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Wish to build a collective monitoring solution

» You have many similar but not identical industrial
System 1

(in New assets
Orleans)
» You want to build an anomaly detection model for
each of the assets
System s ] ] ] o ]
» Straightforward solutions have serious limitations
o 1. Treat the systems separately. Create each model
individually
v Suffers from lack of fault examples
o 2. Build one universal model by disregarding individuality
System S

(in New York) v Model fit is not good
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Practical requirements: Need to capture both commonality

and individuality

System 1
(in New
Orleans)

System s

System S
(in New York)

s
i
7z

= Capture both individuality and commonality
= Automatically capture multiple operational

states
o Real-world is not single-peaked (smgle modal)

= Be robust to noise

-0.5

= Be highly interpretable for diagnosis purposes
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Formalizing the problem as multi-task density estimation for
anomaly detection

Prob. density Anomaly score
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Use Gaussian graphical model (GGM)-based anomaly
detection approach as the basic building block

Multi-variate data Sparse graphical model Anomaly score

e e e k a(@) =

U ~ —Inp(x | D)
N Overall score
WW

MM

e o J _ —lﬂp(fﬁi | "B—z‘aD)

Variable-wise score
Hl/.‘;:LX{ Indet A — tr()%/\) — plIA1 }

sample covariance

|

training data [Ide+ SDMO9] [Ide+ ICDM16]
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Basic modeling strategy: Combine common pattern

dictionary with individual weights

Individual sparse weights Common dictionary
prob. of sparse graphs
System 1
(in New
Orleans) sparse
o GGM 1
. prob.
sparse
GGM 2
System s >< 0
prob.

System S L orse
(in New York) GpGM K

GGM=Gaussian Graphical Model

Monitoring model
for System 1

Monitoring model
for System 2

Monitoring model
for System S
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Basic modeling strategy: Resulting model will be a sparse

mixture of sparse GGM

sparse
System s o ij GGM 1
prob. sparse
GGM 2

X °

sparse
GGM K

GGM=Gaussian Graphical Model

Monitoring model for System s

% Gaussian mixture
Z p®, (A7)~
= I I

Sparse mixture Sparse
weights Gaussian
(= automatic graphical
determination of the model

number of patterns)

)
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Employing a Bayesian model for multi-modal MTL

K
» Observation model (for the s-th task) N N
I I x A k
o Gaussian mixture with task-dependent weight h 1N( | H ’( ) )

» Sparsity enforcing priors (non-conjugate) (AF) = (B)MQGX (—£||/\’“|| )
o Laplace prior for the precision matrix P -~ \4 P 2 !
o Bernoulli prior for the mixture weights

p(m*) = po (1 = po) ¢ Il

= Conjugate prior on {*} and {z*}
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Maximizing log likelihood using variational Bayes combined
with point-estimation

= |og likelihood

S N, K K S S
L=3"3" > N @™ [ )" + 3 Lap(A® | p)p(u® | AY) +D 2 Inmf + ) np(r)
s=1n=1k=1 k=1 s=1 s=1
l ] | J
! |
Likelihood by the obs. model Prior distributions

= Use VB for {u*}, {z5(M}

i i k
= Use point-estimate for {A"}, {7"}
o Results in two convex optimization problems

12
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Maximizing log likelihood using variational Bayes combined
with point-estimation

» Update sample weights Use new semi-closed form solution

K
= Update cluster weights l—max {Z cpInmy, — 7||7® 0}
TI-S
k=1

» Update precision matrices The ratio of samples s.t. ||| = 1.

assigned to the k-th cluster

» Update other parameters _ |
Solved by graphical lasso [Friedman 08]

k k Ak P ink
e {14 - TN QY — 2 |

total # of samples assigned to the k-th cluster
13
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Solving the LO-regularized optimization problem for mixture
weights

» What is the problem of the conventional VB

approach? max {Z ¢; In Wk}
o Simply differentiate w.r.t. 7}
o Claims to get a sparse solution [Corduneanu+ 01]
o But mathematically 7% cannot be zero due to logarithm s.t. [|[7%]|1 = 1.

= We re-formalized the problem as a convex mixed-
iInteger programming
o A semi-closed form solution can be derived (= see paper)

l’l’laXZ{Ckh’lﬁk —Tyr} s.t. Zﬂ'k =1,

ykzwk—e, yr € {0,1} for Ek=1,..., K,

14
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Comparison with possible alternatives

Our work [Ide et al. ICDM 17]

i [Ide et al. SDM 2009, Ide et al.
(single) sparse GGM o Yes Yes
Gaussian mixtures [Yamanishi Yes

et al., 2000; Zhang and Fung,
2013; Gao et al., 2016]

Multi-task sparse [Varoquaux et al., 2010;
GGM P Honorio and Samaras, 2010; YeS YeS YeS
Chiquet et al., 2011; Danaher

et al., 2014; Gao et al., 2016;
Peterson et al., 2015].

Multi-task learning [Bahadori et al., 2011; He et Yes
anomaly detection al., 2014; Xiao et al., 2015]

15
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Experiment (1): Learning sparse mixture weights

Proposed convex LO approach

= Conventional ARD approach gives better likelihood
sometimes get stuck with local |
minima | |
o ARD = automatic relevance e \

determination

o Often less sparser than the proposed
convex LO approach

Conventional ARD
approach gets stuck
with a local minimum

log-likehood

» Typical result of log likelihood vs
VB iteration count -

— regular
—qg™ =— proposed

a 200 400 G00 BOO 10:00
number of iterations
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Experiment (2): Learning GGMs
anomalies

» “Anuran Calls” (frog voice) data in
UCI Archive

o Multi-modal (multi-peaked)
o Voice signal + attributes (species, etc.)
» Created 10-variate, 3-task dataset
o Use the species of “Rhinellagranulosa’
as the anomaly
» Results

o Two non-empty GGMs are automatically
detected starting from K=9

o Clearly outperformed single-modal MTL
alternative in anomaly detection

v" Group graphical lasso, fused graphical
lasso

and detecting

\\
9 1\
y 2

y

Example of variable-wise distribution

MFCCs_.3 MFCCs_.4

S oom 4 9 ol

-0.5 0.0 0.5 1.0 -0.5 0.0 0.5 1.0
o
- ﬁ
(=]

Automatically Iearned GGMs

MFCCs_.7

[ I I 1 I I T 1
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Conclusion

» Developed multi-task density estimation framework that can handle
multi-modality
o Featuring double sparsity: mixture weights, variable dependency

» Demonstrated the utility in the context of condition-based asset
management

19
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Thank you!
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Integrated monitoring tool allows sharing rare anomaly data
across different assets

* |n condition-based monitoring, big data may
Anomalous: not be really big

0.2% o Anomalous samples account for less than 0.2% in a
metal smelting process

» Coverage of anomalies and thus accuracy
can be limited due to lack of data

Normal: 99.8%

21
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Existing methods cannot handle multi-modality

Can handle multi-modality Can treat different systems
probability but two systems must have differently but cannot handle
density the same model multi-modality
a
System (task) 1 6 | - o
(in New Orleans) - Task 1: MTL-MM - Task 1: GMM - Task 1: MTL
[=} o
0
S e T g e e o e sensor variable
-1 0 1 2 3 4 -1 0 1 2 3 4 -1 0 1 2 3 4 (eg temperature)
System (task) 2 o © ©
(in New York) - Task 2: MTL-MM T Task 2: GMM T Task 2: MTL
= S 3
g T T T T 1 g ) T T T T 1 g T T T T > sensor Varla‘ble

Comparing the proposed multi-task multi-modal (MTL-MM) model with standard
Gaussian mixture (GMM) and multi-task learning (MTL) models



