IBM Research

Towards Cognitive Manufacturing

Tsuyoshi Ide (“Ide-san”) ,

PhD, Senior Technical Staff Member /

IBM Thomas J. Watson Research Center ‘
- <

Invited talk at IEEE International Workshop on Data Mining for Service

(DMS 2017, November 18, 2017), New Orleans, USA '// '




[l

(A
(LU

il
ety

IBM Research

Contents

» Cognitive Manufacturing: Introduction

» General challenges

= Approaches to condition-based asset management
o Battery health tracking system
o Mining conveyor system
o Vessel main engine monitoring system
o Fleet-level asset management

= Summary and future challenges




IBM Research

Cognitive Manufacturing:
Future vision beyond the forth industrial revolution
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Industrial Introduction of Automation with Al revolution: Fomplexy
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What is the difference from industrial automation in 70s?

on time-series prediction*
o Manual feature selection
o Fitting autoregressive model
o Optimal determination of
control parameter through
state-space modeling

= Mathematical model looks
good enough

L

* T.0Otomo, T.Nakagawa and H.Akaike, Statistical approach to computer control of cement rotary kilns, Automatica, 8 (1972) 35-48.

_ Isolated from
= Real-time control of cement - - S

manufacturing plant based

Filter

| Limestone feed | | Raw coal feed

Coal mill
Hot gas

Firing fan

A lot of manual
work in data

handling

Pulverised
coal silo

Air and coal

Gear

Primary
air blower

Dual fuel
burner
gas/air or
coal/air

Natural

Image: http://www.britishlime.org/education/
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There still be technical challenges to transform data into
business insights

[ Industry solutions ]

Linking existing

ML/DM methods to
particular business

problems Developing new

ML/DM methods for
new tasks/data

IBM analytics platform

IBM loT platform ] In the 10T context,
sensor data analytics is

of particular importance

Devices and sensors

-
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Cognitive technology (= statistical machine learning)
transforms raw data into actionable rules

Data

Statistical
machine
learning

knowledge actionable rules

Learned patterns

Anomaly /
(probability density or ﬁ change score
functional relationship)

» a® = —Inp®(x)
t
p(z) P (aly=11)

) _ _
ot =~ I mG=0

Statistical machine learning is a tool for
knowledge acquisition and rule generation
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Key technical areas of Cognitive Manufacturing
(from an Al perspective)

Detect indications of
Anomaly / failures before happening

change
detection

Operational
condition Failure risk

optimization - . . _ analysis
Optimize maintenance actions while

satisfying business constraints

Adjust suboptimal _ Compute the risk of
operational conditions Maintenance failure based on

scheduling / past failure records

planning
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Key technical areas of Cognitive Manufacturing

Database technolo Al hnol Ly lierisee

gy technology technology
» Get data ready » Convert data into insights * “Dashboarding” data
* Get algorithms work better * Obtain actionable rules

* Help explore data /
algorithms
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No “one-size-fits-all” algorithm

= Example of anomaly detection

o “Happy families are all alike; every unhappy family is unhappy in its own way.” -
Anna Karenina, Leo Tolstoy

outliers (from i.i.d.

samples)

change points

Examples of anomalies
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T N N B

2 o,
N N
W L) &
217 %
| Fhos” hubentss 8505 BE B FRLTE ° ® oss
EI 2‘0 4‘0 Elﬂ EID 1 II](] 1 i(] 1:‘1(] ! 1] 2 ili [} é 10
time time
o
: 1 LM |U%‘ .\A&V‘J lu"\““ S lp;xw L~
<

T T T T T T T
215 216 217 218 219 220 21

time

HF, 1L, EEBRMEELR, 1L, 2015.

outliers (from auto-
correlated samples)

discords
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Ready-to-use solution to your problem might not even exist

» Example: Battery life prediction of electric

vehicle batteries
o Depends on the entire history of battery usage

o Battery usage is represented as a complex
trajectory of a multi-dimensional space

» Standard regression / time-series prediction

methods are not applicable

o Just buying a general-purpose ML package doesn'’t
help

capacity degradation

degradation speed

charge retention

A trajectory pattern

7

SoC

>
\ Temperature

staying time [hour]
amount of current [Ah]
at each point

DoD
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Non-standard setting is everywhere: Need for a collective
approach to condition-based management

» Typically assets are managed as a cohort
o 10s of off-shore oil production systems
o 100s of industrial robots
o 1000s of electric vehicles in a certain area

= Little is known to systematically to

build/manage predictive models for cohort
o Model building is too time-consuming
o Model maintenance cost is prohibitive

o Across-machinery performance comparison is
, 0\, hard

[ ==
P ==

E/f

12
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Non-standard setting is everywhere: Etching trace data take
a form of higher-order tensor

/13 45 6 78 9
)

H

time-series of independent
(non-controlled) variables
JH | ] R

1011 14\
T

AN

2

%
o0

‘o

ptical Emission Spectra

134-5h678 o w01 14 \

time-series of
controlled variables

—

J Y

Tracking plasma etch process variations using Principal Component
Analysis of OES data. Ma, B.; McLoone, Sean; Ringwood, J. 2007.
International Conference on Informatics in Control, Automation and
Robotics (ICINCO 2007), Angers, France.

13
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Non-standard setting is everywhere: Etching trace data take
a form of higher-order tensor

1345 6 78 9 1011 14

=
OES
-
controlled B
variables
independent
variables

wafer passes

14
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Who knows the ground truth? Who provides labeled data?

» Example: sensor data of a
compressor of oil production

system sl compressor
o Data taken under a normal " '
operational condition e T o Mot Dk Sk
o Noisy, nonstationary, PN TR e bty T AT
heterogeneous, high- . PP b . et
dimensional ... |

U el L AT L i i

= Hard to recognize useful S S gy

pittﬁg?dSeSan:: gsgrigzczeed T Wwwmm MW WW S e
engineers il T T

15
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Help me to figure out what’s going on

» Hard to recognize useful

patterns by human eye
o Hard even to experienced

Very important for
sensor data that is
NOT human-readable

User interface

engineers technology
= We really need a good Ul to WN W Wil
better understand data Wby PP AN porsoua) ot ittt gt
o Easily navigate LAl T U A S TN T L WL T b I i

o Provide insights unexpected P T g g P gy
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Deep learning. The end of journey? Probably not.
Factors that make deep learning work

Well-defined and well-accepted task

No need to tell why

Huge amount of |abeled training data

Typically needs millions labeled samples

Minimum uncertainty in data representation

Pixels, words, log-Mel-filterbank

» Good applications

meeting these criteria
o Image recognition
o Speech recognition

o (Some of) natural language
processing

= How about industrial
dynamic systems?
o Interesting research topic

17
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General challenges towards cognitive manufacturing

= Al solutions are diverse. Identifying the right algorithm is challenging
» Often need to develop completely new algorithms

» Real industrial problems are full of unsolved machine learning tasks
= Good Ul is needed. Available software tools are far from perfect

= Significant work is needed to make deep learning work for noisy
sensor data

18
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Monitoring battery health of electric vehicles

= Battery life measured by charge
retention has a strong dependency on

the entire usage hIStory high temp Different degradation
rate even under the
same temperature

» Time-series (state-space) modeling is
challenging due to lack of enough
amount of samples

low temp

Charge retention

time

= Developed machine learning algorithm
to efficiently predict charge retention

different temperature | same temp.

» The core algorithm has been integrated
into a “battery traceability system” of a
major auto manufacturer

20
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Formalized the task as “trajectory regression”

» Usage history of a battery can be represented

as a “trajectory” in a multidimensional space

o Right: 3-dimensional space spanned by SOC,
temperature, and another variable

= The task is to find the function that relates the
charge retention (y) with the trajectory (x)

Trajectory regression

charge —_
retention y - f( )

“trajectory”

% capacity degradation
=
c
(O]
'}
o
© degradation speed
(@]
S
28
(] "a' '\ - >
s, time
r \\.
s
A trajectory pattern
SoC
>
\ Temperature
staying time [hour]
DoD amount of current [Ah]

at each point

21
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Technical challenge: Making trajectories comparable

= Simple k-NN prediction doesn’t work
o The length and shape of trajectories vary a lot
o Unlikely to find a trajectory very similar to a query trajectory

» How can we formalize the notion of “partially similar”?

22
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Partial similarity can be captured by dual (kernel-based) and
primal (feature-based) formulations

Kernel-based [Ide&Kato SDM 09]

—_ * Represent a trajectory as a symbol sequence
y — » Use a string kernel [Leslie 02]

Feature-based [Ide&Sugiyama AAAI 11]

Objective function to be minimized

2
N
W =Y (y(") > Ce(fe)

I\.)|>/

Z Z See’|f€ |

e= le’:

“Neighboring links should

“Predicted cost should be take similar values”

close to observed values” S is the similarity matrix

between links
23
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Continuous operation of conveyor systems is critical in the

mining industry

= Business goal: Ensure continuous
operation of conveyor system by detecting
early indications of failures

» Data: Physical sensor data from

conveyors and motors
o Every several seconds over ~ 1 year

o Sensors include: Gearbox temperatures, motor
power consumptions, apron speed, etc.

» Challenge: Conveyor system is subject to
significant fluctuation in load. Hard to

characterize the normal operation
o Crude ore conveyed never be uniform

Apron feeder data

(simulation data) 25
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Tackling two different types of noise to achieve practical
robustness

» Independent impulse noise

o Treated as a contaminated sample <
<
4
A . . . A
" Multiplicative noise equally applied .. NVJ /ﬂ'
to correlated variables 71’"

. /,
o Commonly observed in conveyor . _/\/\/j /:/
2 - >

driven by the same motor

time


http://creativecommons.org/licenses/by/3.0/
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Formalizing as change detection problem for directional
data

Lo same
i .o . . 4 ;1' direction
= To filter out multiplicative noise, we use only i - same
the information of the direction of x 4 input
P
.’ >
= Change score is computed as the discrepancy 1
between p(x) and po(x) 5 months in 2014 w
o p(x) : Probability density in the window referenc datadk
o Ppy(x): Probability density in the reference data MW\‘» W

o X: observation (2-dimensional vector in this example)

Tt U
» Independent impulse noise is handled using v IWWW
the L, and L, regularization technique

po(x) p(x)

27
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(For ref.) Developed new feature extraction and scoring
algorithm based on directional statistics

= Step 1: Solve regularized weighted maximum likelihood for von
Mieses-Fisher distribution

o VMF distribution R oxp (kT 2
po() = (2m)M/2Tnr 01 (k) < ) at
o Optimization problem weighted maX|mum likelihood regu arliatlon term
1
{u* w} = arg max {Zb(n (n) In M(z2™ |u;, ) + Z( l|w; |3 +1/|w@||1)}

subject to w; w; = &;; (i,5=1,...,m)

= Step 2: Compute the change score as parameterlzed Kullback-Leibler
divergence between the reference and current distributions

_ M(z|UF, k) o -
) — ’
alt) = ”}1;1 /dm M(z|Uf, k) In M(zUGg, ) -> computed via singular value decomposition

U= ['U.',T, R m] for the training data For the detail, see T. Ide et al., “Change Detection Using
Directional Statistics”, IJCAI 16.
U® for the WlIldOW at ¢ 28
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New algorithm achieves both dimensionality and sample

size reduction at once

= Random outliers due to noise are

automatically removed
o Automated sample size reduction

= Major directions are automatically
found

» The algorithm is (almost) guaranteed

to produce a globally optimal solution

o Itis reduced to the convex “trust-region
subproblem” in a certain limit

1st component

Learned ~ 40% samples have zero weight:
sample automated sample size reduction
. 2nd component
weights

Whmxwwww
T e s a0

Training e T Ly e L R L
data v ereineenehaotypd.e

llfl"'" g ey L *W‘H"’*“W'n'*‘&hww

D e T rm pe e e I Y
wmi.w_www%,mm&mw.mm
WM%MkWW

ML.L—M-MWW%M
b gyt HM‘M“”W‘WWW

(simulation data)

29
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Detected failure example: Detecting bearing failure in ore
transfer system

breakage

= Two apron feeders are operated in | oil leak >*
parallel in this ore transfer system |

Our change detection
algorithm

= A bearing failure due to lube oil leak -

started showing asymmetric WW’WWMWMW

behavior in a few variables across

the two conveyors at about t=600  Existing WMM

o Variables related to power change

detection W
= Our change detection method methocs —
clearly detected the failure e T

o Existing methods fail to catch

time

30
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Automated condition-based monitoring is known to be a

hard problem in the maritime industry

» Preventing failures in main engine is of
critical importance for ocean-going vessels

= Many attempts have been made for
automated condition-based monitoring, but
few succeeded

= Major reason: unpredictable external noise
o Sea current, waves, weather, wind, etc.
o Extremely hard to build normal state model

x1l

X2

X3

x4

32
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Conventional limit-check approach is of limited use under
dynamic unpredictable noise

= Under dynamic noise, monitoring measurement values themselves
leads to many false alerts

flow rate

f"i"_s_?_ﬁ'_‘?”
\
Normal /\A M‘\Mrf\f\m NN Y (\/\M (\\ﬂ AWMMMM
range Rl ku\/w VAV
l Y | | Y )
normal (relatively stable) normal but cruising condition

changed due to external noise
33
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Dependency-based view is useful to remove false alerts of
conventional limit-check approach

» Even measurement values are dynamically changing, dependency can
be stable in many mechanical systems

flow rate Looks anomaly’ flow rate
but actually ... A

|An0maly{. oo f...'.

Normal
range

Looks OK, but
actually ...

pressure

34
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Many nontrivial anomaly detection problems are related to

dependency anomalies

J - Change in the mean
: » Easy to detect and quantify

. I . ,  Classical methods are available
|
correlated i- lated :
- : o Correa;e Change in the dependency
W\’\  Hard to detect and quantify manually

I * Conventional methods cannot handle

W * Important in practice

35
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Taking advantage of dependency graph for anomaly
detection

= Example: Data set comparison Normal condition In operation
o Learn dependency model under the e
normal condition AN A W
o In operation, check if the O s SN S NPTt
dependency significantly changes B WV Y MMW/\/\A/\,:\/\MW
Vel O e
= How can we find a precise

dependency structure from

NN e
data?
Oo& — O@ﬁa
O
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Two major technical problems addressed

= Sparse structure learning = Anomaly scoring
o How to accurately learn the o How to compute the anomaly
dependency under heavy noise score of individual variables

Dependency between variables

MM k

37
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(For ref.) Algorithm for sparse structure learning

= Assume graphical Gaussian model

1/2
p(z|A) = N(2]0,A"1) = det(A) exp (—%mT/\w>

(QW)M/Q
= Put a Laplace prior on Lambda
M P rho: constant controlling the
p(A) = , Hl 2 exp <_p|/\i7j|) strength of prior
1,)=

= MAP (Maximum a posteriori) estimation for Lambda

* I | (n) For the detail, see, T. Ide et al., "Proximity-
/\ — arg max {ln p p ‘/\ } Based Anomaly Detection using Sparse

Structure Learning," Proc. SIAM Intl Conf.
on Data Mining 2009 (SDM 09).

— arg max{ In det/\ - tr(S/\) plIAl]1 }

S: sample covariance matrix

38
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(For ref.) Anomaly scoring algorithm (for outlier analysis)

= Define the outlier score for the i-th variable as

SCOre; ($|/\) e lnp(aji‘ah) oy Lg—15 L1y ooy M /\)
o Lambda represents a sparse structure
o pis p.d.f. defined by the graphical Gaussian model

» Final result: Anomaly score of the i-th variable
o Only variables connected to the i-th variable play a role

1.2 1
score; (x|\) = 5 In W + ZAiJ T;

39



IBM Research

Dependency-based anomaly detection provides deeper
Insights through dependency discovery

= Algorithm was tested using real data from

vessels
o Data: VLCCs and bulk carriers
o Model construction is done automatically

o Confirmed better detection accuracy than
conventional methods

= Dependency graph provides useful
insights for diagnosis

40
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Developing a multi-task learning framework for fleet-level
condition-based asset management

* You have many similar but not identical
industrial assets

» Management costs can be prohibitive if
individual assets are managed
independently

= Our framework allows sharing
knowledge across different assets

42
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Integrated monitoring tool will allow sharing anomaly data
across different assets

* |n condition-based monitoring, big data may
Anomalous: not be really big

0.2% o Anomalous samples account for less than 0.2% in a
metal smelting process

» Coverage of anomalies and thus accuracy
can be limited due to lack of data

Normal: 99.8%

43
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Technical challenge:
Multi-modality, heavy noise, interpretability

» Straightforward solutions have serious limitations
System 1

: o 1. Treat the systems separately. Create each model
(in New g
Orleans) individually

v’ Suffers from lack of fault examples
o 2. Build one universal model by disregarding individuality
v" Model fit is not good

System s
» Practical requirements in loT-related industries
o Capture both individuality and commonality
o Automatically capture multiple operational states
v' Without specifying e.g. # of patterns
System S o Be robust to noise
(in New York) o Be highly interpretable for diagnosis purposes

44
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Existing multi-task learning methods cannot handle multi-

mo d al Ity Can handle multi-modality Can treat different systems
probability but two systems must have differently but cannot handle
density the same model multi-modality
a
System (task) 1 6 | o o
(in New Orleans) - Task 1: MTL-MM - Task 1: GMM - Task 1: MTL
S e T g e e o e sensor variable
-1 0 1 2 3 4 -1 0 1 2 3 4 -1 0 1 2 3 4 (eg temperature)
System (task) 2 o © ©
(in New York) - Task 2: MTL-MM T Task 2: GMM - Task 2: MTL
S : : : : , S~ , , : , S , , , : » Sensor variable

Comparing the proposed multi-task multi-modal (MTL-MM) model with standard
Gaussian mixture (GMM) and multi-task learning (MTL) models

45
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Developed a doubly sparse model representing individuality
and commonality of the systems in a fleet

System 1

(in New

Orleans)

System s i ; §
System S

(in New York)

Individual sparse weights

Common dictionary
prob. of sparse graphs

sparse
o GGM 1
sparse
GGM 2
X ’

prob.

prob.

sparse
GGM K

GGM=Gaussian Graphical Model

Monitoring model
for System 1

Monitoring model
for System 2

Monitoring model
for System S

46
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Monitoring model for each asset is represented as a
Gaussian mixture model

System s o ﬁ com1

prob. @ | e Gaussian mixture
g E ox Zwk (/fk) )

Sparse mixture Sparse

. Gaussian

25 § weights :
sparse g raphlcal

FeMK model

Monitoring model for System s

GGM=Gaussian Graphical Model

47
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Overview of probabilistic model

= Observation model
o Gaussian mixture with task-dependent weight

» Sparsity enforcing priors
o Laplace prior for the precision matrix
o Bernoulli prior for the mixture weights

= Inference
o Variational Bayes + convex point estimation

[L VG |, )
k=1
pv) = (2) " exp (~21n11)

Ide et al., “Multi-task Multi-modal Models for Collective Anomaly
Detection”, IEEE Intl Conf. on Data Mining 2017 (ICDM 17). 48
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Inference algorithm: Use standard VB framework
Incorporating two convex optimization problems

» Update sample weights Use new semi-closed form solution

K
= Update cluster weights ~ ——max {Z ¢y Inmy —7||7° 0}
TI-S
k=1

= Update precision matrices s.t. |71 = 1.

= Update other parameters Solved by graphical lasso [Friedman 08]

—smax {ln |/\k| — Tr(/\ka) — ]\%Hl\k”l}

Ak

Ide et al., “Multi-task Multi-modal Models for Collective Anomaly
Detection”, IEEE Intl Conf. on Data Mining 2017 (ICDM 17). 49
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Solving the LO-regularized optimization problem for mixture
weights

» What is the problem of the conventional

approach? max Z ¢ In s
o Simply differentiate w.r.t. 7Tk
o Claims to get a sparse solution [Corduneanu+ 01]
o But mathematically 77 cannot be zero due to logarithm

= We re-formalized the problem as a convex mixed-
integer programming

= \We derived a semi-closed form solution

Ide et al., “Multi-task Multi-modal Models for Collective Anomaly
Detection”, IEEE Intl Conf. on Data Mining 2017 (ICDM 17).

7]y = 1.
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Comparison with possible alternatives

Our work [Ide et al. ICDM 17]

i [Ide et al. SDM 2009, Ide et al.
(single) sparse GGM o Yes Yes
Gaussian mixtures [Yamanishi Yes

et al., 2000; Zhang and Fung,
2013; Gao et al., 2016]

Multi-task sparse [Varoquaux et al., 2010;
GGM P Honorio and Samaras, 2010; YeS YeS YeS
Chiquet et al., 2011; Danaher

et al., 2014; Gao et al., 2016;
Peterson et al., 2015].

Multi-task learning [Bahadori et al., 2011; He et Yes
anomaly detection al., 2014; Xiao et al., 2015]
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Experimental results

= - See my paper

o lde et al., “Multi-task Multi-modal Models for Collective Anomaly Detection”, IEEE
Intl Conf. on Data Mining 2017 (ICDM 17).

v' Available at

52
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Use-case example: Simultaneous monitori
line computation of anomaly scores

ng based on on-

Model construction \

* Doubly sparse mixture
model

* Automated method to
learn the doubly sparse

Kmodel /

In operation
System 1
(in New sensor time-series £ anomaly score
Orleans) W - overall
ainnaini I - variable-wise

) |,MWA__+JMHW“§

System s A
window at
k present

System S
(in New York)
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Summary

» Manufacturing industries are full of unsolved machine learning
problems

» Need to go beyond conventional settings
o Multi-X setting (X = task, modal, view, etc.)
o Sparsification for better interpretability

» The importance of smart Ul / visualization cannot be overemphasized

= Note: rare to encounter peta/exa-scale data in practice

o A lot of things to do before thinking about distributed, parallelized, and streaming
computing settings

55
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Discussion: What is the potential of deep learning in
cognitive manufacturing? Image, text, and acoustics

» Image-based analysis can be safely replaced with a DL-based solution
o If you have a good amount of labeled data

» Text data is tricky

o Most of maintenance logs, monthly reports, emails, contractual documents are not
appropriate for DL-based text analysis

v' (and conventional text mining methods, either)
o Mainly due to lack of enough amount of data

= Acoustic data is tricky

o Sound-based inspection is common in some domains, but DL-based approach may not
be very straightforward

o Mainly due to lack of established preprocess and language models

» Time-series modeling

56
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Thank you!
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