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Cognitive Manufacturing: 

Future vision beyond the forth industrial revolution

First mechanical loom,1784

First

Industrial 
machines driven 
by steam power

1800 1900 2000

First conveyor belt, Cincinnati 
slaughterhouse, 1870

First programmable logic 
controller (PLC) Modicon 
084,1969

TODAY

Third 

Automation with 
electronic 
devices

Second

Introduction of 
mass production 
systems

Fourth

AI revolution: 
incorporation of 
learning system

Degree of 

complexity

First

Second

Third

Fourth
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What is the difference from industrial automation in 70s?

▪ Real-time control of cement 

manufacturing plant based 

on time-series prediction*
o Manual feature selection

o Fitting autoregressive model

o Optimal determination of 

control parameter through 

state-space modeling

▪Mathematical model looks 

good enough

* T.Otomo, T.Nakagawa and H.Akaike, Statistical approach to computer control of cement rotary kilns, Automatica, 8 (1972) 35-48.

Isolated from 

other systems

A lot of manual 

work in data 

handling

Needs quicker, 

cheaper, and 

better solution

Modeling relies on 

the genius and thus 

is not scalable

Image: http://www.britishlime.org/education/
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There still be technical challenges to transform data into 

business insights

IBM IoT platform

IBM analytics platform

Industry solutions

Linking existing 

ML/DM methods to 

particular business 

problems

Devices and sensors

Developing new 

ML/DM methods for 

new tasks/data

In the IoT context, 

sensor data analytics is 

of particular importance
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Cognitive technology (≒ statistical machine learning) 

transforms raw data into actionable rules

Statistical 

machine 

learning

input data

Learned patterns

(probability density or 

functional relationship)

Anomaly / 

change score

x1 x2 x3 x4 x5

knowledge actionable rules

x1 x2 x3 x4 x5

x1 x2 x3 x4 x5

Data

Statistical machine learning is a tool for 

knowledge acquisition and rule generation 
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Key technical areas of Cognitive Manufacturing 

(from an AI perspective)

Anomaly / 

change 

detection

Operational 

condition 

optimization

Failure risk 

analysis

Maintenance 

scheduling / 

planning

Detect indications of 

failures before happening

Compute the risk of 

failure based on 

past failure records

Optimize maintenance actions while 

satisfying business constraints

Adjust suboptimal 

operational conditions



8

IBM Research

Key technical areas of Cognitive Manufacturing 

Database technology
User interface 

technologyAI technology

• “Dashboarding” data

• Help explore data / 

algorithms

• Get data ready

• Get algorithms work better

• Convert data into insights

• Obtain actionable rules
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No “one-size-fits-all” algorithm

▪ Example of anomaly detection
o “Happy families are all alike; every unhappy family is unhappy in its own way.” -

Anna Karenina, Leo Tolstoy

outliers (from i.i.d. 

samples)

change points

outliers (from auto-

correlated samples)

discords

Examples of anomalies

井手, 杉山, 異常検知と変化検知, 講談社, 2015.
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Ready-to-use solution to your problem might not even exist

▪ Example: Battery life prediction of electric 

vehicle batteries
o Depends on the entire history of battery usage

o Battery usage is represented as a complex 

trajectory of a multi-dimensional space 

▪ Standard regression / time-series prediction 

methods are not applicable
o Just buying a general-purpose ML package doesn’t 

help

Temperature
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Non-standard setting is everywhere: Need for a collective 

approach to condition-based management

▪ Typically assets are managed as a cohort
o 10s of off-shore oil production systems

o 100s of industrial robots

o 1000s of electric vehicles in a certain area

▪ Little is known to systematically to 

build/manage predictive models for cohort
o Model building is too time-consuming

o Model maintenance cost is prohibitive

o Across-machinery performance comparison is 

hard

...

...

...
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Optical Emission Spectra

Non-standard setting is everywhere: Etching trace data take 

a form of higher-order tensor

time-series of independent 

(non-controlled) variables

time-series of 

controlled variables

Tracking plasma etch process variations using Principal Component 

Analysis of OES data. Ma, B.; McLoone, Seán; Ringwood, J. 2007. 

International Conference on Informatics in Control, Automation and 

Robotics (ICINCO 2007), Angers, France.
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Non-standard setting is everywhere: Etching trace data take 

a form of higher-order tensor

time

wafer passes

independent 

variables

controlled 

variables

OES
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Who knows the ground truth? Who provides labeled data? 

▪ Example: sensor data of a 

compressor of oil production 

system
o Data taken under a normal 

operational condition

o Noisy, nonstationary, 

heterogeneous, high-

dimensional …

▪ Hard to recognize useful 

patterns by human eye 
o Hard even to experienced 

engineers
(simulation data)

Axial compressor
(Source: Wikipedia)

(Image: Wikimedia commons)
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Help me to figure out what’s going on 

▪ Hard to recognize useful 

patterns by human eye 
o Hard even to experienced 

engineers

▪We really need a good UI to 

better understand data
o Easily navigate

o Provide insights unexpected

▪ AI should work with UI

(simulation data)

User interface 

technology

Very important for 

sensor data that is 

NOT human-readable
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Deep learning. The end of journey? Probably not. 

Factors that make deep learning work

▪Good applications 

meeting these criteria
o Image recognition

o Speech recognition

o (Some of) natural language 

processing

▪ How about industrial 

dynamic systems?
o Interesting research topic

Well-defined and well-accepted task

No need to tell why

Huge amount of labeled training data

Typically needs millions labeled samples

Minimum uncertainty in data representation

Pixels, words, log-Mel-filterbank
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General challenges towards cognitive manufacturing

▪ AI solutions are diverse. Identifying the right algorithm is challenging

▪Often need to develop completely new algorithms

▪ Real industrial problems are full of unsolved machine learning tasks

▪Good UI is needed. Available software tools are far from perfect

▪ Significant work is needed to make deep learning work for noisy 

sensor data
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Monitoring battery health of electric vehicles

▪ Battery life measured by charge 
retention has a strong dependency on 
the entire usage history

▪ Time-series (state-space) modeling is 
challenging due to lack of enough 
amount of samples

▪ Developed machine learning algorithm 
to efficiently predict charge retention

▪ The core algorithm has been integrated 
into a “battery traceability system” of a 
major auto manufacturer

time

same temp.different temperature

high temp

low temp

Different degradation 

rate even under the 

same temperature
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Formalized the task as “trajectory regression”

▪ Usage history of a battery can be represented 

as a “trajectory” in a multidimensional space
o Right: 3-dimensional space spanned by SOC, 

temperature, and another variable

▪ The task is to find the function that relates the 

charge retention (y) with the trajectory (x)

“trajectory”

charge 

retention

Trajectory regression
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Technical challenge: Making trajectories comparable  

▪ Simple k-NN prediction doesn’t work
o The length and shape of trajectories vary a lot

o Unlikely to find a trajectory very similar to a query trajectory

▪ How can we formalize the notion of “partially similar”?
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Partial similarity can be captured by dual (kernel-based) and 

primal (feature-based) formulations

Kernel-based [Ide&Kato SDM 09]

Feature-based [Ide&Sugiyama AAAI 11]

• “Neighboring links should 

take similar values”

• S is the similarity matrix 

between links

“Predicted cost should be 

close to observed values”

Objective function to be minimized

• Represent a trajectory as a symbol sequence

• Use a string kernel [Leslie 02]
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Continuous operation of conveyor systems is critical in the 

mining industry

▪ Business goal: Ensure continuous 
operation of conveyor system by detecting 
early indications of failures 

▪ Data: Physical sensor data from 
conveyors and motors 
o Every several seconds over ~ 1 year
o Sensors include: Gearbox temperatures, motor 

power consumptions, apron speed, etc.

▪ Challenge: Conveyor system is subject to 
significant fluctuation in load. Hard to 
characterize the normal operation
o Crude ore conveyed never be uniform

A
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d

a
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(simulation data)

(Image: Wikimedia commons)

(Image: Wikimedia commons)
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Tackling two different types of noise to achieve practical 

robustness

▪ Independent impulse noise
o Treated as a contaminated sample

▪Multiplicative noise equally applied 

to correlated variables
o Commonly observed in conveyor 

driven by the same motor

time

Farzad Ebrahimi, ed., Finite Element 

Analysis - Applications in Mechanical 

Engineering, under CC BY 3.0 license

(Image: 

Wikimedia 

commons)

http://creativecommons.org/licenses/by/3.0/
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▪ To filter out multiplicative noise, we use only 

the information of the direction of x

▪ Change score is computed as the discrepancy 

between p(x) and p0(x) 
o p(x) : Probability density in the window

o p0(x): Probability density in the reference data

o x: observation (2-dimensional vector in this example)

▪ Independent impulse noise is handled using 

the L1 and L2 regularization technique

Formalizing as change detection problem for directional 

data

reference data

w5 months in 2014

same 

direction 

= same 

input
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▪ Step 1: Solve regularized weighted maximum likelihood for von 
Mieses-Fisher distribution
o vMF distribution

o Optimization problem

▪ Step 2: Compute the change score as parameterized Kullback-Leibler 
divergence between the reference and current distributions

(For ref.) Developed new feature extraction and scoring 

algorithm based on directional statistics

For the detail, see T. Ide et al., “Change Detection Using 

Directional Statistics”, IJCAI 16.

regularization term
weighted maximum likelihood

 computed via singular value decomposition
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New algorithm achieves both dimensionality and sample 

size reduction at once

▪ Random outliers due to noise are 

automatically removed
o Automated sample size reduction

▪Major directions are automatically 

found

▪ The algorithm is (almost) guaranteed 

to produce a globally optimal solution
o It is reduced to the convex “trust-region 

subproblem” in a certain limit

Learned 

sample 

weights

Training 

data

~ 40% samples have zero weight:  

automated sample size reduction

(simulation data)
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Detected failure example: Detecting bearing failure in ore 

transfer system

▪ Two apron feeders are operated in 
parallel in this ore transfer system

▪ A bearing failure due to lube oil leak 
started showing asymmetric 
behavior in a few variables across  
the two conveyors at about t=600
o Variables related to power

▪Our change detection method 
clearly detected the failure 
o Existing methods fail to catch

Our change detection 

algorithm

Existing 

change 

detection 

methods

time

oil leak

breakage
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Automated condition-based monitoring is known to be a 

hard problem in the maritime industry

▪ Preventing failures in main engine is of 

critical importance for ocean-going vessels 

▪Many attempts have been made for 

automated condition-based monitoring, but 

few succeeded

▪Major reason: unpredictable external noise
o Sea current, waves, weather, wind, etc. 

o Extremely hard to build normal state model

x1

x2

x3

x4

(Image: Wikimedia commons)
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Conventional limit-check approach is of limited use under 

dynamic unpredictable noise

Normal 
range

flow rate

▪ Under dynamic noise, monitoring measurement values themselves 

leads to many false alerts

normal (relatively stable) normal but cruising condition 

changed due to external noise

false alert
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Dependency-based view is useful to remove false alerts of 

conventional limit-check approach

▪ Even measurement values are dynamically changing, dependency can 

be stable in many mechanical systems

pressure

Normal 
range

flow rate flow rate normal

Anomaly

Looks anomaly, 
but actually …

Looks OK, but 
actually …
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Many nontrivial anomaly detection problems are related to 

dependency anomalies

Change in the mean

anti-correlatedcorrelated

Change in the dependency

• Easy to detect and quantify

• Classical methods are available

• Hard to detect and quantify manually

• Conventional methods cannot handle

• Important in practice
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Taking advantage of dependency graph for anomaly 

detection

▪ Example: Data set comparison
o Learn dependency model under the 

normal condition

o In operation, check if the 

dependency significantly changes

▪ How can we find a precise 

dependency structure from 

data?

Normal condition In operation
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Two major technical problems addressed

▪ Sparse structure learning
o How to accurately learn the 

dependency under heavy noise

▪ Anomaly scoring
o How to compute the anomaly 

score of individual variables

Dependency between variables
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(For ref.) Algorithm for sparse structure learning

▪ Assume graphical Gaussian model

▪ Put a Laplace prior on Lambda

▪MAP (Maximum a posteriori) estimation for Lambda

For the detail, see, T. Ide et al., "Proximity-

Based Anomaly Detection using Sparse 

Structure Learning," Proc. SIAM Intl Conf. 

on Data Mining 2009 (SDM 09).

S: sample covariance matrix

rho: constant controlling the 

strength of prior
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(For ref.) Anomaly scoring algorithm (for outlier analysis)

▪ Define the outlier score for the i-th variable as

o Lambda represents a sparse structure

o p is p.d.f. defined by the graphical Gaussian model

▪ Final result: Anomaly score of the i-th variable
o Only variables connected to the i-th variable play a role
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Dependency-based anomaly detection provides deeper 

insights through dependency discovery

▪ Algorithm was tested using real data from 

vessels
o Data: VLCCs and bulk carriers

o Model construction is done automatically

o Confirmed better detection accuracy than 

conventional methods

▪ Dependency graph provides useful 

insights for diagnosis

(Image: Wikimedia commons)
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Developing a multi-task learning framework for fleet-level 

condition-based asset management

▪ You have many similar but not identical 

industrial assets

▪Management costs can be prohibitive if 

individual assets are managed 

independently

▪Our framework allows sharing 

knowledge across different assets
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Integrated monitoring tool will allow sharing anomaly data 

across different assets

▪ In condition-based monitoring, big data may 

not be really big
o Anomalous samples account for less than 0.2% in a 

metal smelting process

▪ Coverage of anomalies and thus accuracy 

can be limited due to lack of data
Normal: 99.8%

Anomalous: 

0.2%
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Technical challenge: 

Multi-modality, heavy noise, interpretability

▪ Straightforward solutions have serious limitations
o 1. Treat the systems separately. Create each model 

individually

✓ Suffers from lack of fault examples

o 2. Build one universal model by disregarding individuality

✓ Model fit is not good

▪ Practical requirements in IoT-related industries
o Capture both individuality and commonality

o Automatically capture multiple operational states 

✓ Without specifying e.g. # of patterns

o Be robust to noise 

o Be highly interpretable for diagnosis purposes

…
System 1

(in New 

Orleans)

System s

System S

(in New York)

…
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System (task) 1

(in New Orleans)

System (task) 2

(in New York)

Existing multi-task learning methods cannot handle multi-

modality

Comparing the proposed multi-task multi-modal (MTL-MM) model with standard 

Gaussian mixture (GMM) and multi-task learning (MTL) models

Can handle multi-modality 

but two systems must have 

the same model

Can treat different systems 

differently but cannot handle 

multi-modality

sensor variable 

(e.g. temperature)

sensor variable 

(e.g. temperature)

probability 

density
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Developed a doubly sparse model representing individuality 

and commonality of the systems in a fleet

Monitoring model 

for System 1

Monitoring model 

for System 2

Monitoring model 

for System S

……

sparse 

GGM 1

sparse 

GGM 2

sparse 

GGM K

Common dictionary

of sparse graphs

GGM=Gaussian Graphical Model

prob.

prob.

prob.

Individual sparse weights

…
System 1

(in New 

Orleans)

System s

System S

(in New York)

…
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Monitoring model for each asset is represented as a 

Gaussian mixture model

Monitoring model for System s

…

sparse 

GGM 1

sparse 

GGM 2

sparse 

GGM K

GGM=Gaussian Graphical Model

prob.
Gaussian mixture

Sparse mixture 

weights

Sparse 

Gaussian 

graphical 

model

System s
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Overview of probabilistic model

▪Observation model
o Gaussian mixture with task-dependent weight

▪ Sparsity enforcing priors
o Laplace prior for the precision matrix

o Bernoulli prior for the mixture weights

▪ Inference
o Variational Bayes + convex point estimation

Ide et al., “Multi-task Multi-modal Models for Collective Anomaly 

Detection”, IEEE Intl Conf. on Data Mining 2017 (ICDM 17).
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Inference algorithm: Use standard VB framework 

incorporating two convex optimization problems

▪ Update sample weights

▪ Update cluster weights

▪ Update precision matrices

▪ Update other parameters Solved by graphical lasso [Friedman 08]

Use new semi-closed form solution

Ide et al., “Multi-task Multi-modal Models for Collective Anomaly 

Detection”, IEEE Intl Conf. on Data Mining 2017 (ICDM 17).
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Solving the L0-regularized optimization problem for mixture 

weights

▪What is the problem of the conventional 

approach?
o Simply differentiate w.r.t. 

o Claims to get a sparse solution [Corduneanu+ 01]

o But mathematically        cannot be zero due to logarithm

▪We re-formalized the problem as a convex mixed-

integer programming

▪We derived a semi-closed form solution

Ide et al., “Multi-task Multi-modal Models for Collective Anomaly 

Detection”, IEEE Intl Conf. on Data Mining 2017 (ICDM 17).
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Comparison with possible alternatives

Interpretability Noise reduction Fleet-readiness Multi-modality

Our work [Ide et al. ICDM 17] Yes Yes Yes Yes

(single) sparse GGM [Ide et al. SDM 2009, Ide et al. 

ICDM 2016] Yes Yes No No

Gaussian mixtures [Yamanishi

et al., 2000; Zhang and Fung, 

2013; Gao et al., 2016]

Limited Limited No Yes

Multi-task sparse 

GGM

[Varoquaux et al., 2010; 

Honorio and Samaras, 2010; 

Chiquet et al., 2011; Danaher 

et al., 2014; Gao et al., 2016; 

Peterson et al., 2015].

Yes Yes Yes No

Multi-task learning 

anomaly detection

[Bahadori et al., 2011; He et 

al., 2014; Xiao et al., 2015] No (depends) Yes No
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Experimental results

▪  See my paper
o Ide et al., “Multi-task Multi-modal Models for Collective Anomaly Detection”, IEEE 

Intl Conf. on Data Mining 2017 (ICDM 17).

✓ Available at http://ide-research.net/

http://ide-research.net/
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In operation

In operation

Use-case example: Simultaneous monitoring based on on-

line computation of anomaly scores

Model construction

sensor time-series

window at 

present 

anomaly score

• overall

• variable-wise

…

• Doubly sparse mixture 

model

• Automated method to 

learn the doubly sparse 

model

…
System 1

(in New 

Orleans)

System s

System S

(in New York)

…
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Summary

▪Manufacturing industries are full of unsolved machine learning 
problems

▪ Need to go beyond conventional settings 
o Multi-X setting (X = task, modal, view, etc.)
o Sparsification for better interpretability

▪ The importance of smart UI / visualization cannot be overemphasized

▪ Note: rare to encounter peta/exa-scale data in practice
o A lot of things to do before thinking about distributed, parallelized, and streaming 

computing settings
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Discussion: What is the potential of deep learning in 

cognitive manufacturing? Image, text, and acoustics

▪ Image-based analysis can be safely replaced with a DL-based solution
o If you have a good amount of labeled data

▪ Text data is tricky
o Most of maintenance logs, monthly reports, emails, contractual documents are not 

appropriate for DL-based text analysis
✓ (and conventional text mining methods, either)

o Mainly due to lack of enough amount of data

▪ Acoustic data is tricky
o Sound-based inspection is common in some domains, but DL-based approach may not 

be very straightforward
o Mainly due to lack of established preprocess and language models

▪ Time-series modeling
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Thank you!


