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Agenda

» General challenges in industrial sensor data analytics

= Solution examples:
o Change detection using directional statistics

o Multi-task multi-modal models for collective anomaly detection

o Tensorial change analysis

» Discussion: deep learning, Blockchain, and future directions
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Machine learning from sensor data is one of the major
research focuses

= Anomaly and change detection is a

major topic in sensor data analytics -
BEERME A

ZLi%AN B EIZ & B
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» Recently published two textbooks
(in Japanese)
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Basics: General problem setting in machine learning

= Supervised learning

» Typical assumptions
o Given a data set

o X IS a vector

{(xD, M), (&™), y(N))} o yis a scalar
o find the probability distribution of o Samples are independently and
y given x: p(y | ) identically distributed (i.i.d.)
= Unsupervised learning = What makes sensor data
o Given {1 ... M)} analytics interesting?

o find p(x)
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General challenges: No “one-size-fits-all” algorithm

= Example in anomaly detection

o “Happy families are all alike; every unhappy family is unhappy in its own way.” -
Anna Karenina, Leo Tolstoy

Examples of anomalies

outliers (from i.i.d. ] . T > outliers (from auto-
samples) 2 I correlated samples)
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Tsuyoshi Ide and Masashi Sugiyama, Anomaly Detection and Change Detection, Kodansha, 2015 (in Japanese).
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General challenges: Business requirements often drive
extensions of existing approaches

» Example: corporate-level asset
management with anomaly detection

o Typically assets are managed as a cohort
v" 10s of off-shore oil production systems
v 100s of industrial robots
v 1000s of electric vehicles in a certain area

o How can we leverage the commonality between
assets to build an anomaly detection solution for
individual assets?

[ ==
P ==
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E/f

U U B g T. Ide, et al., “Multi-task Multi-modal Models for Collective Anomaly Detection,” Proc. 2017 IEEE Intl.
Conf. Data Mining (ICDM 17), pp.177-186
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General challenges: Complex internal structure may exist in

one measurement

Example from semiconductor manufacturing (etching)

1345678 9 101]\14

Mj—lﬂm
r»J_‘f_Lﬂl_r

| i
time-series of

n A controlled variables
—/ \ SEERET

Optical Emission Spectra

time-series of independent %
(non-controlled) variables 0.0

G

Tracking plasma etch process variations using
Principal Component Analysis of OES data. Ma, B.;
McLoone, Sean; Ringwood, J. 2007. International
Conference on Informatics in Control, Automation
and Robotics (ICINCO 2007), Angers, France.

Each wafer pass is a higher-order
tensor, rather than a vector

Optical spectra

Non-controlled

Controlled variables

wafer passes
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General challenges: Ready-to-use solution to your problem

might not even exist

» Example: Charge retention (~ battery life)

prediction of electric vehicle batteries
o Depends on the entire history of battery usage

o Battery usage is represented as a complex
trajectory of a multi-dimensional space

» Charge retention prediction task should be
formulated as “trajectory regression”

-y

retention “trajectory”

Toshiro Takahashi, Tsuyoshi Ide, “Predicting Battery Life from Usage Trajectory Patterns,” Proc.
Intl. Conf. Pattern Recognition (ICPR 2012), pp.2946-2949.
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General challenges: Ground truth may not be available.
Some degrees of freedom are usually Iatent

» Example: sensor data of a
compressor of oil production

system e o
o Data taken under a normal : |
operational condition T T kot okt ke bl M
o Noisy, nonstationary, YT INORINT ERTY e W T LSS L s BT
heterogeneous, high- " R S e
dimensional ...

. o . il e S U LTl e
_ngd tt(_) pln?omtlfwhatt_ IS J— S gy

indicative of malfunction ramd ™ A e T L i
P W A AU bl et O ot W L
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Agenda

» General challenges in industrial sensor data analytics

= Solution examples:
o Change detection using directional statistics (Ide et al., [JCAI 17)

o Multi-task multi-modal models for collective anomaly detection

o Tensorial change analysis

» Discussion: deep learning, Blockchain, and future directions

11
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Continuous operation of conveyor systems is critical in the
mining industry

» Business goal: Ensure continuous
operation of conveyor system (“apron
feeder”) by detecting early indications of
failures

» Data: Physical sensor data from

conveyors and motors
o Every several seconds over ~ 1 year

o Sensors include: Gearbox temperatures, motor d WWWW 2 WWMMWMM

power consumptions, apron speed, etc.

= Challenge: Conveyor system is subject to
significant fluctuation in load. Hard to
characterize the normal operation

o Mined crude ore never come in a uniform size o WWWWWWW MWWWM

(simulation data) 12

Apron feeder data
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Problem setting: change detection from multivariate noisy
time-series data

N D
» Change = difference between
p(m) and pt(m) tr?inidng Wli_rcli_dow _tejt |
o X: M-dimensional i.i.d. observation (-m M
o p(x): p.d.f. estimated from training window “”M_,\J\W\N’V\/\
o p(x): p.d.f. estimated from the test window at ~T7 Y
time t u--“"\"x]\/\'\/\.:\,\/\/\/\f\/\/\f\l
\r\f‘f‘/\'\r\d\«r\mf\pﬂr\f\r‘w
.. VaVA R YaVavaVavm aVaVe VANAVVAY
» Assume a sequence of i.i.d. vectors 4

o Training data in the training window

{2 ) p(w) pt(w

i

time index (or sample index)
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Problem setting: change detection from multi-variate noisy
time-series data

N D
= Question 1: What kind of model should

we use for the probability density? training window test
(fixed or sliding) window
= Question 2: How can we quantify the MN\/\M
difference between the densities? WSV NN P Y
NPV il VAPV PN P e Ve
\/‘/\/\,\,\rmww
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We use von Mises-Fisher distribution to model p(z) and p:(x)

= vMF distribution: “Gaussian for unit vectors”

p(z | u, k) = cpr (k) exp (ku' 2)

o z: random unit vector of ||z|| =1

o Uu: mean direction

o K: “concentration” (~ precision in Gaussian)
o M: dimensionality

= We are concerned only with the direction of

observation Xx:
o X
_— * Normalization is always made
- » Do not care about the norm

||

'u,Q \)

same
direction =
same input

15
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Normalization is useful to suppress multiplicative noise

» Real mechanical systems often

incur multiplicative noise

o Example: two belt conveyors operated
by the same motor

= Normalization of vector is simple
but powerful method for noise
reduction

16
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Mean direction u is learned via maximum likelihood.
Introduce sample weight to down-weight contaminated ones

= Weighted |Ike|lh00d function / |2£(™]|2 (normalization factor)

L(u, Z w(“)b(”){ln cv (k) + ku z(”)}
n=1
\ sample weight
» Regularization over sample weights /The term related to K is less )
1 5 Important. K is treated as a given
R(w) = 5”“’”2 + v||wl|; encourage | constant.
_ sparsity o —
» Parameters are learned by solving mea(e) 1/

(u*, w*) = argimax {L(u, ﬁ]) + )\R(w)} K 0 5 10 15 20 25
u,w K /

17
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Multiple patterns (directions) can be obtained by coupling
maximum likelihood equations

» Find orthogonal sequence of the mean direction uq, u,, ..., U, by
coupling the weighted regularized maximum likelihood

/ (uy,wi) = arg max {L(uy, k) + )\R(wl)}\ / Orthogonality \
bt et condition
(us,w;) = arg max {L(usz, k) + AR(w2)}

u27w2 _|_
u,L UJ E— 5@)3

Kronecker
* *

(w) ,w’ ) =arg max {L(u;,,x)+ AR(w,,)} delta

NS /AN y

18
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Iterative sequential algorithm for the coupled maximum
likelihood

w1 VRN Uq = For each i, w; and u, are
solved iteratively until
~ 7 convergence
w2” Dus L u  solution exi
= Analytic solution exists
W 2 1 y

In each step

» Results in very simple

U J_ U, fixed point equations
. m 1 P q

19
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Derived fixed-point iteration algorithm

Algorithm 1 RED algorithm.

L = —— ——
Example' I 1 Input: Initialized w. Regularization parameters A\, 1.
Concentration parameter . The number of major direc-
Given w1, solve tional patterns .
- . Output: U = [ug, ..., up]and W = (w1, ..., wy,].
max{ru,; Xwi} s.t. u, u; =1 forj=1.2,....mdo
U while no convergence do
: 4kl — U U Xw, 17
Given w1, solve uj sl = Uj 3;)1] wj (17)
1 u;j — Sigl’l(u;!—X’IUjJ J (18)
min ¢ = Jlwy = L|3 + vl |y ol
w, 2 A - q; +— b+ fi'..XT’le (19)

. 4l
q= In CMb + H‘,XT‘U,l w; < sign(qg;) © max {T —v1.0 (20)

_ . : d whil
This Lasso problem is solved analytically enflnfof e

Return U and W.
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Theoretical property: The algorithm is reduced to the “trust-
region subproblem” in v — (

Theorem 2. When v tends to 0, the nonconvex problem (5) is
reduced to an optimization problem in the form of

Useful to initialize

T the iterative

. T T _
11311{’1:2 Qu+c U} stou u =1, (23) algorithm

which has a global solution obtained in polynomial time.

Proof. The non-convex optimization problem (23) is known
as the trust region subproblem. For polynomial algorithms to
the global solution, see [Sorensen, 1997; Tao and An, 1998:
Hager, 2001; Toint er al., 2009]. Here we show how the algo-
rithm is reduced to the trust region subproblem.

21
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Change score as parameterized Kullback-Leibler divergence

= \With extracted directions, define the

. Ui,...,. U 1,...,U
change score at time t as L » m Ly y Ur

o VMF distribution training window test
() 4 jv\“le d'Stth'on 1 M(xz|Uf, k) (fixed or sliding) window |
a —1?};1/ x M(z|Uf, k) N (@[Ulg,r) b A
T T vMF dist. \/‘/\/-r\/\'\'\l\h-wwn
f f=1,9g g=1 WVl SV N PV VAV SN
MMW'
= Concisely represented by the top TN

singular value of y"y®

22
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Experiment: Failure detection of ore belt conveyors

1st component

= vMF formulation sugcessfully | Learned 0% samples nave zerc weight
suppressed very noisy non-Gaussian  sample automated sample size reduction

2nd component

noise of multiplicative nature IOl o i aciaane

up M.L”ﬂmhmx‘#ww%w 'q"T‘"'F""""""" b |
T e s a0

» ~40% of samples were automatically

excluded from the model TrAINING P b o
Sl data wsuwior sy uerrninemeneh 4 W

= Better than alternatives e SN At g s o A
o PCA, Hoteling T2 ok eyt A o

o Stationary subspace analysis ! :. i gy bbb i b
[Blythe et al., 2012] : <] — et ol S Dt b

= B et A g oL Attt b o <o P B

b gyt HM‘M“”’“”‘WWW

(simulation data)

23
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Agenda

» General challenges in industrial sensor data analytics

= Solution examples:
o Change detection using directional statistics

o Multi-task multi-modal models for collective anomaly detection (Ide et al, ICDM 17)

o Tensorial change analysis

» Discussion: deep learning, Blockchain, and future directions

24
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Wish to build a collective monitoring solution

» You have many similar but not identical industrial
System 1

(in New assets
Orleans)
» You want to build an anomaly detection model for
each of the assets
System s ] ) ] o )
= Straightforward solutions have serious limitations
o 1. Treat the systems separately. Create each model
individually
v Suffers from lack of fault examples
o 2. Build one universal model by disregarding individuality
System S

(in New York) v Model fit is not good

25
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Practical requirements: Need to capture both commonality

and individuality

System 1
(in New
Orleans)

System s

System S
(in New York)

s
i
7z

= Capture both individuality and commonality
= Automatically capture multiple operational

states
o Real-world is not single-peaked / single-modal

//’ \\ l// \\\

o] 4 ‘| 4 :

A \ £ L /
| | | = | 1= - 1
0.0 0.5 1.0 -0.5 0.0 0.5 1.0

= Be robust to noise

-0.5

= Be highly interpretable for diagnosis purposes
26
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Formalizing the problem as multi-task density estimation for
anomaly detection

System 1 1 1
(i New ﬁ § {x}™) ¢ RM} p (x| D) a'(z')
Orleans) T
: g all data
E) S S
System s {.’Es(n) c RM} % ps(ms | D) a (.’B )
@ « overall
S . .
9 * variable-wise
5 -
=
(SIXS;I(ZTV f(ork) {:BS(?’L) e RM} S..S S, S
p”(z” | D) a”(x”)

27
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Use Gaussian graphical model (GGM)-based anomaly
detection approach as the basic building block

Multi-variate data Sparse graphical model Anomaly score

e e e k a(@) =

U ~ —Inp(x | D)
RV aciias e Overall score
WW

MM

e o J _ —lﬂp(fﬁi | "B—z‘aD)

Variable-wise score
Hl/.‘;:LX{ Indet A — tr()%/\) — plIA1 }

sample covariance

!
training data [lde+ SDMO9] [Ide+ ICDM16] N
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Basic modeling strategy: Combine common pattern

dictionary with individual weights

Individual sparse weights Common dictionary

prob. of sparse graphs
System 1
(in New
Orleans) Oﬁ sparse
o GGM 1
. prob.
@ sparse
GGM 2
System s >< 0
prob.

System S L orse
(in New York) GpGM K

GGM=Gaussian Graphical Model

Monitoring model
for System 1

Monitoring model
for System 2

Monitoring model
for System S

29



IBM Research

Basic modeling strategy: Resulting model will be a sparse

mixture of sparse GGM

sparse
System s o ij GGM 1
prob. sparse
GGM 2

X °

sparse
GGM K

GGM=Gaussian Graphical Model

Monitoring model for System s

— i
=

Sparse mixture
weights

(= automatic
determination of the
number of patterns)

Gaussian mixture

L (A7)

|

Sparse
Gaussian
graphical
model

30
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Propose a Bayesian multi-task model with two sparsity-
enforcing priors

o Gaussian mixture with task-dependent weight

» Observation model (for the s-th task) ﬁN(mS kL (NFY 1)
k=1

M2
: : : : ky _ (P k
» Sparsity enforcing priors (non-conjugate) p(AN”) = (Z) eXp (——||/\ ||1)
o Laplace prior for the precision matrix . .
o Bernoulli prior for the mixture weights p(m?) = pg“ ”0(1 _ pO)G—II'lr o

= Conjugate prior on {*} and {z*}

31
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Maximizing log likelihood using variational Bayes combined
with point-estimation

= Complete log likelihood

S N, K K S S
L=3"3" > N @™ [ )" + 3 Lap(A® | p)p(u® | AY) +D 2 Inmf + ) np(r)
s=1n=1k=1 k=1 s=1 s=1
\ ] | J
! |
Likelihood by the obs. model Prior distributions

= Use VB for {p*}, {z5(M}

i i k
= Use point-estimate for {A\"}, {7”}
o Results in two convex optimization problems

32
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Maximizing log likelihood using variational Bayes combined
with point-estimation

» Update sample weights Use new semi-closed form solution

K
= Update cluster weights l—max {Z cpInmy, — 7||7® 0}
TI-S
k=1

» Update precision matrices The ratio of samples s.t. ||| = 1.

assigned to the k-th cluster

» Update other parameters _ _
Solved by graphical lasso [Friedman 08]

k k Ak P ink
e {14 - TN QY — 2 |

total # of samples assigned to the k-th cluster
33
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Solving the Ly-regularized optimization problem for mixture
weights

= Conventional VB approach without L,

regularization on 7 is problematic max {Z ¢ In Wk}
o Claimed to get a sparse solution [Corduneanu+ 01]

o But mathematically wz cannot be zero due to logarithm t ||ﬂ. || — 1
. 1 = 1.

= We re-formalized the problem as a convex mixed-
iInteger programming
o A semi-closed form solution can be derived (= see paper)

l’l’laXZ{Ckh’lﬁk —Tyr} s.t. Zﬂ'k =1,

ykzwk—e, yr € {0,1} for Ek=1,..., K,

34
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Comparison with possible alternatives

Our work [Ide et al. ICDM 17]

i [Ide et al. SDM 2009, Ide et al.
(single) sparse GGM o Yes Yes
Gaussian mixtures [Yamanishi Yes

et al., 2000; Zhang and Fung,
2013; Gao et al., 2016]

Multi-task sparse [Varoquaux et al., 2010;
GGM P Honorio and Samaras, 2010; YeS YeS YeS
Chiquet et al., 2011; Danaher

et al., 2014; Gao et al., 2016;
Peterson et al., 2015].

Multi-task learning [Bahadori et al., 2011; He et Yes
anomaly detection al., 2014; Xiao et al., 2015]

35
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Experiment (1): Learning sparse mixture weights

Proposed convex L, approach

= Conventional ARD approach gives better likelihood
sometimes gets stuck with local |
minima | |
o ARD = automatic relevance e \

determination

o Often less sparse than the proposed
convex L, approach

Conventional ARD
approach gets stuck
with a local minimum

log-likehood

» Typical result of log likelihood vs
VB iteration count -

— regular
—qg™ =— proposed

a 200 400 GO0 BOO 1000
number of iterations

36
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Experiment (2): Learning GGMs
anomalies

» “Anuran Calls” (frog voice) data in
UCI Archive

o Multi-modal (multi-peaked)
o Voice signal + attributes (species, etc.)
» Created 10-variate, 3-task dataset
o Use the species of “Rhinellagranulosa’
as the anomaly
» Results

o Two non-empty GGMs are automatically
detected starting from K=9

o Clearly outperformed single-modal MTL
alternative in anomaly detection

v" Group graphical lasso, fused graphical
lasso

and detecting

\\
9 1\
y 2

y

Example of variable-wise distribution

MFCCs_.3 MFCCs_.4

S oom 4 9 ol

-0.5 0.0 0.5 1.0 -0.5 0.0 0.5 1.0
o
- ﬁ
(=]

Automatically Iearned GGMs

MFCCs_.7

[ I I 1 I I T 1
-0.5 0.0 0.5 1.0 -0.5 0.0 0.5 1.0

) x N
CC10 MFC}I MFCC4
Q/ & C/
(M/F-CCQ GC C5) MF;‘C}
k) & C/*
RN/ N
J/ 37
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Agenda

» General challenges in industrial sensor data analytics

= Solution examples:
o Change detection using directional statistics

o Multi-task multi-modal models for collective anomaly detection

o Tensorial change analysis

» Discussion: deep learning, Blockchain, and future directions
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Developing a system for change diagnosis when input data
IS a tensor (multi-way array)

» Real application example: Condition-based monitoring of reactive ion
etching tool

o Tools deteriorate over time due to debris in the etching chamber
o Degradation process is implicit and subtle. Quantification is challenging

= Basic problem setting: Compare a test period with a reference period to
explain what really is the difference in terms of observable variables

|
_|—_ I
» ~ 100s wafers processed

mu—u—LﬂL « ~ 30 sensors
~ 20 etching steps
» ~ 10 statistical quantities

|%i‘:‘n AT i s
|%i‘:‘n AT - el

T
JL—1

“golden period” (or reference period) test period in question
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The input is a tensor (multi-way array) associated with a
goodness metric

) i U : goodness metric
= Semiconductor etching example
o Y: (one of) quality measurements O\Q__-v
v’ electric resistance, line widths, ... time
o X: “trace data” (sensor recordings) i i i |
v’ pressure, temperature, electric current, ... 4 \M
» One etching round of trace data is
most naturally represented as a

tensor (multi-way array)
o Typically 3-way array

v variable x etching step x statistics used x time
v variable x etching step x etching metal layer @m\\\\
7/
S, %o

a|geuen
S

o Often summarized as 2-way tensor by e.g.

taking the mean over time in each step Y
a time period

40
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The task addressed: (1) Detect a change in X-y relationship.
(2) Explain which mode/dimension is most responsible

= (1) Compute the anomalousness of a = (2) Compute the responsibility of the
single or a set of etching round(s) in a dimensions of each mode that explains
test period the anomalousness of the test period

training data

(or “golden period”)
A

r N\
goodness y o>

metric

test period defined
by a sliding window

3
3
o
B2

4 \

=}
o
=
®
-
<

eI U
:D_H -

<
S
trace X 5
O
data 5}

e, 41
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Technical challenges

Tensor regression is not well-studied

* Regression is the task to learn a function y = f(X) from
training data
« Existing techniques mainly use vectorization of tensors

Probabilistic prediction is even harder

* Non-subjective change scoring requires probabilistic
prediction.

« Existing probabilistic tensor regression methods are
Impractical

Vectorized probabilistic model cannot be the solution

* Not very interpretable — it destroys the tensor structure of
the input

Tensorial change
diagnosis
framework using

probabilistic
tensor regression
algorithm

42
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Agenda

» General challenges in industrial sensor data analytics

= Solution examples:
o Change detection using directional statistics

o Multi-task multi-modal models for collective anomaly detection

o Tensorial change analysis

» Discussion: deep learning, Blockchain, and future directions

43



IBM Research

Does deep learning mean the end of journey? Probably not.
Factors that make deep learning work

Well-defined and well-accepted task = Good applications

No need to tell why meeting these criteria
o Image recognition

o (Some of) natural language
processing

o Speech recognition

Huge amount of |abeled training data

Typically needs millions labeled samples
* How about industrial
Minimum uncertainty in data representation dynamic systems?

o Interesting research topic
Pixels, words, Mel-filterbank

44
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One caveat: Automated feature learning from noisy senor
signal is still challenging

» |mage recognition and NLP (natural pepeaxs = A
language processing) are an ideal

area fOI’ deep |eal"n | ng End-to-End Speech Recognition From the Raw Waveform
o Huge annotated datasets exist
o Established preprocess method

Neil Zeghidour'?, Nicolas Usunier!, Gabriel Synnaeve', Ronan Collobert', Emmanuel Dupoux?

! Facebook A.L Research, Paris, France; New York & Menlo Park, USA
2 CoML, ENS/CNRS/EHESS/INRIA/PSL Research University, Paris, France

- A Ilttle Secret |n SpeeCh recogn|t|0n {neilz, usunier, gab, locrenan }@fb.com, emmanuel.dupoux@gmail.com
State-of-the-art deep-learning- N “‘“r““m N Iﬁﬂnﬁgﬂiﬁfiﬁéﬁ!i?;ﬂi‘%‘i‘fﬁ‘%"ﬁ".fiﬂfi‘.‘.i?i‘ﬂ{;}ilﬁﬁf,‘;
based systems use handcrafted i st bmmseivse L S T
features

» The situation will be much tougher “State-of-the-art speech recognition
In general industrial sensor data systems rely on fixed, handcrafted features
analytics such as mel-filterbanks to preprocess the

waveform before the training pipeline”

45
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Implications for sensor data analytics

» Deep learning (especially RNN such as LSTM) will be a powerful tool
when

o we know how to read the data (and thus a good amount of labeled training data
exists)

o we know limitations of linear models (state-space models)

o we have a lot of GPU!

46
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Discussion: Will Blockchain bring in any value on sensor
data analytics?

= \WWhat is Blockchain?

o Distributed decentralized database characterized by a hash chain data structure
and a consensus algorithm

» Blockchain generations
o 1st generation (Bitcoin)

v' De-centralized, secure platform for money transfer
o 2nd generation (Ethereum, Hyperledger, Corda)

v' Extended to handle general business transactions beyond money transfer

» Expected to be a useful platform for 10T (internet-of-things) systems
o “Device democracy”

47
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Discussion: Will Blockchain bring in any value on sensor
data analytics?

» Blockchain shouldbe /2~ ______ _
generalized as a collaborative @’ \@
learning platform i / Sub‘r;ﬁttin

“Blockchain 3.0” ’ °
o The particular hash chain data ) orderer

structure can be viewed as just one !
instance of implementation Q @ g
= Example: privacy-preserving \ 5 E
multi-task learning on '
Blockchain \O endorser_

~
N e —-—

48
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Summary and ongoing work

» Industrial sensor data have
many interesting features that
call for new machine learning
formulation

* Introduced a few recent works
on anomaly detection
o Change detection using
directional statistics
o Multi-task anomaly detection
algorithm

o Tensorial change analysis

» Ongoing/future work

o Prediction/anomaly detection
from novel data types
v’ tensors, functions, graphs,
trajectories, events, etc.
o Multi-x / cross-x learning
v' multi-task, view, domain,
modality
o Deep learning for dynamic
systems

49
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Thank you!

50



