IBM Research

Multi-task Multi-modal Models for Collective Anomaly Detection

Tsuyoshi Ide ("**Ide-san**"), Dzung T. Phan, J. Kalagnanam PhD, Senior Technical Staff Member IBM Thomas J. Watson Research Center

This slides are available at ide-research.net.

IEEE International Conference on Data Mining (ICDM 2017)

Outline

- Problem setting
- Modeling strategy
- Model inference approach
- Experimental results

Wish to build a collective monitoring solution

System 1 (in New Orleans)

System s

- You have many similar but not identical industrial assets
- You want to build an anomaly detection model for each of the assets
- Straightforward solutions have serious limitations
 - 1. Treat the systems separately. Create each model individually
 - ✓ Suffers from lack of fault examples
 - \circ 2. Build one universal model by disregarding individuality
 - ✓ Model fit is not good

System S (in New York)

IBM

Practical requirements: Need to capture both commonality and individuality

System s

Capture both individuality and commonality

 Automatically capture multiple operational states

Real-world is not single-peaked (single-modal)

System S (in New York)

- Be robust to noise
- Be highly interpretable for diagnosis purposes

Formalizing the problem as multi-task density estimation for anomaly detection

Outline

- Problem setting
- Modeling strategy
- Model inference approach
- Experimental results

Use Gaussian graphical model (GGM)-based anomaly detection approach as the basic building block

Basic modeling strategy: Combine common pattern dictionary with individual weights

GGM=Gaussian Graphical Model

Basic modeling strategy: Resulting model will be a sparse mixture of sparse GGM

Outline

- Problem setting
- Modeling strategy
- Model inference approach
- Experimental results

IBM

Employing a Bayesian model for multi-modal MTL

- Observation model (for the s-th task)
 Gaussian mixture with task dependent word
 - Gaussian mixture with task-dependent weight

$$\prod_{k=1}^{K} \mathcal{N}(oldsymbol{x}^s \mid oldsymbol{\mu}^k, (egin{smallmatrix} egin{smallmatrix} oldsymbol{x}^s \mid oldsymbol{\mu}^k, (eta^k)^{-1})^{z_k^s} \end{pmatrix}$$

- Sparsity enforcing priors (non-conjugate)
 - $\circ~$ Laplace prior for the precision matrix
 - o Bernoulli prior for the mixture weights

• Conjugate prior on $\{\mu^k\}$ and $\{z^s\}$

$$p(\mathbf{\Lambda}^k) = \left(\frac{\rho}{4}\right)^{M^2} \exp\left(-\frac{\rho}{2} \|\mathbf{\Lambda}^k\|_1\right)$$
$$p(\mathbf{\pi}^s) = p_0^{\|\mathbf{\pi}^s\|_0} (1-p_0)^{G-\|\mathbf{\pi}^s\|_0}$$

Maximizing log likelihood using variational Bayes combined with point-estimation

Log likelihood

$$L = \sum_{s=1}^{S} \sum_{n=1}^{N_s} \sum_{k=1}^{K} \ln \mathcal{N}(\boldsymbol{x}^{s(n)} \mid \boldsymbol{\mu}^k)^{\boldsymbol{z}^{s(n)}} + \sum_{k=1}^{K} \operatorname{Lap}(\Lambda^k \mid \rho) p(\boldsymbol{\mu}^k \mid \Lambda^k) + \sum_{s=1}^{S} \boldsymbol{z}^{s(n)} \ln \pi_k^s + \sum_{s=1}^{S} \ln p(\boldsymbol{\pi}^s)$$

- Use VB for $\{\boldsymbol{\mu}^k\}, \{\boldsymbol{z}^{s(n)}\}$
- Use point-estimate for $\{\Lambda^k\}, \{\pi^s\}$
 - Results in two convex optimization problems

Maximizing log likelihood using variational Bayes combined with point-estimation

total # of samples assigned to the k-th cluster

Solving the L0-regularized optimization problem for mixture weights

- What is the problem of the conventional VB approach?
 - \circ Simply differentiate w.r.t. π_k^s
 - Claims to get a sparse solution [Corduneanu+ 01]
 - \circ But mathematically π_k^s cannot be zero due to logarithm
- We re-formalized the problem as a convex mixedinteger programming
 - \circ A semi-closed form solution can be derived (→ see paper)

$$\max_{\boldsymbol{\pi}^{s}, \boldsymbol{y}^{s}} \sum_{k=1}^{K} \{ c_{k}^{s} \ln \pi_{k}^{s} - \tau y_{k}^{s} \} \text{ s.t. } \sum_{k=1}^{K} \pi_{k}^{s} = 1,$$
$$y_{k}^{s} \ge \pi_{k}^{s} - \epsilon, \ y_{k}^{s} \in \{0, 1\} \text{ for } k = 1, \dots, K$$

$$\max_{\boldsymbol{\pi}^s} \left\{ \sum_{k=1}^K c_k^s \ln \pi_k^s \right\}$$
s.t. $\|\boldsymbol{\pi}^s\|_1 = 1.$

,

Comparison with possible alternatives

		Interpretability	Noise reduction	Fleet-readiness	Multi-modality
Our work [Ide et al. ICDM 17]		Yes	Yes	Yes	Yes
(single) sparse GGM	[Ide et al. SDM 2009, Ide et al. ICDM 2016]	Yes	Yes	No	No
Gaussian mixtures	[Yamanishi et al., 2000; Zhang and Fung, 2013; Gao et al., 2016]	Limited	Limited	No	Yes
Multi-task sparse GGM	[Varoquaux et al., 2010; Honorio and Samaras, 2010; Chiquet et al., 2011; Danaher et al., 2014; Gao et al., 2016; Peterson et al., 2015].	Yes	Yes	Yes	No
Multi-task learning anomaly detection	[Bahadori et al., 2011; He et al., 2014; Xiao et al., 2015]	No	(depends)	Yes	No

Outline

- Problem setting
- Modeling strategy
- Model inference approach
- Experimental results

Experiment (1): Learning sparse mixture weights

- Conventional ARD approach sometimes get stuck with local minima
 - ARD = automatic relevance determination
 - Often less sparser than the proposed convex L0 approach
- Typical result of log likelihood vs
 VB iteration count →

Experiment (2): Learning GGMs and detecting anomalies

- "Anuran Calls" (frog voice) data in **UCI** Archive
 - Multi-modal (multi-peaked)
 - Voice signal + attributes (species, etc.)
- Created 10-variate, 3-task dataset
 - Use the species of "Rhinellagranulosa" as the anomaly
- Results
 - Two non-empty GGMs are automatically detected starting from K=9
 - Clearly outperformed single-modal MTL alternative in anomaly detection
 - ✓ Group graphical lasso, fused graphical lasso

Example of variable-wise distribution

Conclusion

- Developed multi-task density estimation framework that can handle multi-modality
 - Featuring double sparsity: mixture weights, variable dependency
- Demonstrated the utility in the context of condition-based asset management

Thank you!

IBM

Integrated monitoring tool allows sharing rare anomaly data across different assets

 In condition-based monitoring, big data may not be really big

 Anomalous samples account for less than 0.2% in a metal smelting process

 Coverage of anomalies and thus accuracy can be limited due to lack of data

IBM Research

Existing methods cannot handle multi-modality

Comparing the proposed multi-task multi-modal (MTL-MM) model with standard Gaussian mixture (GMM) and multi-task learning (MTL) models