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Abstract—We consider the problem of anomaly localization in
a sensor network for multivariate time-series data by computing
anomaly scores for each variable separately. To estimate the
sparse Gaussian graphical models (GGMs) learned from different
sliding windows of the dataset, we propose a new model wherein
we constrain sparsity directly through ¢, constraint and apply an
additional ¢, regularization in the objective. We then introduce
a proximal gradient algorithm to efficiently solve this difficult
nonconvex problem. Numerical evidence is provided to show the
benefits of using our model and method over the usual convex
relaxations for learning sparse GGMs using a real dataset.

I. INTRODUCTION

The ever-increasing pervasiveness of digital technologies
makes it possible to collect enormous amounts of information
about the physical world. Data mining techniques play a
critical role in converting low-level sensor data collected
from IoT (Internet-of-Things) devices into actionable insights.
Anomaly and change detection is of primary importance in
IoT since identifying something as unusual is almost always
the first step towards additional actions by humans.

In the traditional problem setting, the goal of anomaly
detection is to compute the degree of anomalousness for a
multivariate measurement, giving an overall anomaly score.
We are instead interested in the task of anomaly localization,
where a variable-wise anomaly score is desired. In wireless
sensor networks, for example, it is often inadequate simply to
indicate whether or not a network is behaving anomalously,
i.e. it is not enough to simply perform anomaly detection.
If a sensor network takes measurements from different car
parts of a prototype automobile on a test track, then it
is far more valuable to the field engineers to know which
car parts are contributing to an anomalous behavior, rather
than simply knowing that the car as a whole is behaving
anomalously [1]. Similar problem settings can be found across
different application domains: monitoring mechanical stresses
in buildings and bridges [2], pinpointing the change points
in stock price time series [3], identifying car thefts [4], and
finding sources of serious threats in computer networks [5].

For anomaly localization, two main lines of research have
been proposed to date. In the first, Jiang et al. [6] used sparse
principal components analysis (PCA) to identify a set of vari-
ables that have nonzero weights in a subspace corresponding to
the distribution of abnormal samples in the training data. Their
problem setting is more like in-sample data cleansing, which
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identifies anomalous samples and variables in the training data.
In the second, Idé et al. [1], [7] proposed a graph-based
anomaly localization approach, where two separate sparse
dependency graphs are inferred from training and testing data.
In the training phase, a normal state model encoded by a sparse
Gaussian graphical model (GGM) is crated based on a training
data set. Then, some measure (anomaly score) of each node
(variable) in the dependency graphs is computed to determine
how responsible each node is for the difference between the
two graphs.

Although sparsity is of utmost importance in terms of
identification of responsible variables as well as robustness
to the noise of real-world sensor data, little is known about
what is the best approach to learn sparse dependency graphs
in the context of anomaly localization. In the literature, only
an ¢-regularized model has been investigated [7], [8]. In this
paper, we demonstrate that the proposed GGM-learning model
employing both an ¢ constraint and an ¢, regularization, along
with a novel optimization algorithm to solve it, outperforms
other models including typical ¢;-regularized models. In par-
ticular, we leverage the conditional expected Kullback-Liebler
(KL) divergence method proposed in [7] when computing
anomaly scores for each variable. A comparative study is con-
ducted on various GGM-learning models and scoring methods
for assigning anomaly scores.

The layout of the paper is as follows. In § II-A, we will
describe in detail the models that we propose for learning
sparse GGMs. In § II-B, we will discuss methods of anomaly
localization for identifying anomalous variables between dif-
ferent GGMs. In § III, we will introduce our proposed
proximal gradient algorithm. Finally, in § IV, we provide
some numerical results illustrating a preference for using
the proposed sparsity-constrained optimization model in the
anomaly localization setting.

II. LEARNING GRAPHICAL MODELS AND
ANOMALY SCORING METHODS

We will now describe optimization models that we use to
learn sparse precision matrices, and then review methods for
performing anomaly localization on pairs of sparse precision
matrices.



A. Sparse Graph Learning Models

Given a sample covariance matrix S, the authors of [7]
compute the sparse dependency graph X by solving the /-
regularized maximum likelihood problem, i.e.,

min tr(SX) —logdet(X) + A||X]|1, (1)
X>0

where [ X||; = X7 |X;;| is the component-wise £; norm of
the matrix X, and A > 0 is a regularization parameter to control
sparsity. Zeros in the precision matrix X indicate conditional
independence between two variables.

In this section, we propose a new model for estimating
sparse graphs. In particular, rather than regularizing an ¢; term
to control sparsity as in (1), we will directly constrain sparsity
by specifying a maximally allowable number of nonzeros k
in the optimal solution and add a quadratic penalty

: A 2

min tr(SX) —logdet(X) + 5 [ X||% @

st [ X]lo < x,
where A > 0 is once again a regularization parameter and the
Frobenius norm term ||X||% = et X ;| is also referred to as
¢, regularization in our paper. We denote by || - ||o the number
of nonzeros of the argument, the so-called ¢y norm. The ¢y
constraint guarantees that the solution will admit a certain level
of sparsity. The quadratic penalty encourages the capacity of
selecting groups in the presence of highly correlated variables
[9]. Without the regularization, some entries of the purely £y-
constrained model can have relatively large magnitudes. The
associated anomaly scores significantly dominate the others,
and thus some faulty variables can be overlooked. This is
not a desirable property of sparse precision matrices in the
context of anomaly localization, even if such matrices yield
meaningful sparsity patterns. Hence the ¢, regularization term
keeps the magnitude of all entries uniformly similar.

We also investigate some other precision matrix estimation
models that can be compared with our model (2) in the context
of anomaly localization. In the literature, some authors have
studied the cardinality-constrained model [10], [11]

min tr(SX) — logdet(X) 3
st Xl < k.
We will also consider an ¢;-based “elastic net" version for
GGM model,

min tr(SX) —logdet(X) + A [IX]ls +hXIE @

We note that among the four models (1)-(4), only the
¢; model (1) has been applied in learning a sparse GGM
for anomaly detection algorithms. We will conduct empirical
experiments using all of these models, and show that our ¢y-
based model (2) performs consistently better than the others.

B. Methods for Computing Anomaly Score of Each Variable

We briefly summarize three previously proposed techniques
for performing the change analysis, i.e. for assigning anomaly
scores to individual variables to measure the magnitude of
their contributions to the observed differences between two
sparse dependency graphs from training and testing datasets.

1) Conditional Expected KL-Divergence [7]: For the ith
variable, and for a learned GGM X, let

o[t - (2 5]

be permuted such that the last row and column of X, X!
correspond to the ith variable. Then, letting X4 and X? denote
the GGMs learned from datasets A and B respectively, one can
show

dAB = WAT(IB —H)+
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(5)
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We then define the anomaly score of the ith variable as
d; = max {a}* daP} . (6)

2) Stochastic Nearest Neighbors [1] : Let SA and S8
denote the sample covariance matrices of datasets A and B
respectively, and let Sf‘,Sf.9 denote the ith columns of $* and
S? respectively. For a sparse GGM X“ learned for dataset A,
define an indicator vector associated with the ith variable 14 ;
coordinate-wise by

lailj= { (1)

Then, a measure of the dissimilarity between the neighbor-
hoods of the ith variable between the GGMs for A and B,
weighted by the sample covariances of the two datasets, is
given by

if i and j are adjacent in X4
otherwise.
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Symmetrically, we define d?* and then compute an anomaly
score d; as in (6).

3) Sparsest Subgraph Approximation: Given two (sparse)
dependency graphs, e.g. X4 and X5, consider a graph given
by an adjacency matrix A defined entrywise by

Aij = Ix5— X}
The authors of [8] proposed a convex quadratic program

mind'A,d

min s.to1]d=1,d>0,, 9)

where Ay = A+ ul, is the original matrix A with an added
scaled identity with u > O sufficiently bounded away from
zero to enforce the positive definiteness of Ay, . The solution
d* to (9) can be interpreted as anomaly scores.

III. OPTIMIZATION ALGORITHM FOR £y SPARSE MODELS

This section proposes a proximal gradient algorithm for
solving the fy-constrained problem (2). We will consider a
general problem of the form

min{f(X) : X e R”" || X[o < k,X>=0,X=X"}, (10



where f is a smooth convex function. We define the sparsity
constraint set

Q= {X:|X]o < x}
and the projection operator

Po(X) = in||X—-Y||F.
a(X) = argmin [ X~ Y|

A possible strategy for solving a constrained optimization
problem like (10) is to use a proximal gradient method. One
issue here is that the constraint set in our problem QN {X >
0,X = X"} is an intersection of Q and the symmetric positive-
definite (PD) cone without its boundary, making it nonconvex
and not closed. In our method, feasibility with respect to
membership in Q is handled via projection, while symmetric
positive-definiteness of the iterates in ensured through a line-
search procedure.

On each iteration, we begin from a feasible iterate Xk
and then backtrack along the projection arc defined by
Po(Xk — g V£(XK)), initializing the stepsize o > 0 with a
Barzilai-Borwein stepsize [12]. We terminate the backtracking
procedure for computing X**! once the following conditions
(C1) and (C2) are both satisfied:

(C1) A sufficient decrease condition for the objective function
value is attained, i.e.

0
SO < (X5 = X=X,

for some algorithmic parameter § > 0.
(C2) The next iterate is feasible with respect to the positive
definite constraint, i.e. X¥T1 = 0.

A detailed description of an algorithm for solving (10) is
given in Algorithm 1.

As mentioned, Q is a nonconvex set, and as such, the
operator Pg is generally set-valued, i.e. projections are non-
unique. It is well-known that a point in Po(X) can be quickly
obtained [13]. Indeed, if X € R"*", then Po(X) is computed
by sorting the absolute values of the magnitudes of the n?
many entries in X and setting all but the k largest values
in X to 0, where ties can be broken arbitrarily. For the sake
of convergence, when we compute Pq, ties are not broken
arbitrarily, but by a dictionary order on the matrix entries. The
dictionary order is chosen in a way to ensure that the projected
matrix is symmetric. We remark that as a consequence of
sorting n”> matrix entries, the projection operation can be
performed in & (n*log(n)) time.

IV. EXPERIMENTAL RESULTS

In this section, we study the empirical performance of
the sparse GGMs in Section II-A. Three anomaly scoring
method were used: conditional expected KL-divergence [7],
stochastic nearest neighbors (NN) [1], and sparsest subgraph
approximation (SA) [8]. We use a particular ROC curve and
the area under the ROC curve (AUC) as described in [7]. A
detailed usage and notations are given in Table I.

Algorithm 1: Proximal Gradient Algorithm

1+ Given parameters ¢ € (0,1),0 > 0, [O4nin, Omax] C (0,0),
an initial feasible point X°.

2 Set k=0.

s while some stopping criteria not satisfied do

4 Step 1: BB step size:

s if k =0 then

6 ‘ o<+ 1
7 else
8 o <

tr((V(X5) VX1 (xk—xk1))
[[XF-XET]Z

min(Cpayx, Max(Opin,

9 Step 2: Line search along projection arc
10 j <0, ls < true

1 while (Is = true) do

12 Bk —ola

13 X Po(XE = BV (XY))

u if ((£(XF) < F(XE) = §XEH X[} and

Xkl 0) then

s | s « false

16 else

1 | jj+1

18 Step 3: Iterate

19 k+—k+1
Graph learning anomaly score | symbol
Eq. (1) KL divergence (5) | ¢ +KL
Eqg. (1) stochastic NN (8) | ¢; +SNN
Eq. (1) sparsest SA (9) | ¢, +SSA
Eq. (3) KL divergence (5) | ¢ +KL
Eq. (3) stochastic NN (8) | ¢o+SNN
Eqg. (3) sparsest SA (9) | {y+SSA
Eqg. 2) KL divergence (5) | ¢+ ¢+ KL
Eq. (2) stochastic NN (8) | ¢+ ¢, +SNN
Eq. (2) sparsest SA (9) | ¢y+¢, +SSA
Eq. (4) KL divergence (5) | ¢+ ¢+ KL
Eq. (4) stochastic NN (8) | ¢; +¢, +SNN
Eq. (4) sparsest SA (9) | ¢;+¢,+SSA

TABLE I: Combination of graph learning methods and
anomaly scoring methods.

A. Data Set

We experimented a real-world dataset to assess the models.
The Sensor Error data is a 42-dimensional dataset of sensor
signals, which comes from several experimental runs with
prototype cars. It consists of one run under a normal sys-
tem operation and two runs under abnormal conditions. The
anomalies in the latter two runs are caused by sensor miswiring
errors. There are 350 and 360 time series samples respectively
for the two abnormal runs and roughly 550 time series samples
in the normal reference run. There were two miswired sensors
in the anomalous runs known to the experimenters, and hence a
good method of anomaly localization should be able to identify
these two sensors as faulty. Data was generated by taking pairs



Ifo+fz+KL[€0+£2+SSA150+£2+SNNI €1+KL [ €1+SSA [ £1+SNN I EO"’KL [ £0+SSA [ €0+SNN |41+f2+KL[€1+fz+SSA[[1+£2+SNNI

mean
std

0.9767
0.0545

0.9412
0.1318

0.9637
0.0606

0.9631
0.1043

0.8334
0.1933

0.9388
0.0747

0.9448
0.1039

0.8606
0.1399

0.9551
0.0650

0.9627
0.1055

0.9536
0.1095

0.9454
0.0683

TABLE II: The mean and standard deviation for AUC values

of sliding windows of length 50, one from each of the normal
and abnormal runs.

B. Anomaly Localization Evaluation

The ROC curves are reported in Fig. 1. As we can see,
for each change analysis method, our ¢y + ¢>-based model
(2) outperforms the ¢;-based models and the pure ¢y model
(3). One exception is for the sparsest subgraph approximation
scoring method (9), our method is slightly behind the ¢; + ¢,
model. The performance of the ¢; + ¢, model is slightly better
than that of the ¢; model. The combination of the ¢y constraint
with the ¢, regularization is more advantageous than the use
of the ¢; + ¢, regularization.

We also see the benefit of adding the Frobenius norm term
to our model (2) when comparing it against the pure ¢y model
(3). The regularization term helps to improve the accuracy
in all cases. The pure ¢y model (3) is generally defeated
by the proposed model (2). As evidence for the power of
using an £y constraint as opposed to an ¢; regularization in
terms of sparsity pattern recovery, when using the stochastic
nearest neighbors as a scoring method, a method inherently
only concerned with sparsity patterns as opposed to relative
magnitudes, the pure ¢y model has a good performance.

We see that ¢y + ¢, + KL is often the top performer. The
use of the ¢y + ¢, model with other anomaly scoring methods
still gives a very competitive result. The sparse graphs learned
by the pure ¢y model (3) tend to do worse than other graph
learning methods if the associated scoring method also uses
the magnitude values of precision matrix.

There are a number of data windows, and each of them can
give an AUC value based on the standard ROC curve definition
as described in [6], [8]. Table II gives the mean and standard
deviation of AUC values for all possible tests. The best value
is highlighted in bold. The mean AUC of ¢+ ¢» + KL is the
highest. The standard deviations of our proposed ¢y + ¢, model
are often the smallest for the same scoring method.

V. CONCLUSIONS

This paper introduces a new method for anomaly local-
ization for multivariate time series datasets. We proposed an
ly-constrained GGM model with an ¢, regularization in the
objective to learn sparse dependency graphs and developed a
proximal gradient algorithm for the {y-constrained problem. It
has been shown that our ¢;-regularized {y-constrained model,
combined with the conditional expected Kullback-Liebler di-
vergence anomaly scoring, outperforms other methods for
detecting anomalies.
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