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Development of Blockchain: 
From currency transfer to general business transaction

▪ Blockchain 1.0: Bitcoin
o Specifically designed for currency transfer

o Account identity is protected but transactional records are public

o Verifying a transaction is trivial: just check the account balances

o Futuristic consensus algorithm (“proof-of-work”) that lacks deterministic guarantees

▪ Blockchain 2.0: Smart-Contract-enabled transactional platform
o Designed to be able to handle “general” business transactions

o Public or semi-closed (membership, permissioned)

o Verifying a transaction is not straightforward

o Traditional consensus algorithm (e.g. PBFT) is typically used



4

IBM Research

Using Blockchain for IoT applications

▪ Two major data types
o Traceability data: categorical, deterministic, may be 

incorrect but noise-free
✓ Parts, inventories, work orders, SCM, CRM, etc. 

✓ Many attempts: food traceability (Walmart), shipping goods 
traceability (Maersk), etc.

o Sensor data: real-valued, stochastic noise
✓ Raw sensor signals such as temperature, pressure

▪ Expectations towards novel business applications
o Decentralized SCM
o Utility-based pricing of resources (sensors, algorithms, 

etc.)
o etc.

focus
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Redefining Blockchain as collaborative learning platform

▪ Most of the existing Blockchain-based IoT applications are sort of static data 
storage. We want to go one step further

▪ “Blockchain 3.0”: Platform for collaborative learning
o A platform to create new business insights through knowledge sharing among multiple 

parties in a Blockchain-specific way

▪ Key question: how can we create a new business value through data 
exchange on Blockchain? 
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Sharing sensor data on Blockchain:
Challenges

▪ Challenges to put sensor data onto Blockchain networks
o Validation

o Consensus

▪ Validation
o What if a new observation shared is incorrect? 

✓ This is a general issue for most of smart contracts

o Need automatic down-weighting mechanism for less informative observations

▪ Consensus
o Most of the existing Blockchain system do NOT assume noisy sensor signals

✓ (out of the scope of this work)

focus
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client = 
industrial asset

Collaborative condition-based monitoring of industrial assets:
Problem setting

▪ System: distributed competing industrial 
assets
o Mining tools, manufacturing tools, etc.
o They want to keep their data privately, but they 

want to exploits other data

▪ Data: real-valued multi-variate noisy 
sensor signals
o e.g. temperature, pressure, ...

▪ Goal: Collaboratively build an anomaly 
detection model through Blockchain 
transactions
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Collaborative condition-based monitoring of industrial assets:
Requirements

▪ Capable of handling noisy data

▪ Capable of taking an optimal balance between 
individuality vs. commonality of the assets

▪ Capable of preserving data privacy
o Assumption of competing assets: Do not want to share their 

own data but want to exploit other one's data

o Happens when assets belong to different companies
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Collaborative condition-based monitoring of industrial assets:
Approach overview

▪ Capable of handling noisy data

▪ Capable of taking an optimal balance between 
individuality vs. commonality of the assets

▪ Capable of preserving data privacy
o Assumption of selfish assets: Do not want to share their 

own data but want to exploit other one's data

Probabilistic sample weighting scheme

Multi-task learning for anomaly detection

Separation of global- and local state variables
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Doing multi-task learning (MTL) as Smart Contract

▪ Definition of multi-task learning: 
o A machine learning algorithm is said to be multi-task learning if the model consists a local 

part and a global part: 

(prediction model) =  (global/shared part) + (local/individual part)

▪ A Smart Contract is characterized by a pair of (state variable, algorithm)

▪ We map an MTL-based anomaly detection model [Ide+ ICDM 17] onto a 
Smart Contract by properly defining state variables
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Learn probability density under normal condition. 
Define anomaly score as deviation from the normal state
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Each model is represented as a linear combination of shared 
dependency models
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Learning model parameters from data

▪ Employ an EM algorithm for model inference 
o See the text for the detail

▪ The resulting algorithm is iterative: 

Local state variable update Global state variable update

client 1 client S...
iteration

Shared pattern dictionary
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Local and global state variables are iteratively updated as Smart 
Contract

▪ Anomaly score function is written in terms of global and local state variables

Local state variable update Global state variable update

client 1 client S...
iteration

Shared pattern dictionary

Client side Endorser (consensus node) side
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The derived EM algorithm is naturally mapped into the local-global 
update framework

▪ Anomaly score function is written in terms of global and local state variables

iteration
raw sampleAggregated 

quantities

Client side Endorser (consensus node) side
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How this algorithm meets the practical requirements

▪ Validating transactions for real-valued noisy data
o EM algorithm automatically down-weights less informative observations

o This can be viewed as automated validation of transactions

▪ Balancing between individuality vs. commonality
o This is the very core concept of multi-task learning

▪ Preserving data privacy
o Raw data is never shared beyond each client

o Only aggregated statistics are shared with endorsers (consensus nodes)
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Conclusion

▪ We redefined Blockchain network as collaborative learning platform

▪ We showed that multi-task learning nicely fits the notion of Smart Contract 
by separating global and local state variables

▪ As a concrete IoT example, we wrote down an MTL-based dictionary 
learning algorithm for collaborative condition-based maintenance of 
industrial assets
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Limitations of the current model and our on-going work

▪ Lack of an explicit consensus building mechanism
o Traditional Byzantine Fault Tolerance mechanisms are not appropriate to IoT data

✓ They implicitly assume categorical and deterministic data

o Our recent approach has solved this issue 

▪ Lack of theoretical guarantees on privacy preservation 
o We recently developed an improved version that has a mathematical privacy guarantee

▪ Lack of a realistic business model that motivates companies to participate in 
this network
o On-going work is looking at an approach to incentivizing or penalizing clients based on the 

immutable Blockchain data, depending on contribution to dictionary learning



23

IBM Research

Thank you!


