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Agenda

▪General challenges in industrial sensor data analytics

▪ Solution examples: 
o Change detection using directional statistics

o Multi-task multi-modal models for collective anomaly detection

o Tensorial change analysis

▪ Discussion: deep learning, Blockchain, and future directions
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Machine learning from sensor data is one of the major 

research focuses

▪ Anomaly and change detection is a 

major topic in sensor data analytics

▪ Recently published two textbooks 

(in Japanese)
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Basics: General problem setting in machine learning

▪ Supervised learning
o Given a data set

o find the probability distribution of 

y given x: 

▪ Unsupervised learning
o Given 

o find

▪ Typical assumptions
o x is a vector

o y is a scalar

o Samples are independently and 

identically distributed (i.i.d.)

▪What makes sensor data 

analytics interesting?
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General challenges: No “one-size-fits-all” algorithm

▪ Example in anomaly detection
o “Happy families are all alike; every unhappy family is unhappy in its own way.” -

Anna Karenina, Leo Tolstoy

outliers (from i.i.d. 

samples)

change points

outliers (from auto-

correlated samples)

discords

Examples of anomalies

Tsuyoshi Ide and Masashi Sugiyama, Anomaly Detection and Change Detection, Kodansha, 2015 (in Japanese).
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General challenges: Business requirements often drive 

extensions of existing approaches

▪ Example: corporate-level asset 

management with anomaly detection

o Typically assets are managed as a cohort

✓ 10s of off-shore oil production systems

✓ 100s of industrial robots

✓ 1000s of electric vehicles in a certain area

o How can we leverage the commonality between 

assets to build an anomaly detection solution for 

individual assets? 

...

...

...
T. Ide, et al., “Multi-task Multi-modal Models for Collective Anomaly Detection,“ Proc. 2017 IEEE Intl. 

Conf. Data Mining (ICDM 17), pp.177-186
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General challenges: Complex internal structure may exist in 

one measurement

Optical Emission Spectra

time-series of independent 

(non-controlled) variables
time-series of 

controlled variables

Tracking plasma etch process variations using 

Principal Component Analysis of OES data. Ma, B.; 

McLoone, Seán; Ringwood, J. 2007. International 

Conference on Informatics in Control, Automation 

and Robotics (ICINCO 2007), Angers, France.

Example from semiconductor manufacturing (etching)

wafer passes

Optical spectra

Each wafer pass is a higher-order 

tensor, rather than a vector

Controlled variables

Non-controlled
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General challenges: Ready-to-use solution to your problem 

might not even exist

▪ Example: Charge retention (~ battery life) 

prediction of electric vehicle batteries
o Depends on the entire history of battery usage

o Battery usage is represented as a complex 

trajectory of a multi-dimensional space 

▪ Charge retention prediction task should be 

formulated as “trajectory regression”

Temperature
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Toshiro Takahashi, Tsuyoshi Ide, “Predicting Battery Life from Usage Trajectory Patterns,” Proc. 

Intl. Conf. Pattern Recognition (ICPR 2012), pp.2946-2949.

“trajectory”

charge 

retention
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General challenges: Ground truth may not be available. 

Some degrees of freedom are usually latent

▪ Example: sensor data of a 

compressor of oil production 

system
o Data taken under a normal 

operational condition

o Noisy, nonstationary, 

heterogeneous, high-

dimensional …

▪ Hard to pinpoint what is 

indicative of malfunction

(simulation data)

Axial compressor
(Source: Wikipedia)

(Image: Wikimedia commons)
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Agenda

▪General challenges in industrial sensor data analytics

▪ Solution examples: 
o Change detection using directional statistics (Ide et al., IJCAI 17)

o Multi-task multi-modal models for collective anomaly detection

o Tensorial change analysis

▪ Discussion: deep learning, Blockchain, and future directions



12

IBM Research

Continuous operation of conveyor systems is critical in the 

mining industry

▪ Business goal: Ensure continuous 
operation of conveyor system (“apron 
feeder”) by detecting early indications of 
failures 

▪ Data: Physical sensor data from 
conveyors and motors 
o Every several seconds over ~ 1 year
o Sensors include: Gearbox temperatures, motor 

power consumptions, apron speed, etc.

▪ Challenge: Conveyor system is subject to 
significant fluctuation in load. Hard to 
characterize the normal operation
o Mined crude ore never come in a uniform size A
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(simulation data)

(Image: Wikimedia commons)

(Image: Wikimedia commons)
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Problem setting: change detection from multivariate noisy 

time-series data

▪ Change = difference between

and 
o x: M-dimensional i.i.d. observation

o p(x): p.d.f. estimated from training window

o pt(x): p.d.f. estimated from the test window at 

time t

▪ Assume a sequence of i.i.d. vectors
o Training data in the training window

training window 

(fixed or sliding)

test 

window

D

t (time)

N

time index (or sample index)
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Problem setting: change detection from multi-variate noisy 

time-series data

▪Question 1: What kind of model should 

we use for the probability density?

▪Question 2: How can we quantify the 

difference between the densities? 

training window 

(fixed or sliding)

test 

window

D

t (time)

N
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We use von Mises-Fisher distribution to model         and 

▪ vMF distribution: “Gaussian for unit vectors”

o z: random unit vector of ||z|| =1

o u: mean direction

o : “concentration” (~ precision in Gaussian)

o M: dimensionality

▪We are concerned only with the direction of 

observation x:
o

same 

direction = 

same input• Normalization is always made

• Do not care about the norm
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Normalization is useful to suppress multiplicative noise

▪ Real mechanical systems often 

incur multiplicative noise
o Example: two belt conveyors operated 

by the same motor

▪ Normalization of vector is simple 

but powerful method for noise 

reduction

time

Farzad Ebrahimi, ed., Finite 

Element Analysis - Applications in 

Mechanical Engineering, under CC 

BY 3.0 license

(Image: 

Wikimedia 

commons)

http://creativecommons.org/licenses/by/3.0/
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Mean direction u is learned via maximum likelihood. 

Introduce sample weight to down-weight contaminated ones

▪Weighted likelihood function

▪ Regularization over sample weights

▪ Parameters are learned by solving

sample weight

(normalization factor)

The term related to     is less 

important.       is treated as a given 

constant. encourage 

sparsity
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Multiple patterns (directions) can be obtained by coupling 

maximum likelihood equations

▪ Find orthogonal sequence of the mean direction u1, u2, …, um by 

coupling the weighted regularized maximum likelihood

…

Orthogonality 

condition

Kronecker 

delta
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Iterative sequential algorithm for the coupled maximum 

likelihood

▪ For each i, wi and ui are 

solved iteratively until 

convergence

▪ Analytic solution exists 

in each step

▪ Results in very simple 

fixed point equations

…



20

IBM Research

Derived fixed-point iteration algorithm

▪ Example: i =1

This Lasso problem is solved analytically
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Theoretical property: The algorithm is reduced to the “trust-

region subproblem” in              

Useful to initialize 

the iterative 

algorithm
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▪With extracted directions, define the 

change score at time t as

▪ Concisely represented by the top 

singular value of

Change score as parameterized Kullback-Leibler divergence

training window 

(fixed or sliding)

test 

window
vMF distribution 

vMF distribution 

vMF dist. 
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Experiment: Failure detection of ore belt conveyors

▪ vMF formulation successfully 

suppressed very noisy non-Gaussian 

noise of multiplicative nature

▪ ~40% of samples were automatically 

excluded from the model

Learned 

sample 

weights

Training 

data

~ 40% samples have zero weight:  

automated sample size reduction

(simulation data)

▪ Better than alternatives
o PCA, Hoteling T2

o Stationary subspace analysis 

[Blythe et al., 2012]
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Agenda

▪General challenges in industrial sensor data analytics

▪ Solution examples: 
o Change detection using directional statistics

o Multi-task multi-modal models for collective anomaly detection (Ide et al,  ICDM 17)

o Tensorial change analysis

▪ Discussion: deep learning, Blockchain, and future directions
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Wish to build a collective monitoring solution 

▪ You have many similar but not identical industrial 

assets

▪ You want to build an anomaly detection model for 

each of the assets

▪ Straightforward solutions have serious limitations
o 1. Treat the systems separately. Create each model 

individually

✓ Suffers from lack of fault examples

o 2. Build one universal model by disregarding individuality

✓ Model fit is not good

…
System 1

(in New 

Orleans)

System s

System S

(in New York)

…
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Practical requirements: Need to capture both commonality 

and individuality

▪ Capture both individuality and commonality

▪ Automatically capture multiple operational 

states 
o Real-world is not single-peaked / single-modal

▪ Be robust to noise 

▪ Be highly interpretable for diagnosis purposes

…
System 1

(in New 

Orleans)

System s

System S

(in New York)

…
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Formalizing the problem as multi-task density estimation for 

anomaly detection

Data Prob. density Anomaly score

all data

• overall

• variable-wise

m
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…
System 1

(in New 

Orleans)

System s

System S

(in New York)

…
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Use Gaussian graphical model (GGM)-based anomaly 

detection approach as the basic building block

Sparse graphical model

training data

Multi-variate data Anomaly score

Overall score

Variable-wise score

[Ide+ SDM09] [Ide+ ICDM16]

sample covariance
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Basic modeling strategy: Combine common pattern 

dictionary with individual weights

Monitoring model 

for System 1

Monitoring model 

for System 2

Monitoring model 

for System S

……

sparse 

GGM 1

sparse 

GGM 2

sparse 

GGM K

Common dictionary

of sparse graphs

GGM=Gaussian Graphical Model

prob.

prob.

prob.

Individual sparse weights

…
System 1

(in New 

Orleans)

System s

System S

(in New York)

…
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Basic modeling strategy: Resulting model will be a sparse 

mixture of sparse GGM

Monitoring model for System s

…

sparse 

GGM 1

sparse 

GGM 2

sparse 

GGM K

GGM=Gaussian Graphical Model

prob.

System s

Gaussian mixture

Sparse mixture 

weights

(= automatic 

determination of the 

number of patterns)

Sparse 

Gaussian 

graphical 

model
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Propose a Bayesian multi-task model with two sparsity-

enforcing priors

▪Observation model (for the s-th task)
o Gaussian mixture with task-dependent weight

▪ Sparsity enforcing priors (non-conjugate)
o Laplace prior for the precision matrix

o Bernoulli prior for the mixture weights

▪ Conjugate prior on          and
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Maximizing log likelihood using variational Bayes combined 

with point-estimation

▪ Complete log likelihood

▪ Use VB for 

▪ Use point-estimate for 
o Results in two convex optimization problems

Likelihood by the obs. model Prior distributions
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Maximizing log likelihood using variational Bayes combined 

with point-estimation

▪ Update sample weights

▪ Update cluster weights

▪ Update precision matrices

▪ Update other parameters
Solved by graphical lasso [Friedman 08]

Use new semi-closed form solution

total # of samples assigned to the k-th cluster 

The ratio of samples 

assigned to the k-th cluster 
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Solving the L0-regularized optimization problem for mixture 

weights

▪ Conventional VB approach without L0

regularization on        is problematic
o Claimed to get a sparse solution [Corduneanu+ 01]

o But mathematically        cannot be zero due to logarithm

▪We re-formalized the problem as a convex mixed-

integer programming
o A semi-closed form solution can be derived (→ see paper)
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Comparison with possible alternatives

Interpretability Noise reduction Fleet-readiness Multi-modality

Our work [Ide et al. ICDM 17] Yes Yes Yes Yes

(single) sparse GGM [Ide et al. SDM 2009, Ide et al. 

ICDM 2016] Yes Yes No No

Gaussian mixtures [Yamanishi

et al., 2000; Zhang and Fung, 

2013; Gao et al., 2016]

Limited Limited No Yes

Multi-task sparse 

GGM

[Varoquaux et al., 2010; 

Honorio and Samaras, 2010; 

Chiquet et al., 2011; Danaher 

et al., 2014; Gao et al., 2016; 

Peterson et al., 2015].

Yes Yes Yes No

Multi-task learning 

anomaly detection

[Bahadori et al., 2011; He et 

al., 2014; Xiao et al., 2015] No (depends) Yes No



36

IBM Research

Experiment (1): Learning sparse mixture weights

▪ Conventional ARD approach 

sometimes gets stuck with local 

minima
o ARD = automatic relevance 

determination

o Often less sparse than the proposed 

convex L0 approach

▪ Typical result of log likelihood vs 

VB iteration count →

Conventional ARD 

approach gets stuck 

with a local minimum

Proposed convex L0 approach 

gives better likelihood 
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Experiment (2): Learning GGMs and detecting 

anomalies

▪ “Anuran Calls” (frog voice) data in 
UCI Archive
o Multi-modal (multi-peaked)
o Voice signal + attributes (species, etc.)

▪ Created 10-variate, 3-task dataset
o Use the species of “Rhinellagranulosa” 

as the anomaly

▪ Results
o Two non-empty GGMs are automatically 

detected starting from K=9
o Clearly outperformed single-modal MTL 

alternative  in anomaly detection

✓ Group graphical lasso, fused graphical 
lasso

Automatically learned GGMs

Example of variable-wise distribution
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Agenda

▪General challenges in industrial sensor data analytics

▪ Solution examples: 
o Change detection using directional statistics

o Multi-task multi-modal models for collective anomaly detection

o Tensorial change analysis

▪ Discussion: deep learning, Blockchain, and future directions
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Developing a system for change diagnosis when input data 

is a tensor (multi-way array)

▪ Real application example: Condition-based monitoring of reactive ion 
etching tool
o Tools deteriorate over time due to debris in the etching chamber
o Degradation process is implicit and subtle. Quantification is challenging

▪ Basic problem setting: Compare a test period with a reference period to 
explain what really is the difference in terms of observable variables

“golden period” (or reference period) test period in question

• ~ 100s wafers processed

• ~ 30 sensors 

• ~ 20 etching steps

• ~ 10 statistical quantities
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The input is a tensor (multi-way array)  associated with a 

goodness metric

▪ Semiconductor etching example
o y: (one of) quality measurements

✓ electric resistance, line widths, ...

o X: “trace data” (sensor recordings)

✓ pressure, temperature, electric current, ...

▪One etching round of trace data is 
most naturally represented as a 
tensor (multi-way array)
o Typically 3-way array

✓ variable x etching step x statistics used x time

✓ variable x etching step x etching metal layer

o Often summarized as 2-way tensor by e.g. 
taking the mean over time in each step

v
a

ria
b

le

time

: goodness metric

a time period
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The task addressed: (1) Detect a change in X-y relationship. 

(2) Explain which mode/dimension is most responsible

▪ (1) Compute the anomalousness of a 
single or a set of etching round(s) in a 
test period

▪ (2) Compute the responsibility of the 
dimensions of each mode that explains 
the anomalousness of the test period

v
a

ria
b

le

goodness 

metric

training data 

(or “golden period”)
test period defined 

by a sliding window

trace 

data ...
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Technical challenges

Tensor regression is not well-studied

• Regression is the task to learn a function y = f(X) from 

training data

• Existing techniques mainly use vectorization of tensors

Vectorized probabilistic model cannot be the solution

Probabilistic prediction is even harder

• Non-subjective change scoring requires probabilistic 

prediction.

• Existing probabilistic tensor regression methods are 

impractical

• Not very interpretable – it destroys the tensor structure of 

the input

Tensorial change 

diagnosis 

framework using 

probabilistic 

tensor regression 

algorithm



43

IBM Research

Agenda

▪General challenges in industrial sensor data analytics

▪ Solution examples: 
o Change detection using directional statistics

o Multi-task multi-modal models for collective anomaly detection

o Tensorial change analysis

▪ Discussion: deep learning, Blockchain, and future directions
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Does deep learning mean the end of journey? Probably not. 

Factors that make deep learning work

▪Good applications 

meeting these criteria
o Image recognition

o (Some of) natural language 

processing

o Speech recognition

▪ How about industrial 

dynamic systems?
o Interesting research topic

Well-defined and well-accepted task

No need to tell why

Huge amount of labeled training data

Typically needs millions labeled samples

Minimum uncertainty in data representation

Pixels, words, Mel-filterbank
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One caveat: Automated feature learning from noisy senor 

signal is still challenging 

▪ Image recognition and NLP (natural 
language processing) are an ideal 
area for deep learning
o Huge annotated datasets exist
o Established preprocess method

▪ A little secret in speech recognition: 
State-of-the-art deep-learning-
based systems use handcrafted 
features

▪ The situation will be much tougher 
in general industrial sensor data 
analytics

“State-of-the-art speech recognition 

systems rely on fixed, handcrafted features 

such as mel-filterbanks to preprocess the 

waveform before the training pipeline”
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Implications for sensor data analytics

▪ Deep learning (especially RNN such as LSTM) will be a powerful tool 

when
o we know how to read the data (and thus a good amount of labeled training data 

exists)

o we know limitations of linear models (state-space models)

o we have a lot of GPU!
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Discussion: Will Blockchain bring in any value on sensor 

data analytics? 

▪What is Blockchain?
o Distributed decentralized database characterized by a hash chain data structure 

and a consensus algorithm

▪ Blockchain generations
o 1st generation (Bitcoin)

✓ De-centralized, secure platform for money transfer 

o 2nd generation (Ethereum, Hyperledger, Corda)

✓ Extended to handle general business transactions beyond money transfer

▪ Expected to be a useful platform for IoT (internet-of-things) systems
o “Device democracy”
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Discussion: Will Blockchain bring in any value on sensor 

data analytics? 

▪ Blockchain should be 

generalized as a collaborative 

learning platform
o “Blockchain 3.0”

o The particular hash chain data 

structure can be viewed as just one 

instance of implementation

▪ Example: privacy-preserving 

multi-task learning on 

Blockchain

S 1

2

.

..

submitting 
client

endorser

orderer
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Summary and ongoing work

▪ Industrial sensor data have 
many interesting features that 
call for new machine learning 
formulation

▪ Introduced a few recent works 
on anomaly detection
o Change detection using 

directional statistics
o Multi-task anomaly detection 

algorithm
o Tensorial change analysis

▪Ongoing/future work
o Prediction/anomaly detection 

from novel data types

✓ tensors, functions, graphs, 
trajectories, events, etc.

o Multi-x / cross-x learning

✓ multi-task, view, domain, 
modality

o Deep learning for dynamic 
systems
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Thank you!


