
k=1

(gik)h
i
k ,

from which we get VB iterative equations similar to
Eqs. (15)-(18). Although the resulting {θik} differs from
the one obtained using only D, Eq. (18) suggests that the
difference is just on the order of 1/N , which is negligible
when N � 1. Therefore, we conclude that the posterior
distribution of a new sample x is given by

gik(x) ≈ θ̄ikN (xi|uki , wki )∑K
l=1 θ̄lN (xi|uli, wli)

. (21)

where θik is the solution of Eqs. (17)-(18) 1.
Finally, using Eqs. (3) and (21), the variable-wise

anomaly score defined in Eq. (2) is given by

ai(x) = − ln

K∑
k=1

gik(x) N
(
xi | uki , wki

)
. (22)

The r.h.s. includes the parameters {(mk,Ak)} that represent
the generative process of x. Next section discuss how to get
them.

4. Sparse mixture of sparse graphical models

To capture multiple operational modes of the system,
we assume a Gaussian mixture model for the generative
process of x. To ensure the capability of removing noisy
nuisance variables, we further request that the model should
be sparse. This section explains to learn sparse mixture of
sparse graphical Gaussian models (see Fig. 2).

1. By construction, gik(x) has to be treated as constant when considering
the normalization condition of Eq. (3).

3
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4.1. Observation model and priors

We employ a Bayesian Gaussian mixture model having
K mixture components. First, we define the observation
model by

p(x | z,µ,Λ) ≡
K∏
k=1

N (x | µk, (Λk)−1)zk , (23)

where µ and Λ are collective notations representing {µk}
and {Λk}, respectively. Also, z is the indicator variable of
cluster assignment. As before, zk ∈ {0, 1} for all k, and∑K

k=1 zk = 1.
We place the Gauss-Laplace prior on (µk,Λk) and the

categorical distribution on z:

p(µk,Λk) ∝ e−
ρ
2 ‖Λ

k‖1N (µk|m0, (λ0Λk)−1), (24)

p(z|π) =

K∏
k=1

πzkk s.t.
K∑
k=1

πk = 1, πk ≥ 0, (25)

where ‖Λ‖1 =
∑

i,j |Λi,j |. The parameter π is determined
as a part of the model while ρ, λ0,m0 are given constants.
From these equations, we can write down the complete
likelihood as

P (D,Z,Λ |µ,π) ≡
K∏
k=1

p(µk,Λk)

×
N∏
n=1

p(z(n)|π)p(x(n) | z(n),µ,Λ), (26)

where Z is a collective notation for {z(n)k }.

4.2. Variational Bayes inference

Since the Laplace distribution is not the conjugate prior
of Gaussian, exact inference is not possible. We again use
the VB method based on the categorical distribution for
the posterior of Z and the Gauss-delta distribution for the
posterior of (µ,Λ):

q(Z) =

N∏
n=1

K∏
k=1

(r
(n)
k )z

(n)
k , (27)

q(µ,Λ) =

K∏
k=1

N (µk|mk, (λkΛk)−1)δ(Λk − Λ̄k), (28)

where δ(·) is Dirac’s delta function. We combine VB anal-
ysis for {Z,µ,Λ} with point estimation for the mixture
weight π. As shown in [18], this leads to a sparse solution
(i.e. πk = 0 in many k’s) through the ARD mechanism.

By expanding 〈lnP (D,Z,Λ | π,µ)〉Λ,µ, it is straightfor-
ward to obtain the VB iterative equation for {r(n)k }:

ln r
(n)
k ← ln

{
πk N (x(n) |mk, (Λ̄k)−1)

}
− M

2λk
(29)

r
(n)
k ←

r
(n)
k∑k

l=1 r
(n)
l

. (30)

Similarly, for the other variables including point-estimated
π, we have the VB solution as

Nk ←
N∑
n=1

r
(n)
k , πk ←

Nk

N
, (31)

x̄k ← 1

Nk

N∑
n=1

r
(n)
k x(n), (32)

Σk ← 1

Nk

N∑
n=1

r
(n)
k (x(n) − x̄k)(x(n) − x̄k)>, (33)

λk ← λ0 +Nk, mk ← 1

λk
(λ0m0 +Nkx̄k), (34)

Qk ← Σk +
λ0
λk

(x̄k −m0)(x̄k −m0)>, (35)

Λ̄k ← arg max
Λk

{
ln |Λk| − Tr(ΛkQk)− ρ

Nk
‖Λk‖1

}
. (36)

These VB equations are computed for k = 1, . . . ,K and re-
peated until convergence. Notice that the VB equation for Λ̄k

preserves the original `1-regularized GGM formulation [13].
We see that the fewer samples a cluster have, the more the
`1 regularization is applied due to the ρ/Nk term.

Finally, the predictive distribution is given by

p(x|D) =

K∑
k=1

πk

∫
dµk
∫

dΛk N (x|µk, (Λk)−1)q(µk,Λk),

=

K∑
k=1

πkN (x |mk, (Ak)−1), (37)

where Ak ≡ λk

1+λk
Λ̄k. This is the one we assumed in Sec. 3.

5. Algorithm summary

Algorithm 1 gives a high-level summary of sGMRFmix
(sparse GMRF mixture) algorithm. The first stage (Sec. 4),
sparseGaussMix, starts with a large enough number of
K and identifies major dependency patterns from the data. In
the context of industrial condition-based monitoring, initial-
ization of {mk, Λ̄k} can be naturally done by disjointly par-
titioning the data along the time axis as D = D1∪ . . .∪DK
and apply e.g. the graphical lasso algorithm [13] on each, as
illustrated in Fig. 2. After the initialization, the VB iteration
can start with πk = 1

K and λk = πkN , as well as with
λ0 = 1,m0 = 0 if no prior information is available.

The second stage (Sec. 3), GMRFmix, determines the
gating function gik(x) for an arbitrary input sample x
through the resulting θ̄ik’s to define the anomaly score in
Eq. (22). For α, it is reasonable to choose αk = 1 for k’s
with πk 6= 0 and zero otherwise. Regarding ρ, an optimal
value should be determined together with the threshold on
the anomaly score, so the performance of anomaly detection
is maximized. One reasonable performance metric is the F -
measure between the accuracies separately computed for the
normal and anomalous samples.

4
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Algorithm 1 The sGMRFmix algorithm
Input: D, ρ,α.
Output: {mk, λk, Λ̄k}, {θ̄ik}.
{πk,mk,Ak} = sparseGaussMix(D,m0, λ0, ρ).
{θ̄ik} = GMRFmix({πk,µk,Ak}, α).

6. Experimental results

This section presents experimental results of the pro-
posed algorithm. Methods compared are as follows.
single [11] is essentially the same as the K = 1 version
of the proposed algorithm with λ0 = 0. The same ρ value
is used as GMRFmix.
sPCA [19] computes the i-th anomaly score via

ai(x)sPCA ≡ |xi − e>i UU>x|,

where ei is the i-th basis vector and U ≡ [u1, . . . ,uK′ ]
is the matrix of K ′ principal components computed by
the sparse principal component analysis (sPCA) [20]. The
same values of ρ and K ′ as GMRFmix are used for the `1
regularization coefficient and U, respectively.
autoencoder trains a sparse autoencoder [21] with one
hidden layer based on the normalized input as xi ←
xi−mini

maxi−mini
, where maxi and mini are the maximum and

minimum values of the i-th variable over the training data,
respectively. The anomaly score is simply defined as

ai(x)autoendcoder ≡ |xi − x̂i|, (38)

where x̂i is the output of the i-th output neuron. The input,
hidden and output layers have the same number of neurons.
The value of `1 and `2 regularization parameters (β and λ
in [21]) are determined by cross-validation on the averaged
reconstruction error on the training data.

6.1. Synthetic data: illustration

We synthetically generated a data set by adding t-
distributed random noise to Gaussian distributed samples
whose correlation structures are shown in Fig. 3. By shifting
the mean, we created a sequence of A-B-A-B for the training
data and A-B-Anomaly for the testing data. Both data have
1 000 samples, as shown in Fig. 4, where the Anomaly patten
is highlighted with the dashed line. To initialize the model,
we used a K = 7 disjoint partitioning (see Sec. 5 for the
detail). Figure 5 shows the learned model. We see that the
distinctive patterns A and B are automatically discovered
without specifying the ground truth cluster number, thanks
to the ARD mechanism.

With the trained model, we computed the anomaly score
on the testing data and evaluated the AUC (area under
the curve) based on the classification accuracies separately
computed for negative and positive samples. The accuracies
are defined on the negative and positive labels given to
the first and second half of the testing data, respectively.
Table 1 clearly shows that the proposed model outperforms
the alternative.
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Figure 3. Synthetic Pattern A, Pattern B, and Anomaly.
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Figure 4. Synthetic training and testing data.

6.2. Real application: offshore oil production

We applied the proposed method to the task of early
anomaly detection of a compressor of offshore oil produc-
tion. Figure 6 shows simulated examples out of M = 53
sensor signals (acceleration, pressure, flow rate, etc.) over
about one month. Apparently, the system irregularly makes
transitions to different trends under heavy spike-like noise.
See [22] for more details about challenges in the condition-
based monitoring in the oil industry.

To train the model, we used reference data under nor-
mal operating conditions over about one year selected by
domain experts. For sGMRFmix, we partitioned the data
into K = 21 disjoint subsets for initialization. We also
trained the alternative methods. Cross-validated parameters
for the sparse autoencoder are λ = 10−8 and β = 10−8

in the notation of [21]. Figure 7 shows {πk} computed
by sparseGaussMix with ρ = 0.1. Thanks to the ARD
mechanism, the algorithm automatically discovered 4 major
patterns (K ′ = 13 in total).

Using the trained model, we computed the variable-wise
anomaly score on testing data including a few real failures
that were unable to be detected by an existing monitoring
system. Figure 8 presents the distribution of a14 over the
testing data. This is a flow rate variable and was confirmed
to be involved in the physical failure process related to pump
surge. In Fig. 8 (a), we see that the anomaly score of the pre-
failure window is significantly higher than the other period
while the separation is not very clear in (b)-(c).

TABLE 1. AUC VALUES FOR THE SYNTHETIC DATA.

sGMRFmix single sPCA autoencoder
0.72 0.52 0.63 0.57

5
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Figure 5. Converged mixture weights {πk} and the corresponding precision
matrices for the synthetic data.

Figure 6. Compressor data under normal operating condition.

7. Conclusion

We have proposed a new outlier detection method, the
sparse GMRF mixture, that is capable of handling multiple
operational modes in the normal condition and variable-
wise anomaly scores. We derived variational Bayes iterative
equations based on the Gauss-delta posterior model.
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