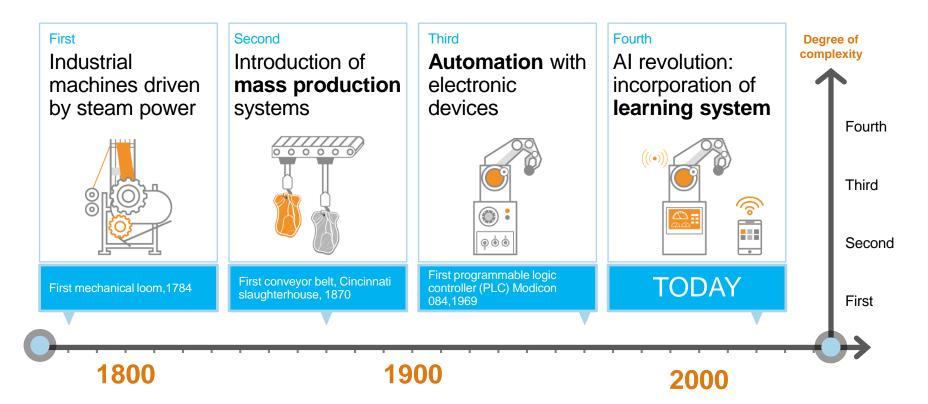
IBM Research

Towards Cognitive Manufacturing

Tsuyoshi Ide ("Ide-san") PhD, Senior Technical Staff Member IBM Thomas J. Watson Research Center

Invited talk at IEEE International Workshop on Data Mining for Service (DMS 2017, November 18, 2017), New Orleans, USA



Contents

- Cognitive Manufacturing: Introduction
- General challenges
- Approaches to condition-based asset management
 - o Battery health tracking system
 - \circ Mining conveyor system
 - Vessel main engine monitoring system
 - o Fleet-level asset management
- Summary and future challenges

Cognitive Manufacturing: Future vision beyond the forth industrial revolution

What is the difference from industrial automation in 70s?

- Real-time control of cement manufacturing plant based on time-series prediction*
 - Manual feature selection
 - Fitting autoregressive model
 - Optimal determination of control parameter through state-space modeling
- Mathematical model looks good enough

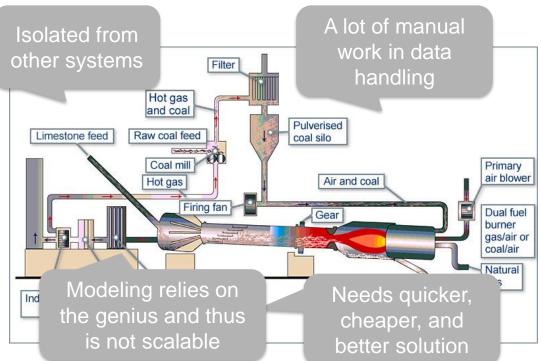
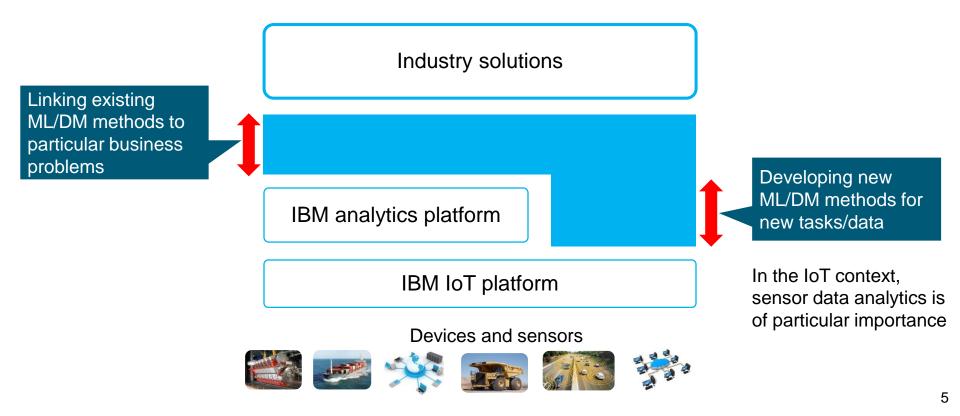
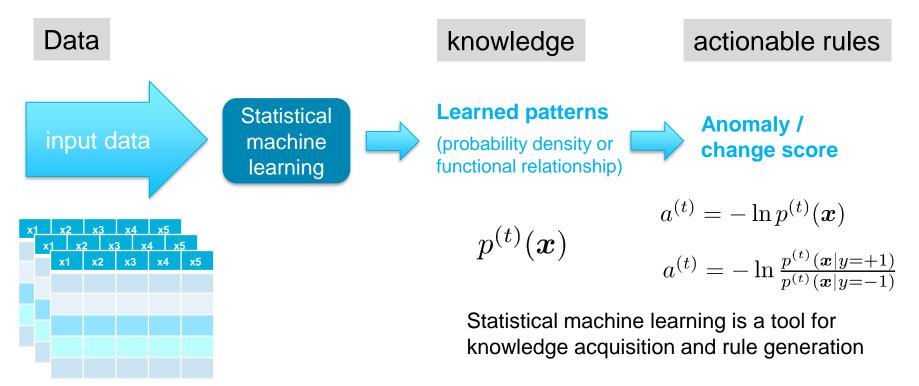
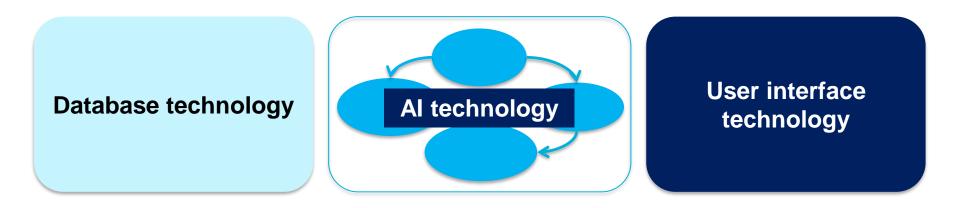



Image: http://www.britishlime.org/education/



There still be technical challenges to transform data into business insights

Cognitive technology (≒ statistical machine learning) transforms raw data into actionable rules



Key technical areas of Cognitive Manufacturing (from an Al perspective)

Key technical areas of Cognitive Manufacturing

- Get data ready
- Get algorithms work better

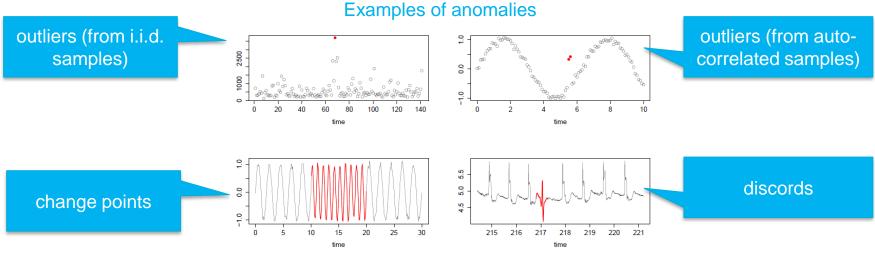
- Convert data into insights
- Obtain actionable rules

- "Dashboarding" data
- Help explore data / algorithms

Contents

Cognitive Manufacturing: Introduction

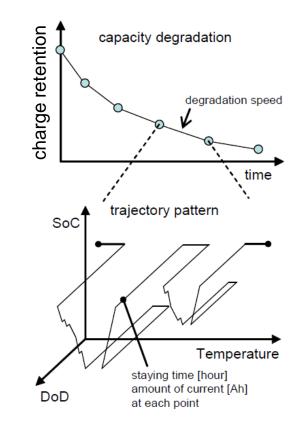
General challenges


- Approaches to condition-based asset management
 - o Battery health tracking system
 - Mining conveyor system
 - Vessel main engine monitoring system
 - o Fleet-level asset management
- Summary and future challenges

No "one-size-fits-all" algorithm

Example of anomaly detection

 "Happy families are all alike; every unhappy family is unhappy in its own way." -Anna Karenina, Leo Tolstoy



井手, 杉山, 異常検知と変化検知, 講談社, 2015.

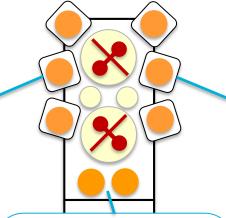
Ready-to-use solution to your problem might not even exist

- Example: Battery life prediction of electric vehicle batteries
 - $\circ~$ Depends on the entire history of battery usage
 - Battery usage is represented as a complex trajectory of a multi-dimensional space
- Standard regression / time-series prediction methods are not applicable
 - Just buying a general-purpose ML package doesn't help

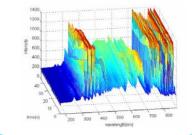
Non-standard setting is everywhere: Need for a collective approach to condition-based management

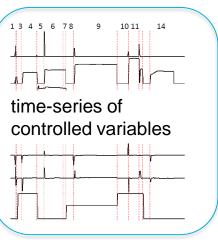
- Typically assets are managed as a cohort
 0 10s of off-shore oil production systems
 - \sim 100s of industrial robots
 - o 1000s of electric vehicles in a certain area

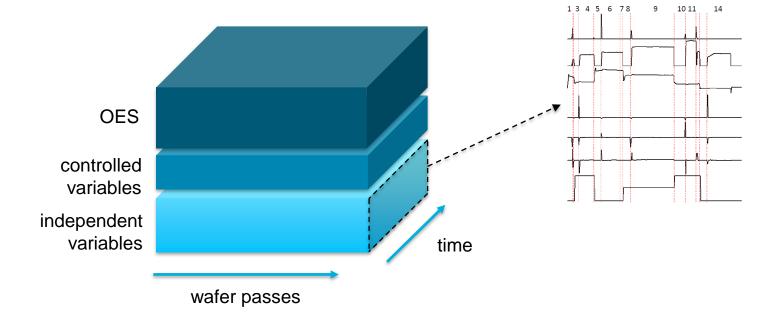

	L
$\sim - \circ$	
-0	



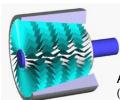
- Little is known to systematically to build/manage predictive models for cohort
 - $\circ~$ Model building is too time-consuming
 - Model maintenance cost is prohibitive
 - Across-machinery performance comparison is hard


IBM


Non-standard setting is everywhere: Etching trace data take a form of higher-order tensor



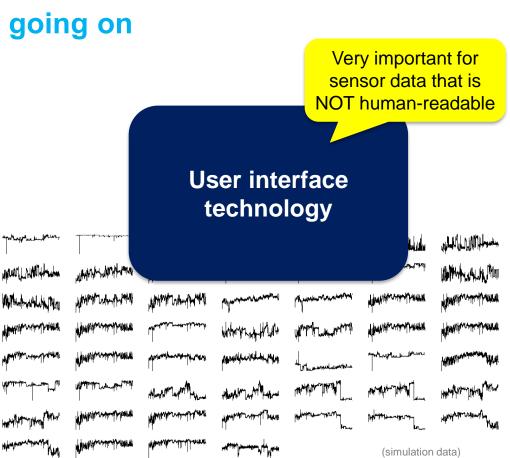
Tracking plasma etch process variations using Principal Component Analysis of OES data. Ma, B.; McLoone, Seán; Ringwood, J. 2007. International Conference on Informatics in Control, Automation and Robotics (ICINCO 2007), Angers, France.


Non-standard setting is everywhere: Etching trace data take a form of higher-order tensor

Who knows the ground truth? Who provides labeled data?

- Example: sensor data of a compressor of oil production system
 - Data taken under a normal operational condition
 - Noisy, nonstationary, heterogeneous, highdimensional ...
- Hard to recognize useful patterns by human eye
 - Hard even to experienced engineers

Axial compressor (Source: Wikipedia)


April 14 1 All And	NAMARY MANARY MAN	Ald Milling and Market Miles Ald Milling and	http://www.html/with. http://www.net/Net/	Helilik mit hile	Helielden Helielen	######################################
Mythur - which Min	Handler and a standard and and and and and and and and and an	North Andrew Provident	1 manual manufactures	Myumumanara	A MANY MANY MANY	-
and the second second	ANNO COMPANY AND	المحمود بالمعمود المحمود المحمو المحمود المحمود	Water Many How A	WPAPAP Luke propriet		-
1 and a provide a second	A MARY AND A MARKAN	Alexandrow of the Mark	ABAGUILAN MULTER JAYON	H Mine any relation of the	month of the beautions	WIND HAR BERT
All	appropriate the second	Hunmaphin	Harph Mar Mar Mar Mar			Handlyston John of Miles
hand for a start of the start o	A MANY COMPANY	Manda and a marked and a series	Harrison and the second	Here and the second sec	₽# <mark>₽~₩*₩~~~~?#~</mark> ₽~~~~	Hand and the second sec
Helenson ward Karl	A MARY AND A MARKAN	Manua ale and the answer				

Help me to figure out what's going on

- Hard to recognize useful patterns by human eye
 - Hard even to experienced engineers
- We really need a good UI to better understand data
 - o Easily navigate
 - Provide insights unexpected
- Al should work with UI

IBM

Deep learning. The end of journey? Probably not. Factors that make deep learning work

Well-defined and well-accepted task

No need to tell why

Huge amount of labeled training data

Typically needs millions labeled samples

Minimum uncertainty in data representation

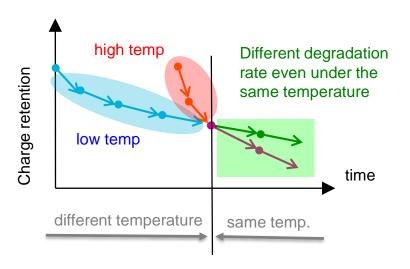
Pixels, words, log-Mel-filterbank

- Good applications meeting these criteria
 - Image recognition
 - o Speech recognition
 - (Some of) natural language processing
- How about industrial dynamic systems?

 Interesting research topic

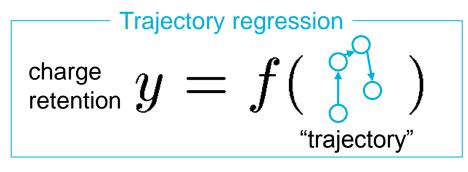
General challenges towards cognitive manufacturing

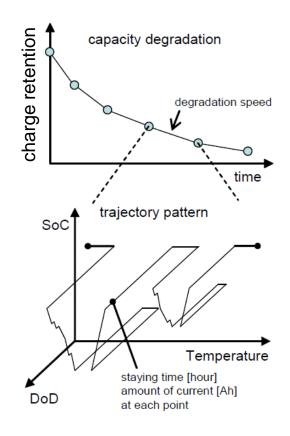
- Al solutions are diverse. Identifying the right algorithm is challenging
- Often need to develop completely new algorithms
- Real industrial problems are full of unsolved machine learning tasks
- Good UI is needed. Available software tools are far from perfect
- Significant work is needed to make deep learning work for noisy sensor data


Contents

- Cognitive Manufacturing: Introduction
- General challenges
- Approaches to condition-based asset management
 - Battery health tracking system
 - Mining conveyor system
 - Vessel main engine monitoring system
 - o Fleet-level asset management
- Summary and future challenges

Monitoring battery health of electric vehicles

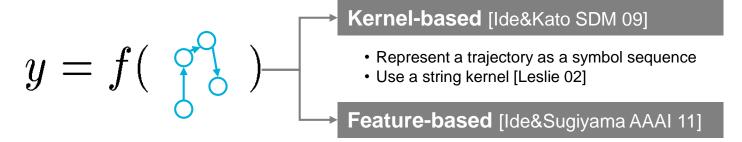

- Battery life measured by charge retention has a strong dependency on the entire usage history
- Time-series (state-space) modeling is challenging due to lack of enough amount of samples
- Developed machine learning algorithm to efficiently predict charge retention
- The core algorithm has been integrated into a "battery traceability system" of a major auto manufacturer



IBM

Formalized the task as "trajectory regression"

- Usage history of a battery can be represented as a "trajectory" in a multidimensional space
 Right: 3-dimensional space spanned by SOC,
 - temperature, and another variable
- The task is to find the function that relates the charge retention (y) with the trajectory (x)


Technical challenge: Making trajectories comparable

Simple k-NN prediction doesn't work

- The length and shape of trajectories vary a lot
- o Unlikely to find a trajectory very similar to a query trajectory
- How can we formalize the notion of "partially similar"?

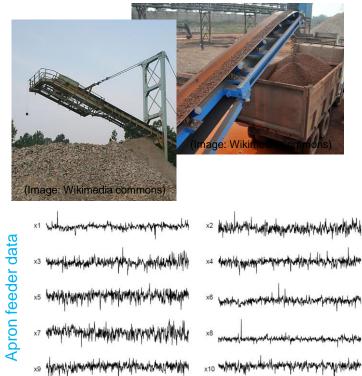
Partial similarity can be captured by dual (kernel-based) and primal (feature-based) formulations

Objective function to be minimized

$$\Psi(\boldsymbol{f}|\lambda) = \sum_{n=1}^{N} \left(y^{(n)} - \sum_{e \in \boldsymbol{x}^{(n)}} c_e(f_e) \right)^2 + \frac{\lambda}{2} \sum_{e=1}^{M} \sum_{e'=1}^{M} S_{e,e'} |f_e - f_{e'}|^2$$

"Predicted cost should be close to observed values"

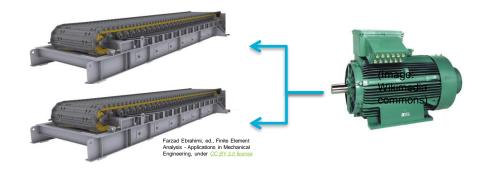
- "Neighboring links should take similar values"
- **S** is the similarity matrix between links

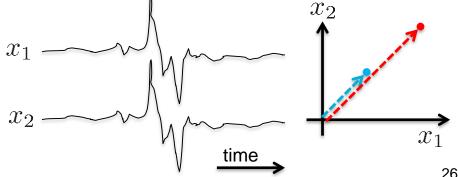

Contents

- Cognitive Manufacturing: Introduction
- General challenges
- Approaches to condition-based asset management
 - Battery health tracking system
 - Mining conveyor system
 - Vessel main engine monitoring system
 - o Fleet-level asset management
- Summary and future challenges

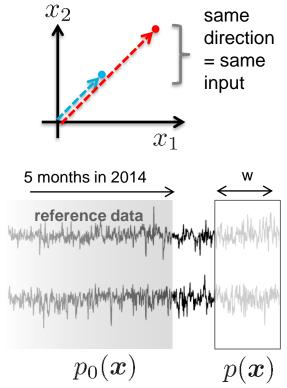
Continuous operation of conveyor systems is critical in the mining industry

- Business goal: Ensure continuous operation of conveyor system by detecting early indications of failures
- Data: Physical sensor data from conveyors and motors
 - Every several seconds over ~ 1 year
 - Sensors include: Gearbox temperatures, motor power consumptions, apron speed, etc.
- Challenge: Conveyor system is subject to significant fluctuation in load. Hard to characterize the normal operation
 - Crude ore conveyed never be uniform




Tackling two different types of noise to achieve practical robustness

Independent impulse noise • Treated as a contaminated sample


- Multiplicative noise equally applied to correlated variables
 - Commonly observed in conveyor driven by the same motor

IBM

Formalizing as change detection problem for directional data

- To filter out multiplicative noise, we use only the information of the direction of x
- Change score is computed as the discrepancy between p(x) and p₀(x)
 - $\circ p(\mathbf{x})$: Probability density in the window
 - $\circ \rho_0(\mathbf{x})$: Probability density in the reference data
 - o x: observation (2-dimensional vector in this example)
- Independent impulse noise is handled using the L₁ and L₂ regularization technique

Ο

(For ref.) Developed new feature extraction and scoring algorithm based on directional statistics

 Step 1: Solve regularized weighted maximum likelihood for von Mieses-Fisher distribution

vMF distribution
$$p_0(\boldsymbol{x}) = \frac{\kappa^{M/2-1}}{(2\pi)^{M/2} I_{M/2-1}(\kappa)} \exp(\kappa \boldsymbol{u}^\top \boldsymbol{z})$$

 $\circ \text{ Optimization problem weighted maximum likelihood}} \{\boldsymbol{u}_{i}^{*}, \boldsymbol{w}_{i}^{*}\} = \arg \max_{\{\boldsymbol{u}_{i}, \boldsymbol{w}_{i}\}} \left\{ \sum_{n=1}^{M} b^{(n)} w_{i}^{(n)} \ln \mathcal{M}(\boldsymbol{z}^{(n)} | \boldsymbol{u}_{i}, \kappa) + \sum_{i=1}^{m} \left(\frac{1}{2} \|\boldsymbol{w}_{i}\|_{2}^{2} + \nu \|\boldsymbol{w}_{i}\|_{1} \right) \right\}$

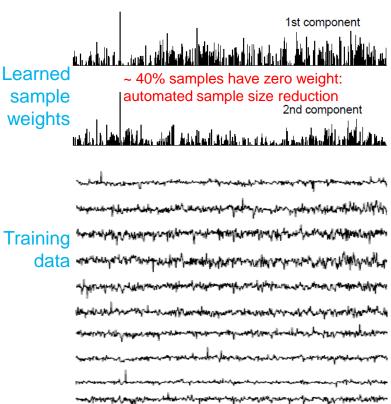
subject to
$$\boldsymbol{u}_i^{\top} \boldsymbol{u}_j = \delta_{i,j} \ (i, j = 1, \dots, m)$$

Step 2: Compute the change score as parameterized Kullback-Leibler divergence between the reference and current distributions

$$\begin{aligned} a^{(t)} &= \min_{\boldsymbol{f}, \boldsymbol{g}} \int \mathrm{d}\boldsymbol{x} \ \mathcal{M}(\boldsymbol{x} | \boldsymbol{U}\boldsymbol{f}, \kappa) \ln \frac{\mathcal{M}(\boldsymbol{x} | \boldsymbol{U}\boldsymbol{f}, \kappa)}{\mathcal{M}(\boldsymbol{x} | \boldsymbol{U}^{(t)}\boldsymbol{g}, \kappa)} \\ \boldsymbol{U} &\equiv [\boldsymbol{u}_1^*, \dots, \boldsymbol{u}_m^*] \text{ for the training data} \\ \boldsymbol{U}^{(t)} \text{ for the window at } t \end{aligned}$$

\rightarrow computed via singular value decomposition

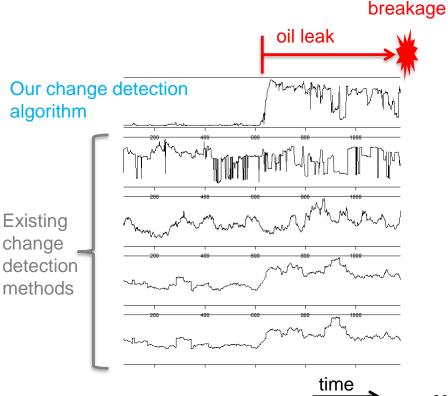
For the detail, see T. Ide et al., "Change Detection Using Directional Statistics", IJCAI 16.


IBM

New algorithm achieves both dimensionality and sample size reduction at once

- Random outliers due to noise are automatically removed

 Automated sample size reduction
- Major directions are automatically found
- The algorithm is (almost) guaranteed to produce a globally optimal solution

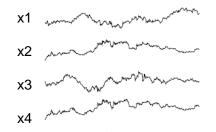

 It is reduced to the convex "trust-region subproblem" in a certain limit

Detected failure example: Detecting bearing failure in ore transfer system

- Two apron feeders are operated in parallel in this ore transfer system
- A bearing failure due to lube oil leak started showing asymmetric behavior in a few variables across the two conveyors at about *t*=600
 Variables related to power
- Our change detection method clearly detected the failure

 Existing methods fail to catch

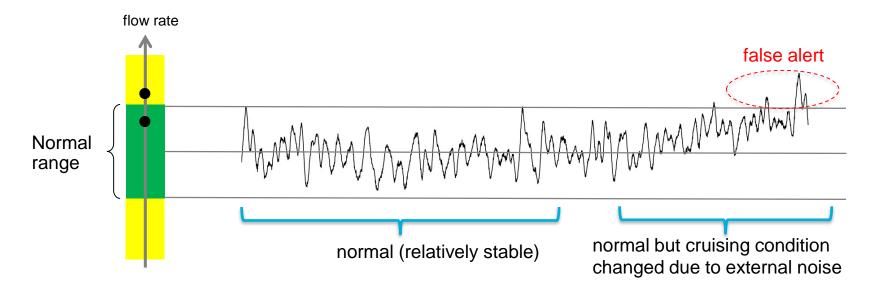
Contents


- Cognitive Manufacturing: Introduction
- General challenges
- Approaches to condition-based asset management
 - o Battery health tracking system
 - Mining conveyor system
 - Vessel main engine monitoring system
 - Fleet-level asset management
- Summary and future challenges

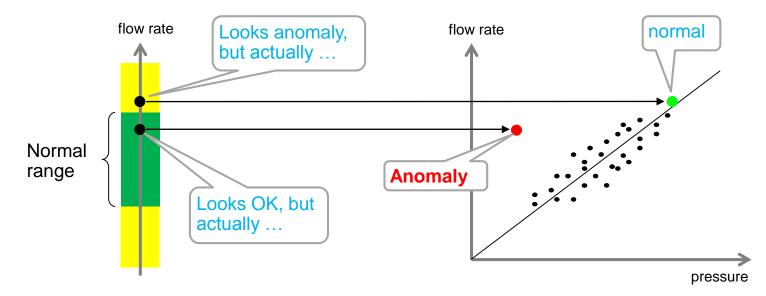
IBM

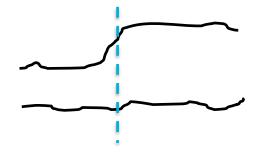
Automated condition-based monitoring is known to be a hard problem in the maritime industry

- Preventing failures in main engine is of critical importance for ocean-going vessels
- Many attempts have been made for automated condition-based monitoring, but few succeeded
- Major reason: unpredictable external noise
 - $\circ~$ Sea current, waves, weather, wind, etc.
 - o Extremely hard to build normal state model

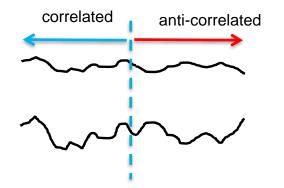


Conventional limit-check approach is of limited use under dynamic unpredictable noise


 Under dynamic noise, monitoring measurement values themselves leads to many false alerts


Dependency-based view is useful to remove false alerts of conventional limit-check approach

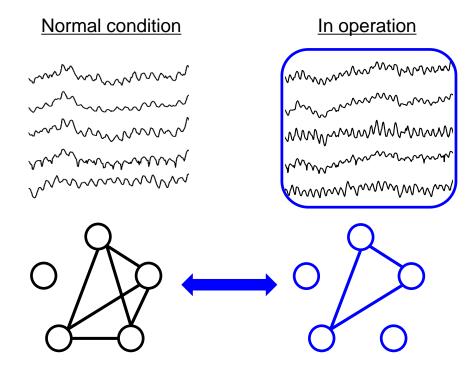
 Even measurement values are dynamically changing, dependency can be stable in many mechanical systems



Many nontrivial anomaly detection problems are related to dependency anomalies

Change in the mean

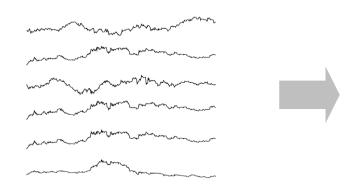
- · Easy to detect and quantify
- Classical methods are available


Change in the dependency

- · Hard to detect and quantify manually
- · Conventional methods cannot handle
- Important in practice

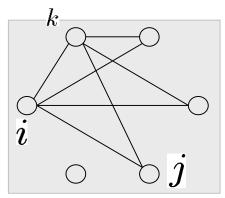
Taking advantage of dependency graph for anomaly detection

- Example: Data set comparison
 - Learn dependency model under the normal condition
 - In operation, check if the dependency significantly changes
- How can we find a precise dependency structure from data?



Two major technical problems addressed

 Sparse structure learning


 How to accurately learn the dependency under heavy noise

Anomaly scoring

 How to compute the anomaly score of *individual* variables

Dependency between variables

(For ref.) Algorithm for sparse structure learning

Assume graphical Gaussian model

$$p(\boldsymbol{x}|\Lambda) = \mathcal{N}(\boldsymbol{x}|\boldsymbol{0},\Lambda^{-1}) = \frac{\det(\Lambda)^{1/2}}{(2\pi)^{M/2}} \exp\left(-\frac{1}{2}\boldsymbol{x}^{\top}\Lambda\boldsymbol{x}\right)$$

Put a Laplace prior on Lambda

$$p(\Lambda) = \prod_{i,j=1}^{M} \frac{\rho}{2} \exp\left(-\rho|\Lambda_{i,j}|\right)$$

rho: constant controlling the strength of prior

MAP (Maximum a posteriori) estimation for Lambda

For the detail, see, T. Ide et al., "Proximity-Based Anomaly Detection using Sparse Structure Learning," Proc. SIAM Intl Conf. on Data Mining 2009 (SDM 09).

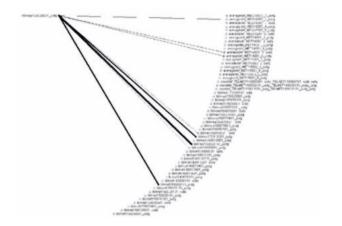
IBM

(For ref.) Anomaly scoring algorithm (for outlier analysis)

Define the outlier score for the *i*-th variable as

score_i(
$$\boldsymbol{x}|\Lambda$$
) $\equiv -\ln p(x_i|x_1,..,x_{i-1},x_{i+1},...,x_M,\Lambda)$

Lambda represents a sparse structure *p* is p.d.f. defined by the graphical Gaussian model


- Final result: Anomaly score of the i-th variable
 - $\circ~$ Only variables connected to the i-th variable play a role

score_i(
$$\boldsymbol{x}|\Lambda$$
) = $\frac{1}{2} \ln \frac{2\pi}{\Lambda_{i,i}} + \frac{1}{2\Lambda_{i,i}} \left(\sum_{j=1}^{M} \Lambda_{i,j} x_j \right)^2$

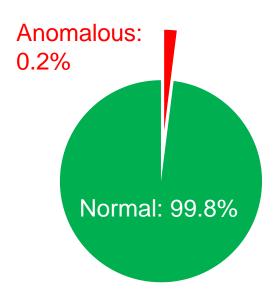
IBM

Dependency-based anomaly detection provides deeper insights through dependency discovery

- Algorithm was tested using real data from vessels
 - $\circ~$ Data: VLCCs and bulk carriers
 - Model construction is done automatically
 - Confirmed better detection accuracy than conventional methods
- Dependency graph provides useful insights for diagnosis

Contents

- Cognitive Manufacturing: Introduction
- General challenges: Summary
- Approaches to condition-based asset management
 - Battery health tracking system
 - \circ Mining conveyor system
 - Vessel main engine monitoring system
 - o Fleet-level asset management
- Summary and future challenges



Developing a multi-task learning framework for fleet-level condition-based asset management

- You have many similar but not identical industrial assets
- Management costs can be prohibitive if individual assets are managed independently
- Our framework allows sharing knowledge across different assets

IEM

Integrated monitoring tool will allow sharing anomaly data across different assets

 In condition-based monitoring, big data may not be really big

 Anomalous samples account for less than 0.2% in a metal smelting process

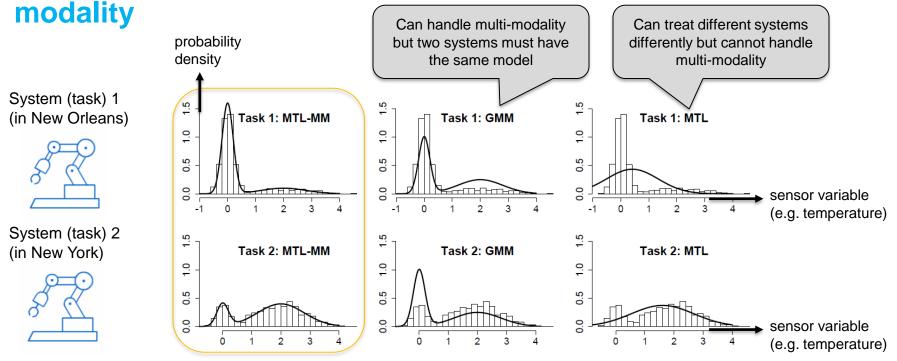
 Coverage of anomalies and thus accuracy can be limited due to lack of data

Technical challenge: Multi-modality, heavy noise, interpretability

System 1 (in New Orleans)

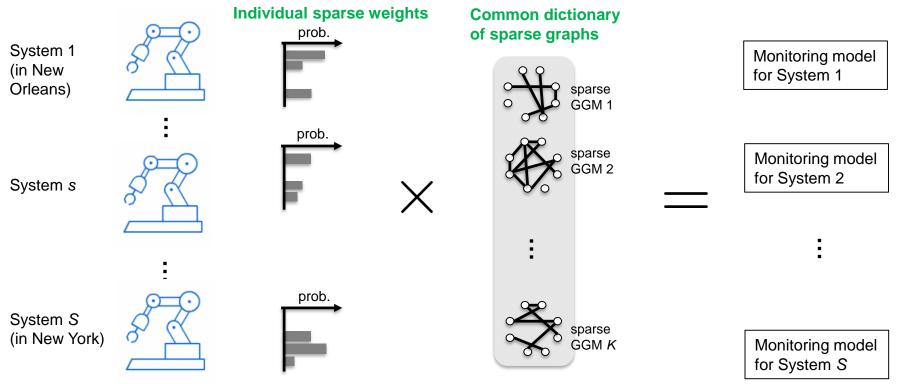
System s

System S (in New York)

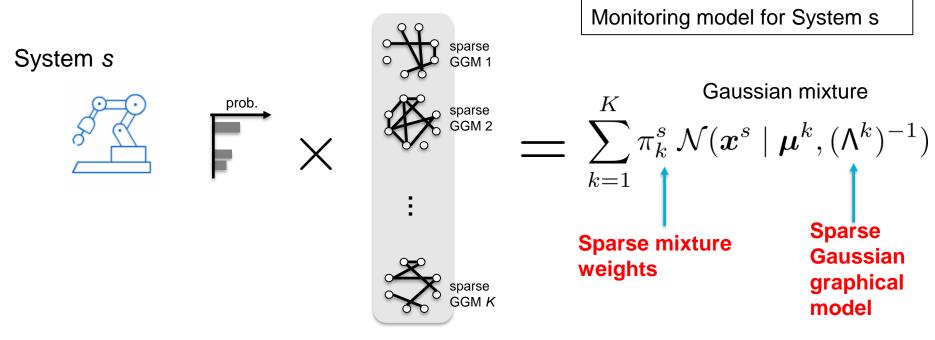


- Straightforward solutions have serious limitations
 - Treat the systems separately. Create each model individually
 - ✓ Suffers from lack of fault examples
 - o 2. Build one universal model by disregarding individuality
 - ✓ Model fit is not good
- Practical requirements in IoT-related industries
 - o Capture both individuality and commonality
 - Automatically capture multiple operational states
 - ✓ Without specifying e.g. # of patterns
 - Be robust to noise
 - Be highly interpretable for diagnosis purposes

IBM Research


Existing multi-task learning methods cannot handle multi-

Comparing the proposed multi-task multi-modal (MTL-MM) model with standard Gaussian mixture (GMM) and multi-task learning (MTL) models


Developed a doubly sparse model representing individuality and commonality of the systems in a fleet

GGM=Gaussian Graphical Model

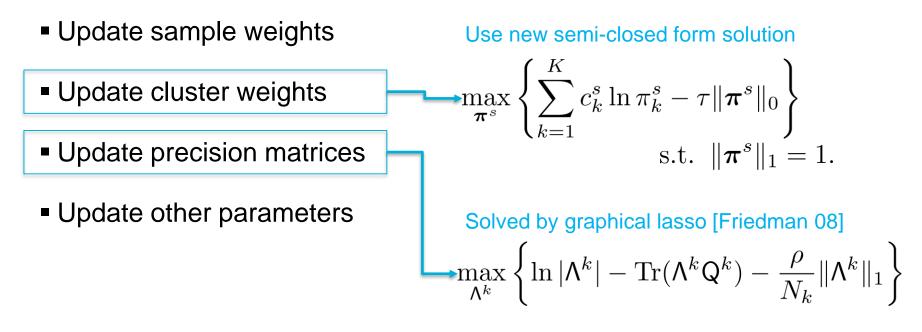
Monitoring model for each asset is represented as a Gaussian mixture model

Overview of probabilistic model

Observation model

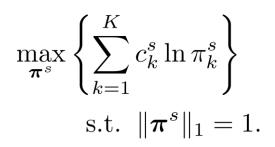
o Gaussian mixture with task-dependent weight

- Sparsity enforcing priors
 - o Laplace prior for the precision matrix
 - o Bernoulli prior for the mixture weights


Variational Bayes + convex point estimation

$$\prod_{k=1}^{K} \mathcal{N}(oldsymbol{x}^s \mid oldsymbol{\mu}^k, (\Lambda^k)^{-1})^{z_k^s}$$

$$p(\boldsymbol{\Lambda}^{k}) = \left(\frac{\rho}{4}\right)^{M^{2}} \exp\left(-\frac{\rho}{2} \|\boldsymbol{\Lambda}^{k}\|_{1}\right)$$
$$p(\boldsymbol{\pi}) = p_{0}^{\|\boldsymbol{\pi}\|_{0}} (1 - p_{0})^{G - \|\boldsymbol{\pi}\|_{0}}$$


Inference algorithm: Use standard VB framework incorporating two convex optimization problems

Ide et al., "Multi-task Multi-modal Models for Collective Anomaly Detection", IEEE Intl Conf. on Data Mining 2017 (ICDM 17).

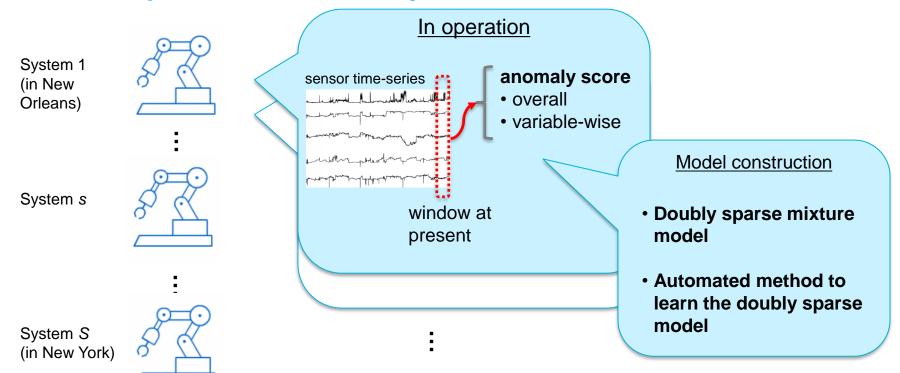
Solving the L0-regularized optimization problem for mixture weights

- What is the problem of the conventional approach?
 - $\circ\,$ Simply differentiate w.r.t. π_k^s
 - Claims to get a sparse solution [Corduneanu+ 01]
 - $_{\circ}\,$ But mathematically $\,\pi_{k}^{s}\,$ cannot be zero due to logarithm
- We re-formalized the problem as a convex mixedinteger programming
- We derived a semi-closed form solution

Comparison with possible alternatives

		Interpretability	Noise reduction	Fleet-readiness	Multi-modality
Our work [Ide et al. ICDM 17]		Yes	Yes	Yes	Yes
(single) sparse GGM	[Ide et al. SDM 2009, Ide et al. ICDM 2016]	Yes	Yes	No	No
Gaussian mixtures	[Yamanishi et al., 2000; Zhang and Fung, 2013; Gao et al., 2016]	Limited	Limited	No	Yes
Multi-task sparse GGM	[Varoquaux et al., 2010; Honorio and Samaras, 2010; Chiquet et al., 2011; Danaher et al., 2014; Gao et al., 2016; Peterson et al., 2015].	Yes	Yes	Yes	No
Multi-task learning anomaly detection	[Bahadori et al., 2011; He et al., 2014; Xiao et al., 2015]	No	(depends)	Yes	No

Experimental results


• \rightarrow See my paper

 Ide et al., "Multi-task Multi-modal Models for Collective Anomaly Detection", IEEE Intl Conf. on Data Mining 2017 (ICDM 17).

✓ Available at <u>http://ide-research.net/</u>

Use-case example: Simultaneous monitoring based on online computation of anomaly scores

Contents

- Cognitive Manufacturing: Introduction
- General challenges: Summary
- Approaches to condition-based asset management
 - Battery health tracking system
 - \circ Mining conveyor system
 - Vessel main engine monitoring system
 - o Fleet-level asset management

Summary and future challenges

Summary

- Manufacturing industries are full of unsolved machine learning problems
- Need to go beyond conventional settings
 - Multi-X setting (X = task, modal, view, etc.)
 - Sparsification for better interpretability
- The importance of smart UI / visualization cannot be overemphasized
- Note: rare to encounter peta/exa-scale data in practice
 - A lot of things to do before thinking about distributed, parallelized, and streaming computing settings

Discussion: What is the potential of deep learning in cognitive manufacturing? Image, text, and acoustics

- Image-based analysis can be safely replaced with a DL-based solution
 If you have a good amount of labeled data
- Text data is tricky
 - Most of maintenance logs, monthly reports, emails, contractual documents are not appropriate for DL-based text analysis
 - ✓ (and conventional text mining methods, either)
 - Mainly due to lack of enough amount of data
- Acoustic data is tricky
 - Sound-based inspection is common in some domains, but DL-based approach may not be very straightforward
 - Mainly due to lack of established preprocess and language models
- Time-series modeling

Thank you!