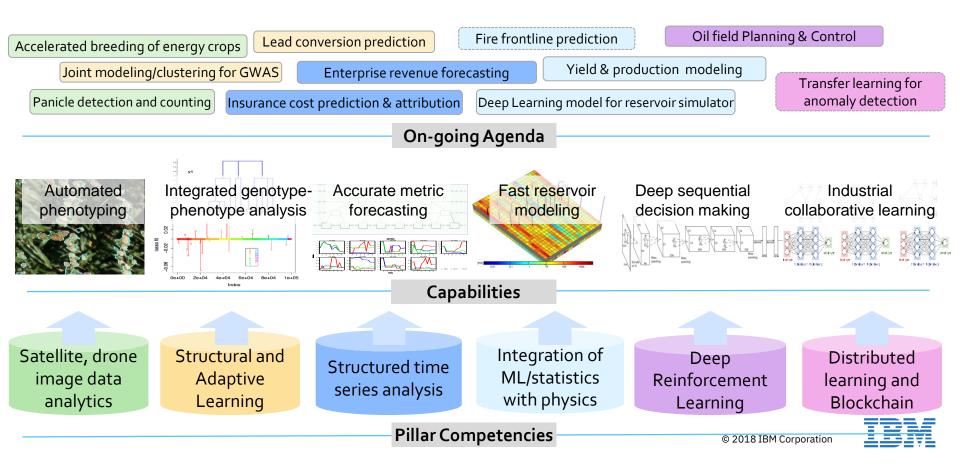
IBM Research

Recent advances in sensor data analytics

Tsuyoshi Ide ("Ide-san") PhD, Senior Technical Staff Member IBM Thomas J. Watson Research Center

CME 2018 (Shimane, Japan, Sep 7, 2018)


Agenda

General challenges in industrial sensor data analytics

Solution examples:

- Change detection using directional statistics
- o Multi-task multi-modal models for collective anomaly detection
- \circ Tensorial change analysis
- Discussion: deep learning, Blockchain, and future directions

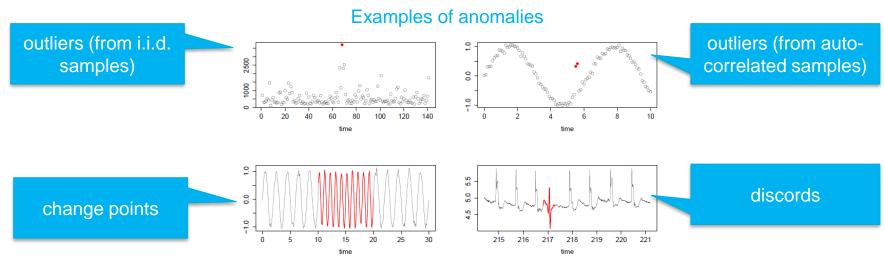
IBM T. J. Watson Research Center Center for Computational and Statistical Learning

Machine learning from sensor data is one of the major research focuses

- Anomaly and change detection is a major topic in sensor data analytics
- Recently published two textbooks (in Japanese)

Basics: General problem setting in machine learning

- Supervised learning \circ Given a data set $\{(\boldsymbol{x}^{(1)}, y^{(1)}), \dots, (\boldsymbol{x}^{(N)}, y^{(N)})\}$ \circ find the probability distribution of y given **x**: $p(y \mid \boldsymbol{x})$
- Unsupervised learning \circ Given $\{ {m{x}}^{(1)} \dots, {m{x}}^{(N)} \}$
 - \circ find $p(oldsymbol{x})$


- Typical assumptions
 - \circ **x** is a vector
 - $\circ\,$ y is a scalar
 - Samples are independently and identically distributed (i.i.d.)
- What makes sensor data analytics interesting?

General challenges: No "one-size-fits-all" algorithm

Example in anomaly detection

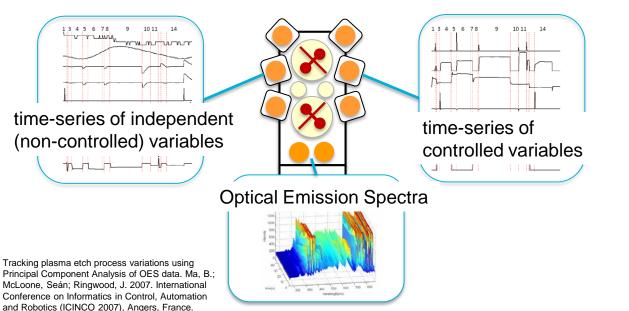
 "Happy families are all alike; every unhappy family is unhappy in its own way." -Anna Karenina, Leo Tolstoy

Tsuyoshi Ide and Masashi Sugiyama, Anomaly Detection and Change Detection, Kodansha, 2015 (in Japanese).

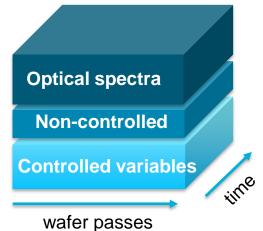
General challenges: Business requirements often drive extensions of existing approaches

- Example: corporate-level asset management with anomaly detection
 - Typically assets are managed as a cohort
 - ✓ 10s of off-shore oil production systems
 - ✓ 100s of industrial robots
 - \checkmark 1000s of electric vehicles in a certain area
 - How can we leverage the commonality between assets to build an anomaly detection solution for individual assets?

T. Ide, et al., "Multi-task Multi-modal Models for Collective Anomaly Detection," Proc. 2017 IEEE Intl. Conf. Data Mining (ICDM 17), pp.177-186



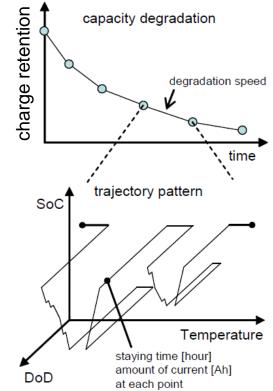
. . .


IBM

General challenges: Complex internal structure may exist in one measurement

Example from semiconductor manufacturing (etching)

Each wafer pass is a higher-order tensor, rather than a vector

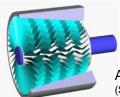


General challenges: Ready-to-use solution to your problem might not even exist

- Example: Charge retention (~ battery life) prediction of electric vehicle batteries
 - Depends on the entire history of battery usage
 - Battery usage is represented as a complex trajectory of a multi-dimensional space
- Charge retention prediction task should be formulated as "trajectory regression"

charge
$$y = f(\overset{\circ}{,} \overset{\circ}{,$$

Toshiro Takahashi, Tsuyoshi Ide, "Predicting Battery Life from Usage Trajectory Patterns," Proc. Intl. Conf. Pattern Recognition (ICPR 2012), pp.2946-2949.



General challenges: Ground truth may not be available. Some degrees of freedom are usually latent

- Example: sensor data of a compressor of oil production system
 - Data taken under a normal operational condition
 - Noisy, nonstationary, heterogeneous, highdimensional ...
- Hard to pinpoint what is indicative of malfunction

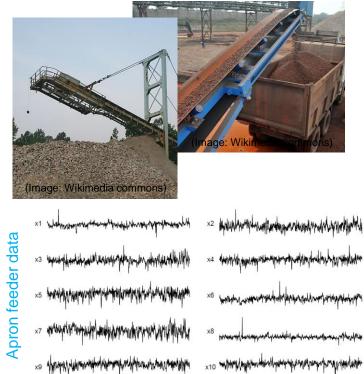
Axial compressor (Source: Wikipedia)

any barger and some		بالالباطينين ألجالا المل	والألباء الأمينه ومألجا للألمار	Minister Minister	والمالية المرابع والمرابع	aphall (haddlin) franker
MARCHILL, MARINA HANNA	, alter frage-sulfrage-server	with the will the town	When the way we Mit		⊌₩ [₽] ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	
Marthunk-with sharping	HAMPOR CURANTANIA	NM TO ANY TO ANY POWER	13 your manager	Mummuna	A MANY MANY MANY MANY	Man provide a second
		http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.h	harbor printer all with	Were to an and the	A MANY MANY AND	Marin marine
A BARANTA CARANTA ANALA	4.4.4.8.14+-1-++-++++++++++++++++++++++++++++++	alariaanaharrigt-tahunistre -	ABURANCE CONTRACTOR	the of the same second and and the same	the for the second	WINN AND AND AND AND AND AND AND AND AND A
Allower and a second and the	Manufe Low And Low M	Alexander on the sum	Harph Mar Laght Martine			HANNARHITMAN
Hand Mar John Marker		He was a contract of the second of the secon	Handran Mart Bawas	Heren Harrison	}+ ~++++++++++++++++++++++++++++++++++	Harry Mynam Marth
Hope and the second of the sec		Maria de ville de marie	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			

Agenda

General challenges in industrial sensor data analytics

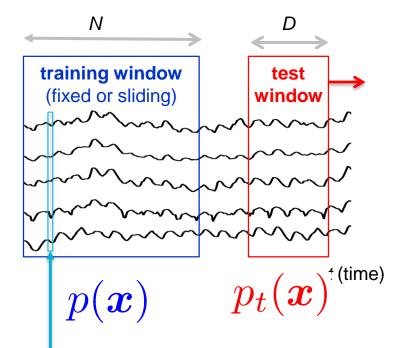
Solution examples:


- Change detection using directional statistics (Ide et al., IJCAI 17)
- o Multi-task multi-modal models for collective anomaly detection
- o Tensorial change analysis
- Discussion: deep learning, Blockchain, and future directions

Continuous operation of conveyor systems is critical in the mining industry

- Business goal: Ensure continuous operation of conveyor system ("apron feeder") by detecting early indications of failures
- Data: Physical sensor data from conveyors and motors
 - Every several seconds over ~ 1 year
 - Sensors include: Gearbox temperatures, motor power consumptions, apron speed, etc.
- Challenge: Conveyor system is subject to significant fluctuation in load. Hard to characterize the normal operation

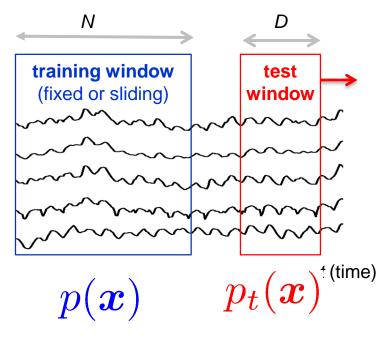
Mined crude ore never come in a uniform size



Problem setting: change detection from multivariate noisy time-series data

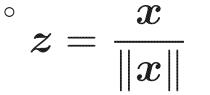
- Change = difference between p(x) and $p_t(x)$
 - o **x**: *M*-dimensional *i.i.d.* observation
 - p(x): p.d.f. estimated from training window
 - $p_t(\mathbf{x})$: p.d.f. estimated from the test window at time t
- Assume a sequence of i.i.d. vectors
 - Training data in the training window

$$\{oldsymbol{x}^{(1)},\ldots,oldsymbol{x}^{(n)},\ldots,oldsymbol{x}^{(N)}\}$$

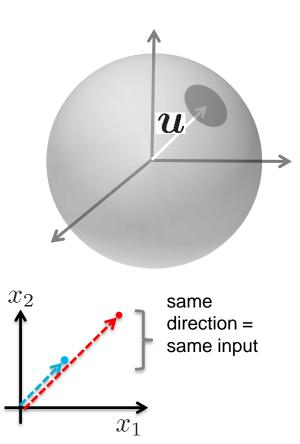

time index (or sample index)

Problem setting: change detection from multi-variate noisy time-series data

- Question 1: What kind of model should we use for the probability density?
- Question 2: How can we quantify the difference between the densities?


IBM

We use von Mises-Fisher distribution to model p(x) and $p_t(x)$


• vMF distribution: "Gaussian for unit vectors"

 $p(\boldsymbol{z} \mid \boldsymbol{u}, \kappa) = c_M(\kappa) \exp\left(\kappa \boldsymbol{u}^\top \boldsymbol{z}\right)$

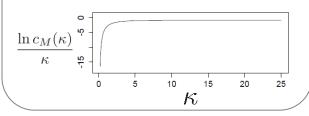
- \circ **z**: random unit vector of $||\mathbf{z}|| = 1$
- o *u*: mean direction
- $\circ \kappa$: "concentration" (~ precision in Gaussian)
- o M: dimensionality
- We are concerned only with the direction of observation x:


- Normalization is always made
- Do not care about the norm

Normalization is useful to suppress multiplicative noise

- Real mechanical systems often incur multiplicative noise
 - Example: two belt conveyors operated by the same motor
- Normalization of vector is simple but powerful method for noise reduction

Mean direction *u* is learned via maximum likelihood. Introduce sample weight to down-weight contaminated ones

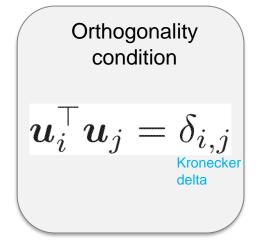

- Weighted likelihood function $\|\boldsymbol{x}^{(n)}\|_2$ (normalization factor) $L(\boldsymbol{u},\kappa) = \sum_{n=1}^N w^{(n)} b^{(n)} \{\ln c_M(\kappa) + \kappa \boldsymbol{u}^\top \boldsymbol{z}^{(n)}\}$ sample weight
- Regularization over sample weights

$$R(\boldsymbol{w}) = \frac{1}{2} \|\boldsymbol{w}\|_2^2 + \nu \|\boldsymbol{w}\|_1 \underbrace{\qquad \text{encourage}}_{\text{sparsity}}$$

Parameters are learned by solving

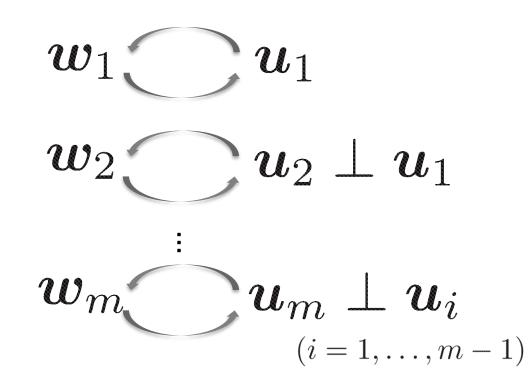
$$(\boldsymbol{u}^*, \boldsymbol{w}^*) = \arg \max_{\boldsymbol{u}, \boldsymbol{w}} \left\{ L(\boldsymbol{u}, \kappa) + \lambda R(\boldsymbol{w}) \right\}$$

The term related to κ is less important. κ is treated as a given constant.



IBM

Multiple patterns (directions) can be obtained by coupling maximum likelihood equations


Find orthogonal sequence of the mean direction u₁, u₂, ..., u_m by coupling the weighted regularized maximum likelihood

$$(\boldsymbol{u}_{1}^{*}, \boldsymbol{w}_{1}^{*}) = \arg \max_{\boldsymbol{u}_{1}, \boldsymbol{w}_{1}} \left\{ L(\boldsymbol{u}_{1}, \kappa) + \lambda R(\boldsymbol{w}_{1}) \right\}$$
$$(\boldsymbol{u}_{2}^{*}, \boldsymbol{w}_{2}^{*}) = \arg \max_{\boldsymbol{u}_{2}, \boldsymbol{w}_{2}} \left\{ L(\boldsymbol{u}_{2}, \kappa) + \lambda R(\boldsymbol{w}_{2}) \right\}$$
$$\vdots$$
$$(\boldsymbol{u}_{m}^{*}, \boldsymbol{w}_{m}^{*}) = \arg \max_{\boldsymbol{u}_{m}, \boldsymbol{w}_{m}} \left\{ L(\boldsymbol{u}_{m}, \kappa) + \lambda R(\boldsymbol{w}_{m}) \right\}$$

Iterative sequential algorithm for the coupled maximum likelihood

- For each *i*, *w_i* and *u_i* are solved iteratively until convergence
- Analytic solution exists in each step
- Results in very simple fixed point equations

Derived fixed-point iteration algorithm

Example: i =1

Given \boldsymbol{w}_1 , solve $\max_{\boldsymbol{u}_1} \{ \kappa \boldsymbol{u}_1^\top X \boldsymbol{w}_1 \} \text{ s.t. } \boldsymbol{u}_1^\top \boldsymbol{u}_1 = 1$

Given \boldsymbol{u}_1 , solve

$$\min_{\boldsymbol{w}_1} \left\{ \frac{1}{2} \|\boldsymbol{w}_1 - \frac{\boldsymbol{q}}{\lambda}\|_2^2 + \nu \|\boldsymbol{w}_1\|_1 \right\}$$
$$\boldsymbol{q} \equiv \ln c_M \boldsymbol{b} + \kappa \mathsf{X}^\top \boldsymbol{u}_1$$

This Lasso problem is solved analytically

Algorithm 1 RED algorithm.

Input: Initialized w. Regularization parameters λ, ν . Concentration parameter κ . The number of major directional patterns m.

Output: $U = [u_1, \ldots, u_m]$ and $W = [w_1, \ldots, w_m]$. for $j = 1, 2, \ldots, m$ do while no convergence do

$$u_j \leftarrow \kappa [\mathsf{I}_M - \mathsf{U}_{j-1}\mathsf{U}_{j-1}^\top]\mathsf{X}w_j \tag{17}$$

$$\boldsymbol{u}_j \leftarrow \operatorname{sign}(\boldsymbol{u}_j^\top \mathsf{X} \boldsymbol{w}_j) \frac{\boldsymbol{u}_j}{\|\boldsymbol{u}_j\|_2}$$
 (18)

$$\boldsymbol{q}_j \leftarrow \gamma \boldsymbol{b} + \kappa \mathsf{X}^\top \boldsymbol{u}_j \tag{19}$$

$$w_j \leftarrow \operatorname{sign}(q_j) \odot \max\left\{\frac{|q_j|}{\lambda} - \nu \mathbf{1}, \mathbf{0}\right\}$$
 (20)

end while end for Return U and W.

IBM

Theoretical property: The algorithm is reduced to the "trust-region subproblem" in $\nu \to 0$

Theorem 2. When ν tends to 0, the nonconvex problem (5) is reduced to an optimization problem in the form of

$$\min_{\boldsymbol{u}} \left\{ \boldsymbol{u}^{\top} \boldsymbol{\mathsf{Q}} \boldsymbol{u} + \boldsymbol{c}^{\top} \boldsymbol{u} \right\} \quad s.t. \quad \boldsymbol{u}^{\top} \boldsymbol{u} = 1,$$

Useful to initialize the iterative algorithm

(23)

which has a global solution obtained in polynomial time.

Proof. The non-convex optimization problem (23) is known as the *trust region subproblem.* For polynomial algorithms to the global solution, see [Sorensen, 1997; Tao and An, 1998; Hager, 2001; Toint *et al.*, 2009]. Here we show how the algorithm is reduced to the trust region subproblem.

IBM

Change score as parameterized Kullback-Leibler divergence

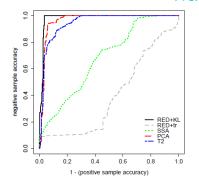
VME distribution

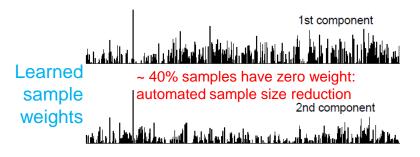
 With extracted directions, define the change score at time t as

$$a^{(t)} = \min_{f,g} \int \mathrm{d}x \, \mathcal{M}(x|\mathbf{U}f,\kappa) \ln rac{\mathcal{M}(x|\mathbf{U}f,\kappa)}{\mathcal{M}(x|\mathbf{U}^{(t)}g,\kappa)} \ f^{ op}f = 1, \ g^{ op}g = 1$$

 Concisely represented by the top singular value of U^TU^(t)

$$\boldsymbol{u}_{1}, \dots, \boldsymbol{u}_{m} \quad \boldsymbol{v}_{1}, \dots, \boldsymbol{v}_{r}$$


$$\stackrel{\text{training window}}{\text{(fixed or sliding)}} \quad \stackrel{\text{test}}{\text{window}}$$


$$\int \equiv [\boldsymbol{u}_{1}, \dots, \boldsymbol{u}_{m}] \quad \mathsf{U}^{(t)} \equiv [\boldsymbol{v}_{1}, \dots, \boldsymbol{v}_{r}]$$

Experiment: Failure detection of ore belt conveyors

- vMF formulation successfully suppressed very noisy non-Gaussian noise of multiplicative nature
- ~40% of samples were automatically excluded from the model
- Better than alternatives
 - PCA, Hoteling T²
 - Stationary subspace analysis [Blythe et al., 2012]

underson underson and underson

23

Agenda

- General challenges in industrial sensor data analytics
- Solution examples:
 - Change detection using directional statistics

• Multi-task multi-modal models for collective anomaly detection (Ide et al, ICDM 17)

- o Tensorial change analysis
- Discussion: deep learning, Blockchain, and future directions

Wish to build a <u>collective</u> monitoring solution

System 1 (in New Orleans)

System s

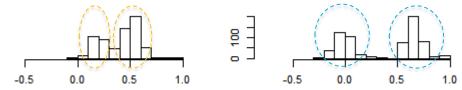
- You have many similar but not identical industrial assets
- You want to build an anomaly detection model for each of the assets
- Straightforward solutions have serious limitations
 - 1. Treat the systems separately. Create each model individually
 - ✓ Suffers from lack of fault examples
 - $\circ~$ 2. Build one universal model by disregarding individuality
 - ✓ Model fit is not good

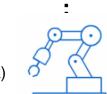
System S (in New York)

IBM

Practical requirements: Need to capture both commonality and individuality

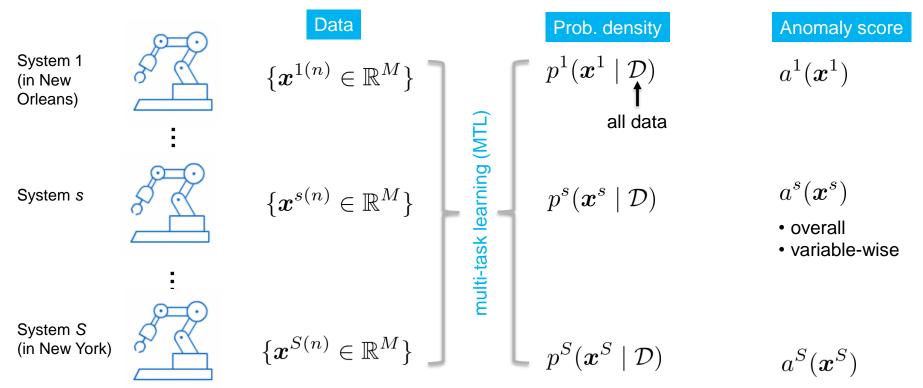
System 1 (in New Orleans)


System s

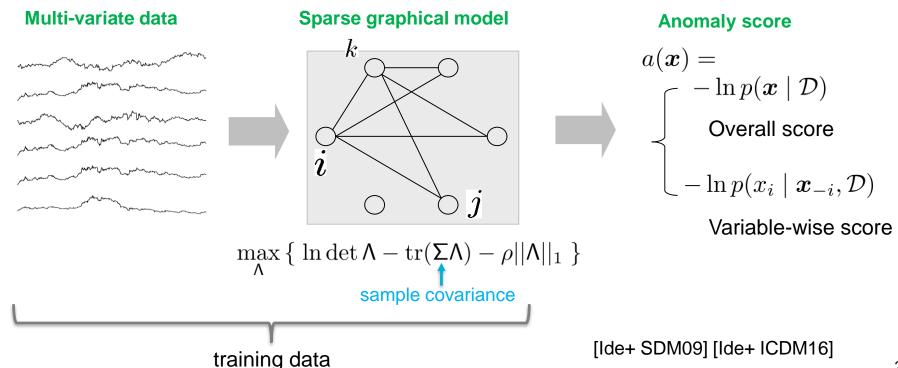

Capture both individuality and commonality

 Automatically capture multiple operational states

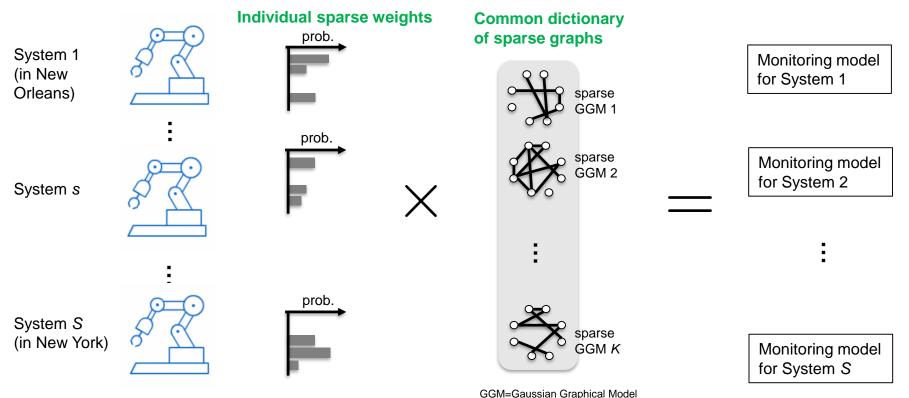
Real-world is not single-peaked / single-modal



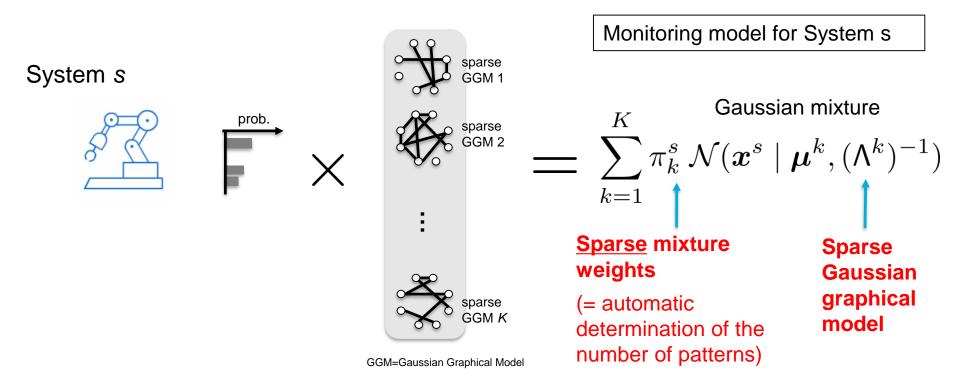
- Be robust to noise
 - Be highly interpretable for diagnosis purposes



Formalizing the problem as multi-task density estimation for anomaly detection



Use Gaussian graphical model (GGM)-based anomaly detection approach as the basic building block



Basic modeling strategy: Combine common pattern dictionary with individual weights

Basic modeling strategy: Resulting model will be a sparse mixture of sparse GGM

Propose a Bayesian multi-task model with two sparsityenforcing priors

 Observation model (for the s-th task) Gaussian mixture with task-dependent weight

$$\prod_{k=1}^{K} \mathcal{N}(\boldsymbol{x}^{s} \mid \boldsymbol{\mu}^{k}, (\boldsymbol{\Lambda}^{k})^{-1})^{z_{k}^{s}}$$

- Sparsity enforcing priors (non-conjugate)
 - Laplace prior for the precision matrix
 - Bernoulli prior for the mixture weights

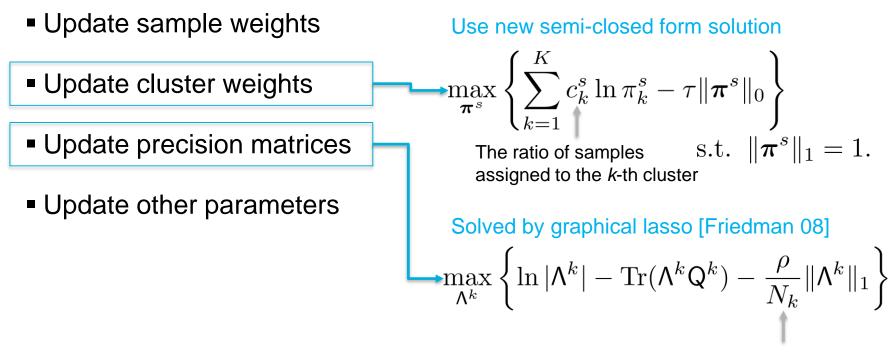
• Conjugate prior on
$$\{ {oldsymbol \mu}^k \}$$
 and $\{ {oldsymbol z}^s \}$

$$p(\boldsymbol{\Lambda}^{k}) = \left(\frac{\rho}{4}\right)^{M^{2}} \exp\left(-\frac{\rho}{2} \|\boldsymbol{\Lambda}^{k}\|_{1}\right)$$
$$p(\boldsymbol{\pi}^{s}) = p_{0}^{\|\boldsymbol{\pi}^{s}\|_{0}} (1-p_{0})^{G-\|\boldsymbol{\pi}^{s}\|_{0}}$$

$$p(\boldsymbol{\mu}^{k} \mid \boldsymbol{\Lambda}^{k}) = \mathcal{N}(\boldsymbol{\mu}^{k} \mid \boldsymbol{m}^{0}, (\lambda_{0} \boldsymbol{\Lambda}^{k})^{-1})$$
$$p(\boldsymbol{z}^{s} \mid \boldsymbol{\pi}^{s}) = \prod_{k=1}^{K} (\pi_{k}^{s})^{z_{k}^{s}}$$

Maximizing log likelihood using variational Bayes combined with point-estimation

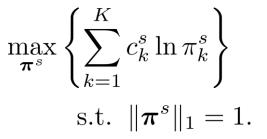
Complete log likelihood


$$L = \sum_{s=1}^{S} \sum_{n=1}^{N_s} \sum_{k=1}^{K} \ln \mathcal{N}(\boldsymbol{x}^{s(n)} \mid \boldsymbol{\mu}^k)^{\boldsymbol{z}^{s(n)}} + \sum_{k=1}^{K} \operatorname{Lap}(\Lambda^k \mid \rho) p(\boldsymbol{\mu}^k \mid \Lambda^k) + \sum_{s=1}^{S} \boldsymbol{z}^{s(n)} \ln \pi_k^s + \sum_{s=1}^{S} \ln p(\boldsymbol{\pi}^s)$$

Likelihood by the obs. model

- Use VB for $\{\boldsymbol{\mu}^k\}, \{\boldsymbol{z}^{s(n)}\}$
- Use point-estimate for $\{\Lambda^k\}, \{\pi^s\}$
 - Results in two convex optimization problems

Maximizing log likelihood using variational Bayes combined with point-estimation


total # of samples assigned to the k-th cluster

IBM

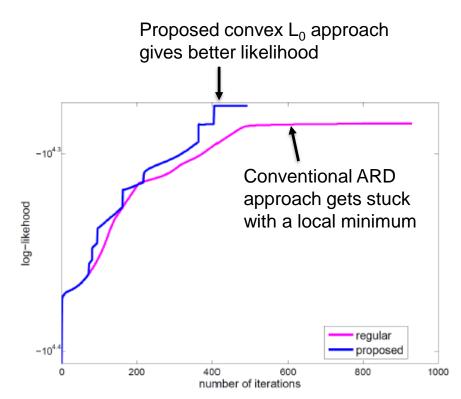
Solving the L₀-regularized optimization problem for mixture weights

 Conventional VB approach without L₀ regularization on π^s_k is problematic

 Claimed to get a sparse solution [Corduneanu+ 01]
 But mathematically π^s_k cannot be zero due to logarithm

- We re-formalized the problem as a convex mixedinteger programming
 - \circ A semi-closed form solution can be derived (\rightarrow see paper)

$$\max_{\boldsymbol{\pi}^{s}, \boldsymbol{y}^{s}} \sum_{k=1}^{K} \{ c_{k}^{s} \ln \pi_{k}^{s} - \tau y_{k}^{s} \} \text{ s.t. } \sum_{k=1}^{K} \pi_{k}^{s} = 1,$$
$$y_{k}^{s} \ge \pi_{k}^{s} - \epsilon, \ y_{k}^{s} \in \{0, 1\} \text{ for } k = 1, \dots, K,$$


Comparison with possible alternatives

		Interpretability	Noise reduction	Fleet-readiness	Multi-modality
Our work [Ide et al. ICDM 17]		Yes	Yes	Yes	Yes
(single) sparse GGM	[Ide et al. SDM 2009, Ide et al. ICDM 2016]	Yes	Yes	No	No
Gaussian mixtures	sian mixtures [Yamanishi et al., 2000; Zhang and Fung, 2013; Gao et al., 2016]		Limited	No	Yes
Multi-task sparse GGM	[Varoquaux et al., 2010; Honorio and Samaras, 2010; Chiquet et al., 2011; Danaher et al., 2014; Gao et al., 2016; Peterson et al., 2015].	Yes	Yes	Yes	No
Multi-task learning anomaly detection	[Bahadori et al., 2011; He et al., 2014; Xiao et al., 2015]	No	(depends)	Yes	No

Experiment (1): Learning sparse mixture weights


- Conventional ARD approach sometimes gets stuck with local minima
 - ARD = automatic relevance determination
 - \circ Often less sparse than the proposed convex L₀ approach
- Typical result of log likelihood vs
 VB iteration count →

Experiment (2): Learning GGMs and detecting anomalies

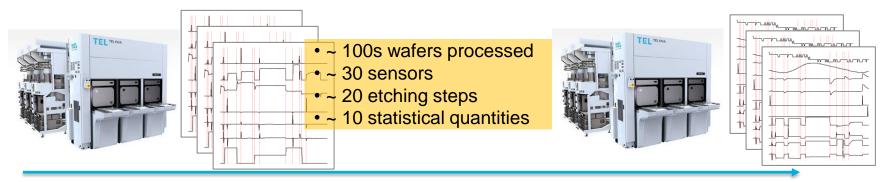
- "Anuran Calls" (frog voice) data in UCI Archive
 - o Multi-modal (multi-peaked)
 - Voice signal + attributes (species, etc.)
- Created 10-variate, 3-task dataset
 - Use the species of "Rhinellagranulosa" as the anomaly
- Results
 - Two non-empty GGMs are automatically detected starting from K=9
 - Clearly outperformed single-modal MTL alternative in anomaly detection
 - ✓ Group graphical lasso, fused graphical lasso

Example of variable-wise distribution

37

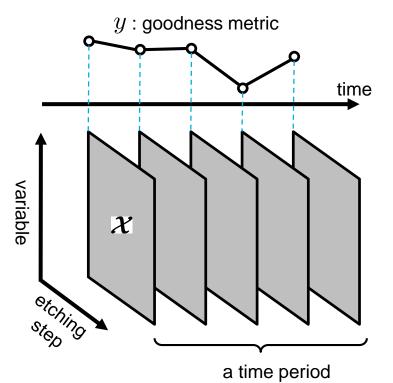
Agenda

- General challenges in industrial sensor data analytics
- Solution examples:
 - Change detection using directional statistics
 - o Multi-task multi-modal models for collective anomaly detection


 $\circ~$ Tensorial change analysis

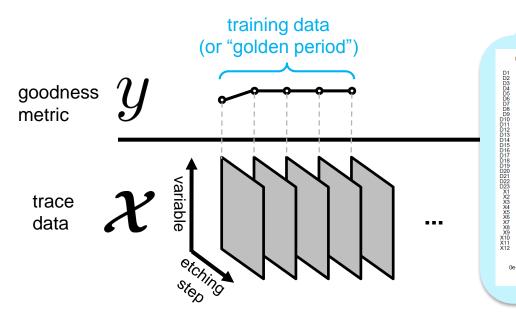
Discussion: deep learning, Blockchain, and future directions

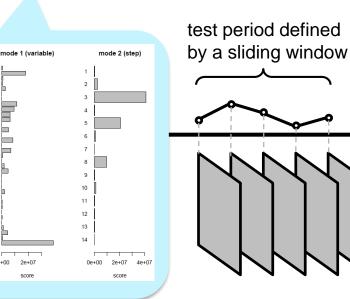
Developing a system for change diagnosis when input data is a tensor (multi-way array)


- Real application example: Condition-based monitoring of reactive ion etching tool
 - Tools deteriorate over time due to debris in the etching chamber
 - Degradation process is implicit and subtle. Quantification is challenging
- Basic problem setting: Compare a test period with a reference period to explain what really is the difference in terms of observable variables

The input is a tensor (multi-way array) associated with a goodness metric

- Semiconductor etching example
 - \circ y: (one of) quality measurements
 - \checkmark electric resistance, line widths, ...
 - X: "trace data" (sensor recordings)
 - ✓ pressure, temperature, electric current, ...
- One etching round of trace data is most naturally represented as a tensor (multi-way array)
 - $\circ~$ Typically 3-way array
 - \checkmark variable x etching step x statistics used x time
 - ✓ variable x etching step x etching metal layer
 - Often summarized as 2-way tensor by e.g. taking the mean over time in each step




IBM Research

IBM

The task addressed: (1) Detect a change in X-y relationship. (2) Explain which mode/dimension is most responsible

 (1) Compute the anomalousness of a single or a set of etching round(s) in a test period (2) Compute the responsibility of the dimensions of each mode that explains the anomalousness of the test period

Technical challenges

Tensor regression is not well-studied

- Regression is the task to learn a function y = f(X) from training data
- Existing techniques mainly use vectorization of tensors

Probabilistic prediction is even harder

- Non-subjective change scoring requires probabilistic prediction.
- Existing probabilistic tensor regression methods are impractical

Vectorized probabilistic model cannot be the solution

 Not very interpretable – it destroys the tensor structure of the input Tensorial change diagnosis framework using probabilistic tensor regression algorithm

Agenda

- General challenges in industrial sensor data analytics
- Solution examples:
 - Change detection using directional statistics
 - o Multi-task multi-modal models for collective anomaly detection
 - o Tensorial change analysis

Discussion: deep learning, Blockchain, and future directions

IBM

Does deep learning mean the end of journey? Probably not. Factors that make deep learning work

Well-defined and well-accepted task

No need to tell why

Huge amount of labeled training data

Typically needs millions labeled samples

Minimum uncertainty in data representation

Pixels, words, Mel-filterbank

- Good applications meeting these criteria
 - Image recognition
 - (Some of) natural language processing
 - Speech recognition
- How about industrial dynamic systems?

 Interesting research topic

One caveat: Automated feature learning from noisy senor signal is still challenging

- Image recognition and NLP (natural Interspeech 2018 2-6 September 2018, Hyderabad area for deep learning
 End-to-End
 - Huge annotated datasets exist
 - Established preprocess method
- A little secret in speech recognition: State-of-the-art deep-learningbased systems use handcrafted features
- The situation will be much tougher in general industrial sensor data analytics

"State-of-the-art speech recognition systems rely on fixed, handcrafted features such as mel-filterbanks to preprocess the waveform before the training pipeline"

End-to-End Speech Recognition From the Raw Waveform

Neil Zeghidour^{1,2}, Nicolas Usunier¹, Gabriel Synnaeve¹, Ronan Collobert¹, Emmanuel Dupoux²

¹ Facebook A.I. Research, Paris, France; New York & Menlo Park, USA ² CoML, ENS/CNRS/EHESS/INRIA/PSL Research University, Paris, France {neilz, usunier, gab, locronan}@fb.com, emmanuel.duboux@gmail.com

Abstract

State-of-the-art speech recognition systems rely on fixed, handcrafted features such as mel-filterbanks to preprocess the waveform before the training pipeline. In this paper, we study end-totion of mel-filterbanks, and obtained promising results on endto-end phone recognition on TIMIT. However, these approaches have not been proven to improve on speech features on largescale, end-to-end speech recognition in clean recording conditions on English – admittedly one of the tasks for which mel-

Implications for sensor data analytics

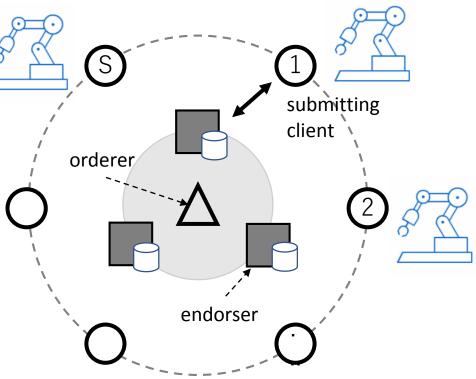
- Deep learning (especially RNN such as LSTM) will be a powerful tool when
 - we know how to read the data (and thus a good amount of labeled training data exists)
 - o we know limitations of linear models (state-space models)
 - $\circ~$ we have a lot of GPU!

Discussion: Will Blockchain bring in any value on sensor data analytics?

What is Blockchain?

 Distributed decentralized database characterized by a hash chain data structure and a consensus algorithm

Blockchain generations


- 1st generation (Bitcoin)
 - ✓ De-centralized, secure platform for money transfer
- 2nd generation (Ethereum, Hyperledger, Corda)
 - ✓ Extended to handle general business transactions beyond money transfer
- Expected to be a useful platform for IoT (internet-of-things) systems

 "Device democracy"

Discussion: Will Blockchain bring in any value on sensor data analytics?

- Blockchain should be generalized as a collaborative learning platform
 - o "Blockchain 3.0"
 - The particular hash chain data structure can be viewed as just one instance of implementation
- Example: privacy-preserving multi-task learning on Blockchain

Summary and ongoing work

- Industrial sensor data have many interesting features that call for new machine learning formulation
- Introduced a few recent works on anomaly detection
 - Change detection using directional statistics
 - Multi-task anomaly detection algorithm
 - $_{\odot}\,$ Tensorial change analysis

- Ongoing/future work
 - Prediction/anomaly detection from novel data types
 - ✓ tensors, functions, graphs, trajectories, events, etc.
 - Multi-x / cross-x learning
 - ✓ multi-task, view, domain, modality
 - Deep learning for dynamic systems

Thank you!