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Abstract—This paper proposes a framework for collaborative
anomaly detection on Blockchain. Taking condition-based man-
agement of industrial asset as a practical example, we extend the
notion of Smart Contract, which has been implicitly assumed
to be deterministic, to be able to handle noisy sensor data.
By formalizing the task of collaborative anomaly detection as
that of multi-task probabilistic dictionary learning, we show
that major technical issues of validation, consensus building, and
data privacy are naturally addressed within a statistical machine
learning algorithm. We envision Blockchain as a platform for col-
laborative learning rather than just a traceable, immutable, and
decentralized data management system, suggesting the direction
towards “Blockchain 3.0”.

Index Terms—Blockchain, collaborative learning, multi-task
learning, anomaly detection, condition-based management

I. INTRODUCTION

The major commercial success of cryptocurrencies has

made Blockchain one of the hottest topics in the information

technology industry. Scholars, practitioners, and even private

investors are actively seeking new applications of Blockchain

these days. Although Blockchain was originally proposed as a

decentralized protocol for value exchange [1], it has evolved

to a distributed ledger platform by extending the original

protocol to be able to handle more general transactions beyond

money transfer in the form of Smart Contract [2]. Although

the generalized version of Blockchain, which is sometimes

called “Blockchain 2.0” [3], [4], has opened a new door to

a vast array of application fields, it, in turn, has brought in

a few major technical challenges, which are becoming major

concerns especially in closed or “permissioned” Blockchain

networks [5].

The first challenge is how to validate business transactions.

Unlike money transfer, in which validating a transaction is

readily done by checking the identity of the sender and the

receiver and the balance of the account, writing down a policy

to validate a general business logic is not straightforward.

This is especially true when a part of the business process

is done outside the Blockchain network. Examples include

food traceability networks [6]. Using the hash pointers of the

blockchain, you can guarantee a stored record has never been

altered, but “what would stop bad actors in the supply chain

from fudging them in the first place” [7]? What we need here

is a smart mechanism that automatically down-weights less

trustworthy entries.

submitting 
client

endorser

orderer

Fig. 1. Illustration of proposed condition-based management system on
Blockchain.

The second challenge is how to build a consensus over

transaction records. The original Bitcoin protocol relies on

the assumption that the Blockchain network is stochastic: The

network is assumed to have statistically independent validators

(or miners) who are incentivized to compete each other for a

reward [1]. This assumption allows computing the probability

that attackers will successfully falsify the latest transaction

records. Nakamoto [1] showed that the probability is negligible

as long as honest nodes dominate the network. However, it is

evident that the assumption of stochastic competition does not

hold in permissioned networks at all. Being away from the

ideology of decentralized management, permissioned networks

employ a partially centralized approach by having pre-selected

(i.e. trusted) endorsers validate transactions. The Byzantine

fault tolerance mechanism or its variant is typically used to

get a consensus among the endorsers [8].

In this paper, we shed a new light on these challenges

in the context of internet-of-things (IoT). Specifically, we

consider the task of condition-based management (CbM) [9] of

industrial assets such as plasma etching tools in semiconductor

manufacturing and coal mining drilling machines. Although

CbM includes a variety of business tasks in general, we focus

on the task of anomaly detection, which is to detect unusual

behaviors of the assets from their sensor data before getting

actually broken or suffering unplanned service interruptions.
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To address the well-known issue of lack of sufficient amount

of anomalous samples for model training, Blockchain as an

information sharing platform has a lot of potential in anomaly

detection. However, it has not been clear how CbM is made

possible on Blockchain. Specifically, the major goal of CbM is

to get a set of feasible business rules learned from raw sensor

signals with random noise. In such a case, the very notion

of validation and consensus require careful reconsiderations

because most of the Blockchain implementations assume de-

terministic business transactions [10].

We argue that there are at least three requirements for a

practical Blockchain-based CbM platform. First, related to the

first challenge above, it should be able to systematically handle

statistical outliers and random fluctuations of data. Second,

related to the second challenge, it should be able to build a

network-wide consensus while taking care of the individuality

of the participant nodes. Third, it should preserve data privacy.

To meet these requirements, we formalize anomaly de-

tection as collaborative dictionary learning. In the proposed

Blockchain network as illustrated in Fig. 1, common knowl-

edge or consensus is represented as a dictionary of patterns.

To collaboratively learn the dictionary, the participant nodes

(“Submitting Clients”) iteratively send the Endorsers interme-

diate statistics derived from raw data. The Endorsers update

the dictionary as a Smart Contract based on a weighted

average over the shared intermediate statistics. In this frame-

work, for the first requirement, less trustworthy samples are

automatically down-weighted through a statistical machine

learning algorithm. For the second requirement, the consensus

is naturally achieved as a statistically weighted average, which

is also part of the statistical learning procedure. For the third

requirement, data privacy is preserved by sharing only aggre-

gated intermediate statistics. To the best of our knowledge, this

is the first work to formalize CbM as collaborative anomaly

detection on Blockchain. This paper is aimed at making a

significant step forward to fill the gap between the reality of

CbM and speculative discussions on Blockchain for IoT.

II. RELATED WORK

Prior work related to the present study can be categorized

into two groups: Blockchain-based IoT platforms and collab-

orative anomaly detection methods.

Regarding the first category, the importance of Blockchain

technologies in IoT was first made widely recognized by

IBM’s report titled “Device Democracy” [11], which argued

that Blockchain would be an ideal platform to manage billions

of connected devices in terms of cost, security, and future-

proof-ness. Many application scenarios have been discussed

since then, such as product provenance tracking [12], IoT

device management [13], connected cars [14], location-based

recommendation [15], and smart home [16] although most of

them are still at a conceptual stage.

In those application scenarios, a crucial but less explicitly

discussed technical issue is how to design Smart Contracts.

In the connected car scenario, for example, a Blockchain-

based automated maintenance system would work if there

were a complete set of rules to detect indications of faults.

However, detecting fault indications itself is known to be very

challenging, and this is indeed the main reason why CbM has

been treated as a holy grail in the manufacturing industries.

This work clearly differs from those existing work in that the

Smart Contract in our system is naturally defined as part of a

collaborative machine learning algorithm.

Regarding the second category, collaborative anomaly de-

tection in this paper refers to machine learning algorithms that

perform anomaly detection through multi-task learning [17].

Note that distributed (or federated) learning in the standard

sense is different from multi-task learning in that the latter

typically aims at learning a single model while the former

aims at learning multiple models as many as the number of

data sources. For example, in Fig. 1, there are S different

industrial assets. The goal is to learn S anomaly detection

models collaboratively.

Although multi-task learning has been an actively studied

topic in data mining and machine learning communities [17],

there are not many studies that use multi-task learning specif-

ically for anomaly detection. Most of them use one-class

support vector machines (OCSVM) [18], [19] but it is not

common to use OCSVM in industrial IoT applications due

to its sensitivity to the choice of hyper-parameters and lim-

ited interpretability. Recently, an anomaly detection method

in the multi-task setting to handle the multi-modality of

noisy sensor signals has been proposed [20]. It shares some

of our motivations, but it completely lacks the context of

Blockchain. Also, it uses advanced mathematical techniques

including �0-regularized optimization, making implementation

on Blockchain challenging. To the best of our knowledge,

this is the first work on collaborative anomaly detection on

Blockchain.

III. PROBLEM SETTING

This section overviews the proposed Blockchain-based col-

laborative anomaly detection system.

A. Data set

Figure 1 shows an overview of the proposed system, where

we follow the taxonomy of Hyperledger Fabric [5]. There

are three major players in the system. The submitting client
(or simply client) corresponds to an industrial asset being

monitored for anomaly detection. There are S clients in the

network indexed by s = 1, 2, . . . , S. The clients are assumed

to be of the same type of equipment, but they can behave quite

differently, depending on operational conditions. Each client

privately has a data set as a result of repeated measurements.

For the s-th client, the data set is written as

Ds = {xs(1), . . . ,xs(Ns)}, (1)

where xs(n) ∈ R
M denotes the n-th sample of the M -

dimensional measurement. We assume that Ds has been cen-
tered to have zero mean. In the CbM scenario, measurements

are typically performed sequentially and the index n specifies

a time index. All the clients have assumed to have the same
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measurement system. For example, if the first sensor measures

the temperature of a part in the fifth client, the first dimension

of, e.g., xs=10 must be the temperature of the same part of

the 10th client. The total number of samples Ns can differ

among the clients. Some clients may have fewer samples and

others may have more. Also, in our unsupervised anomaly

detection setting, Ds is assumed to have taken under a normal

condition. Outliers may exist in the data, but at least Ds has

to be dominated by normal samples.

Although we will use CbM as a running example, it is clear

that our model applies to other applications, such as medical

record analysis.

B. Anomaly score

Based on the data set D ≡ {D1, . . . ,DS}, the clients

collaboratively learn an anomaly detection model, which com-

putes a real number called the anomaly score as a function

of a new sample and model parameters learned from D.

The standard choice for the anomaly score function is the

logarithmic loss [21]. For the s-th client, it is formally written

as

as(xs | θgl.,θlo.) = − ln p(xs | θgl.,θlo.), (2)

where p(xs | ·, ·) is the (multivariate) probability density func-

tion for one sensor measurement, θgl. symbolically denotes

the global model parameters shared by all the clients, and θlo.
denotes the local parameter kept within each client (see Sec. IV

for the definition). Since Ds is from normal state operations,

the density function p can be viewed as a summary of the

normal state.

In the Blockchain terminology, the global parameter θgl. is

a mathematical representation of consensus. As described in

the next section, θgl. consists of a set of parameters defining

a probabilistic mixture model.

C. Network participants

As shown in Fig. 1, there are three types of participants

in the network: clients, endorsers, and order. The goal of the

proposed Blockchain-based system is to collaboratively learn

θgl. and θlo. through iterative communication among clients,

endorsers, and orderer.

As in ordinary Blockchain networks, a client communicates

with an endorser node to send intermediate statistics derived

from raw data Ds and request to send back the latest global

parameter θgl.. The orderer checks the time stamps and

possibly job IDs to make sure that the provided intermediate

statistics belong to the same computation round (see Sec. IV

for the algorithmic detail). Once the orderer confirmed that all

the statistics are in place, or predefined time has passed, the

orderer broadcasts a message that the block is confirmed. This

sequence is repeated until convergence.

Although only one orderer is shown in the figure for

simplicity, there can be multiple orderers. Similarly, we have

omitted details such as Certificate Authorities. For details, re-

fer to the documentation of major Blockchain implementations

such as Hyperledger Fabric [5].

IV. COLLABORATIVE DICTIONARY LEARNING FROM NOISY

MULTIVARIATE REAL-VALUED DATA

This section presents the mathematical details of Smart

Contract executed by the endorsors and partly by the clients.

Our goal is to give an algorithm to compute Eq. (2). For

industrial applications, it is important to make sure that the

distribution p(xs | θgl.,θlo.) captures various different patterns

in the training data D while preserving high interpretability. To

achieve an optimal balance, we employ a multi-task Gaussian

mixture model with a sparsity-enforcing prior. We first focus

on describing the core machine learning algorithm with less

attention to the Blockchain terminology, then we paraphrase

the algorithm in the light of Smart Contract.

A. Observation model and priors

First, we define the observation model of the s-th client by

p(xs | zs,μ,Λ) ≡
K∏

k=1

N (xs | μk, (Λk)
−1)z

s
k , (3)

where N (xs | μk, (Λk)
−1) is the Gaussian probability density

with the mean μk and the precision matrix Λk. On the l.h.s.

(left hand side), μ and Λ are collective notations representing

{μk} and {Λk}, respectively. Also, zs is the indicator variable

of cluster assignment. As usual, zsk ∈ {0, 1} for all s,

and
∑K

k=1 z
s
k = 1. As explained later, by giving a large

enough K and letting the algorithm prune irrelevant clusters,

we can automatically get an optimal number of clusters as

long as reasonable initialization is used. Also, notice that the

parameters {μk} and {Λk} do not have the index of s. This

means that they are shared by all the clients as a result of

collaborative learning. We call {μk,Λk}Kk=1 the dictionary
because the list should cover major distributional patterns in

the training data.

Following [20], we use the Gauss-Laplace prior on (μk,Λk)
and the categorical distribution on z:

p(μk,Λk) ∝ N (μk|0, (λ0Λk)
−1) exp

(
−ρ

2
‖Λk‖1

)
(4)

p(zs|πs) =
K∏

k=1

(πs
k)

zs
k s.t.

K∑
k=1

πs
k = 1, πs

k ≥ 0, (5)

where ‖Λk‖1 is the absolute sum of all the entries of Λk. The

parameter πs is determined as a part of the model while ρ, λ0

are given constants.

Our basic strategy for model learning is maximum a pos-

teriori (MAP). In this case, since Z ≡ {zs} is unobserved

latent variables, MAP estimation seeks the maximizer of the

log marginalized likelihood:

L(Λ,μ,π) ≡ ln
∑
Z

K∏
k=1

p(μk,Λk)

×
S∏

s=1

Ns∏
n=1

p(zs(n)|πs)p(xs(n) | zs(n),μ,Λ), (6)

where zs(n) is the indicator variable for the n-th sample of

the s-th client and π ≡ {πs}.
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B. EM algorithm for collaborative density estimation

Because of the summation, direct maximization of Eq. (6)

is hard. Luckily, we can derive a collaborative version of EM

(expectation-maximization) iteration by slightly modifying the

standard solution for the Gaussian mixture [22]. To derive

the lower bound through Jensen’s inequality, we introduce a

distribution over Z,

Q(Z) =
S∏

s=1

Ns∏
n=1

K∏
k=1

(r
s(n)
k )z

s(n)
k , (7)

where r
s(n)
k ≥ 0 and

∑K
k=1 r

s(n)
k = 1 for all s, n. Now

Jensen’s inequality leads to

L(Λ,μ,π) ≥L0(Λ,μ,π) ≡
Ns∑
n=1

S∑
s=1

K∑
k=1

r
s(n)
k ln

(
πs
kN s(n)

k

)

+

K∑
k=1

N (μk|0, (λ0Λk)
−1)− ρ

2

K∑
k=1

‖Λk‖1 (8)

up to an unimportant constant, where N s(n)
k is a shorthand

notation of N (xs(n)|μk, (Λk)
−1). Apart from the summation

over s and the Laplace prior, this is the same as the lower

bound of the standard Gaussian mixture [22].

The EM iteration proceeds as follows: Given {rs(n)k } as a

numerical value, we find the maximizer of L0(Λ,μ,π). Then,

given Λ,μ,π as a numerical value, L0 is maximized with

respect to {rs(n)k }. The former is called the M (maximization)

step and the latter called the E (“expectation”) step for a

historical reason.

In the E step, by taking the derivative with respect to r
s(n)
k

under the sum-to-one constraint, we readily get

r
s(n)
k =

πs
kN s(n)

k∑k
l=1 π

s
lN s(n)

l

. (9)

In the M step, first, by taking the derivative with respect to

πs
k under the sum-to-one constraint, we again have

πs
k =

∑Ns

n=1 r
s(n)
k∑Ns

n=1

∑K
l=1 r

s(n)
l

. (10)

Second, by taking the derivative with respect to μk, we have

Nk ≡
Ns∑
n=1

S∑
s=1

r
s(n)
k (11)

μk =
1

λ0 +Nk

S∑
s=1

Ns∑
n=1

r
s(n)
k xs(n). (12)

Finally, maximizing L0 with respect to Λk is equivalent to

max
Λk

{
ln detΛk − Tr(ΛkΣk)− ρ

Nk
‖Λk‖1

}
, (13)

where det denotes the matrix determinant and

Σk ≡ 1

Nk

S∑
s=1

Ns∑
n=1

r
s(n)
k xs(n)xs(n)� − μkμ

�
k , (14)

where � denotes the transpose. The optimization problem

Eq. (13) is called the graphical lasso and an efficient al-

gorithm is available. See [23] for the detail. Thanks to the

�1 regularizer, the solution of Eq. (13) is known to give

a sparse matrix. Since the precision matrix has one-to-one

correspondence to the Gaussian graphical model [24], the

resulting sparse precision matrices give readily interpretable

information on the interdependency between the variables.

In other words, the learned dictionary will contain major

prototypes of dependency patterns in addition to prototype

vectors representing the cluster centers.

C. Protocol for parameter updates

Now that we have derived the algorithm for parameter

updates, let us translate the algorithm into the Blockchain

language. The key consideration here is privacy preservation

of training data: we need to establish a protocol to get the

learning going without sharing the raw data with the endorser

side. Fortunately, it is possible to rewrite the algorithm to meet

the privacy requirement. The proposed protocol alternatingly

performs two major procedures of c_update (“client up-

date”) and e_update (“endorser update”) until the orderer

declares convergence.

On the client side, given the latest dictionary {μk,Λk}Kk=1,

each client performs c_update to get the local parameters

θs
lo. ≡ {Ns

k ,m
s
k,C

s
k, π

s
k}Kk=1 (15)

as the intermediate statistics. Specifically, the s-th client first

computes new {rs(n)k }Kk=1 with Eq. (9). Then it updates

intermediate statistics as

Ns
k ←

Ns∑
n=1

r
s(n)
k , (16)

ms
k ←

Ns∑
n=1

r
s(n)
k xs(n), (17)

Cs
k ←

Ns∑
n=1

r
s(n)
k xs(n)xs(n)�, (18)

πs
k ←

Ns
k∑K

l=1 N
s
l

, (19)

for k = 1, . . . ,K. Notice that these are aggregated statistics

that do not convey any sample-wise information. For some

additional privacy considerations, see Sec. IV-D.

The updated θs
lo. together with relevant attributes such as

the time stamp and the iteration count is shared with the

endorsers and the orderer. The orderer checks the attributes

to bundle the transactions of the same iteration round. When

all the S local parameters become available or a predefined

time has passed, a block containing the S local parameters is

locked and added to the blockchain. If some of the clients fail

to report updated local parameters, the orderer recycles the

previous local parameter of the failed clients. In this protocol,

one block of the blockchain immutably stores the set of the

local parameters: θlo. = {θs
lo.}Ss=1.
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On the endorsers side, given the set of the local parameters,

once a new block is approved and locked, e_update is

performed to update the dictionary. Specifically, the endorsers

compute

Nk ←
S∑

s=1

Ns
k , (20)

μk ← 1

λ0 +Nk

S∑
s=1

ms
k, (21)

Σk ← 1

Nk

S∑
s=1

Cs
k + μkμ

�
k , (22)

and solve Eq. (13). Once computation is done, the endorsers

broadcast the global parameter (or the dictionary)

θgl. = {μk,Λk}Kk=1. (23)

One potential issue here is that e_update has to wait until

a block gets locked. This is indeed a critical point in any

Blockchain-based architectures for collaborative learning. By

definition, collaborative learning requires information sharing

among the clients. Thus, in general, transactions are stateful: a

transaction made by one client will affect another transaction

by another client. One approach to handle this issue is to

leverage the idea of speculative execution [25], [26]. See

Sec. IV-D for an additional discussion on this issue.

Algorithm 1 summarizes CollabDict, the proposed col-

laborative dictionary learning protocol. Once a convergent

solution is obtained, each client can build the anomaly score

function using Eq. (2). By marginalizing the latent variable

zs, we have

as(xs) = − ln
K∑

k=1

πs
kN (xs | μk, (Λk)

−1). (24)

There are three input parameters in the CollabDict
protocol. For λ0, one can set λ0 = 1 if there is no specific

reason to do otherwise. For K, as discussed previously, careful

parameter tuning is not really necessary. It is known that

Eq. (10) gives a sparse solution in the sense that πs takes zero

in many entries [27], which can be viewed as one example of

automatic relevance determination (ARD) [27]. Thus we can

start a reasonably large value of K. Finally, ρ is the only

parameter that calls for tuning. Typically, ρ is determined so

that the performance of anomaly detection is maximized. For

example, the harmonic average between the anomalous sample

accuracy (true positive) and the normal sample accuracy (true

negative) can be used as the performance metric to decide on

ρ.

D. Remarks on the CollabDict protocol

As briefly noted in Introduction, CollabDict meets the

three major requirements of Blockchain-based CbM platform.

First, it has an automatic mechanism to down-weight irrel-

evant samples through r
s(n)
k . This is in sharp contrast to

the traceability use case, which assumes all the entries are

Algorithm 1 Collaborative dictionary learning

procedure COLLABDICT

Initialize dictionary {(μk,Λk) | k = 1, . . . ,K}
repeat

for s← 1, S do
Perform c_update({μk,Λk}Kk=1)

end for
for k ← 1,K do

Perform e_update({Ns
k ,m

s
k,C

s
k}Ss=1)

end for
until convergence

end procedure

procedure C UPDATE({μk,Λk}Kk=1)

for k ← 1,K do
Perform Eqs. (9), (16)-(19)

end for
return {Ns

k ,m
s
k,C

s
k, π

s
k}Kk=1

end procedure

procedure E UPDATE({Ns
k ,m

s
k,C

s
k}Ss=1)

for s← 1, S do
Perform Eqs. (20)-(22), (13).

end for
return {μk,Λk}Kk=1

end procedure

correct and attempts to establish an immutable and traceable

database. Second, it establishes a consensus by averaging the

local parameters (see Eqs. (20)-(22)). This can be viewed as a

statistical generalization of the proof-of-vote mechanism [28].

Unlike the common notion of proof-of-vote, which is typically

introduced in an ad hoc fashion, our protocol is principled

— it has been introduced as a consequence of the minimum

likelihood principle. Third, since the clients do not share any

raw data, the algorithm is safe in terms of data privacy.

However, a careful attention should be paid to data privacy.

In this protocol, depending on the value of the global param-

eters, there is actually a risk that the raw samples get exposed

to the endorsers. For example, if the cluster center of a cluster

happens to be very close to an outlier, the cluster center can

be a very faithful surrogate of the outlier datum. To keep this

kind of situations from happening, the clients can add some

noise to {rs(n)k } so that the protocol satisfies the condition of

differential privacy [29]. One interesting mathematical feature

of CollabDict is that the clients can quantitatively evaluate

the risk of privacy breach by checking {rs(n)k }. However, we

leave the detailed discussion on this issue to a separated paper.

The other important consideration is how to handle the

stateful nature of transactions. The update equations (20)-

(22), and (13) need the local parameter from all the clients,

which may impact on the total computational time. One simple

way to address this issue is to rewrite these equations in an

online updating form, similar to the idea of stochastic gradient
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descent [30] and speculative execution of Smart Contract [25].

This is indeed possible with a little modification of the learning

algorithm. We also discuss this extension separately elsewhere.

V. EXPERIMENTS

From the implementation point of view, there are two in-

teresting questions about this work. The first question is if the

proposed collaborative density estimation approach is useful

in realistic scenarios. The second question is if the learning

procedure really works on Blockchain. Due to limitations of

existing Blockchain implementations, especially those related

to the difficulty in handling non-categorical real numbers with

random noise, we will focus on the first question in this

section.

A. Methods compared

The proposed anomaly detection framework features the

sparse Gaussian graphical model to achieve practical inter-

pretability. We compare CollabDict with two alternative

algorithms that can learn sparse and thus interpretable depen-

dency structures in the multi-task learning setting: the group

graphical lasso (group) and fused graphical lasso (fused)

algorithms [31]. Similarly to the proposed method, these

methods can compute client-wise precision matrices {Λs} but

they allow only the single precision matrix (i.e. K = 1).

Therefore, the anomaly score is defined as

− lnN (xs | x̂s, (Λs)−1) (25)

for each client s, where x̂s is the sample mean over Ds, which

will be the zero vector for centered data sets.

B. Data cleansing

We applied CollabDict to a real-world data set collected

from physical sensors installed on industrial vehicles. The

data set includes about 100 files of 42-variate time-series data

(M = 42) with about 150 time points (Ns ∼ 150) under

normal operating conditions. We randomly picked the first ten

files and think of them as the clients (S = 10). For initial-

ization, we split each data set into three equal-length blocks

(K = 3 × 10) and standardized each variable by adding 2σ
with σ being the standard deviation. Since samples have been

taken under normal operating conditions, an anomaly detection

algorithm should give very small anomaly scores for all the

samples. However, due to random noise and measurement

errors, some samples may be highly contaminated and should

be removed from the data set. Data cleansing is the task to

identify such outlying samples. Intuitively the goal is to pick

up samples that are located farthest from any of the clusters.

Upon convergence, CollabDict gave only five clusters,

out of which three were dominant. Close inspection shows

that those clusters correspond to high and low amplitude

fluctuations. This makes sense because most of the time-series

incur high fluctuations in the beginning and in the end due to

the transient behaviors of engine start and stop.

One important feature of Gaussian-based probabilistic mod-

els is its capability of computing the conditional distributions

for each variable. Specifically, given N (xs | μk, (Λk)
−1), the

conditional distribution of the i-th variable xs
i given the other

variables, denoted by xs
−i, is written by

pk(x
s
i | xs

−i) = N (xs
i | mk,i, σ

2
k,i) (26)

mk,i = [μk]i − 1

[Λk]i,i

∑
j �=i

[Λk]i,j [x
s − μk]j (27)

σ2
k,i =

1

[Λk]i,i
(28)

where [·]i and [·]i,i denoted the i-th and (i, i) entry of the

object inside the square bracket. See, e.g. Appendix B of [22]

for derivation.

Using this formula, we computed the variable-wise anomaly

score for each sample for the task of data cleansing, which

is to find outliers in the training data set itself as explained

above. Figure 2 shows a typical result, where CollabDict
gives a much smoother signal than group and fused. Notice

that group and fused have large signals in the beginning

and the last periods. This corresponds to the high-fluctuation

components in the multivariate system and cannot be captured

by single-modal models. For the purpose of data cleansing, the

robustness of this kind is quite useful since high fluctuations

upon engine start and stop should not be thought of as a

malfunction.

To quantify the goodness of the smoother trend in the

anomaly score, Fig. 3 shows accuracy-coverage plots (a surro-

gate of the ROC curve in this setting), where the coverage is

defined by how much percentage of samples is covered by a

threshold, and the accuracy in this case means the ratio of the

samples below the threshold. The curve is drawn by changing

the threshold. The AUC values of this plot are summarized

in Table I. As shown, CollabDict clearly achieves the best

AUC. Different variables and tasks have a different value of

AUC, but they share the same trend.

C. Anomaly detection

The data set used in the previous section also includes 20

faulty data files, in which two sensors produced faulty signals

due to a physical problem. Although the original data is not in

the collaborative learning setting, we use the dictionary with

five components learned in the previous subsection to build the

anomaly score function. We again used the formula Eq. (26)

in Eq. (24) to get the variable-wise score function.

The goal of this anomaly detection task is to precisely

pinpoint the faulty variables from the others in terms of the

anomaly score. We employed a two-sample test setting. We

randomly picked a normal and a faulty dataset and computed

TABLE I
AUC VALUES.

CollabDict group fused
cleansing (Fig. 3) 0.933 0.863 0.856
detection (Fig. 4) 0.950 0.887 0.897
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client 

CollabDict

group

used

Fig. 2. Variable-wise anomaly scores for x9 of task 6. The top row shows
the raw signal, while the bottom three are anomaly scores computed by the
specified methods.

client 

CollabDict
group
used

Fig. 3. Comparing coverage-accuracy curves. See Table I for corresponding
AUC values.

the variable-wise anomaly score averaged over the samples. If

the anomaly score was computed right, the faulty two sensors

should stand out in terms of anomaly score. We repeated this

200 times for different normal-faulty pairs and computed the

negative sample accuracy (true negative) and positive sample

accuracy (true positive).

Figure 4 show the result. The corresponding AUC values

are shown in Table I. The results clearly show the better

performance of CollabDict. As discussed in the previous

subsection, the data contains different operational conditions

especially due to transient behaviors of engine start and

stop. By collecting various patterns from different clients (or

CollabDict

used

group

Fig. 4. Comparison of anomaly detection performance.

multiple data sets) and keeping them in the dictionary, the

resulting model has better coverage than the single pattern

models.

VI. CONCLUDING REMARKS

We have proposed a framework for collaborative anomaly

detection on Blockchain. Taking condition-based management

of industrial assets as a practical example, we successfully

extended the notion of Smart Contract, which has implic-

itly assumed deterministic discrete quantities, to noisy real-

valued sensor data. We showed that the three major tech-

nical challenges of validation, consensus building, and data

security are naturally addressed within a machine learning

algorithm. Specifically, the weighting factor introduced by the

EM framework serves to invalidate contaminated and thus

less informative samples. Consensus building is achieved as

a natural consequence of statistical aggregation, which can

also be viewed as a statistical generalization of the proof-

of-vote mechanism [28]. Since the proposed CollabDict
protocol requests the client to share only aggregated statistics

while keeping the raw data private, it can easily be made

satisfy the condition of differential privacy by combining

with an appropriate randomization scheme. We formalized

the task of collaborative anomaly detection as collaborative

dictionary learning based on a multi-task Gaussian mixture

and demonstrated that it can capture the multi-modality of the

real world.

Regarding industrial applications of Blockchain, data trace-

ability scenarios have been the central topic in the Blockchain

community so far. Essentially Blockchain is a technology

to share information among trustless parties. We argue that

Blockchain should be redefined as a platform for collabo-
rative learning rather than just a traceable, immutable, and
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decentralized data management system. The key contribution

of this paper is the first proposal of a practical protocol that

achieves collaborative learning on Blockchain. We pointed out

that handling the statefulness of transactions as a result of col-

laborative learning is one of the biggest technical challenges,

in addition to the three requirements of validation, consensus

building, and data security. Extending the proposed framework

to guarantee differential privacy and to relax the statefulness

of transactions will be an interesting future research topic.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[2] G. Wood, “Ethereum: A secure decentralised generalised transaction

ledger,” Ethereum Project Yellow Paper, vol. 151, pp. 1–32, 2014.
[3] X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen, “A survey on the security

of blockchain systems,” Future Generation Computer Systems, 2017.
[4] M. Muzammal, Q. Qu, and B. Nasrulin, “Renovating blockchain with

distributed databases: An open source system,” Future Generation
Computer Systems, vol. 90, pp. 105–117, 2019.

[5] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al.,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in Proceedings of the Thirteenth EuroSys Conference.
ACM, 2018, p. 30.

[6] F. Tian, “An agri-food supply chain traceability system for china
based on RFID & blockchain technology,” in 2016 13th International
Conference on Service Systems and Service Management (ICSSSM).
IEEE, 2016, pp. 1–6.

[7] L. Matsakis, “Praying to Satoshi at the Blockchain Art Expo,” Retrieved
from https://www.wired.com/story/ethereal-summit-blockchain-art/,
May 2018.

[8] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for
the internet of things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.

[9] J. W. Sheppard, M. A. Kaufman, and T. J. Wilmer, “Ieee standards for
prognostics and health management,” IEEE Aerospace and Electronic
Systems Magazine, vol. 24, no. 9, pp. 34–41, 2009.

[10] L. S. Sankar, M. Sindhu, and M. Sethumadhavan, “Survey of consensus
protocols on blockchain applications,” in Proc. of the 4th Interna-
tional Conference on Advanced Computing and Communication Systems
(ICACCS), 2017, pp. 1–5.

[11] J. Cohn, P. Finn, S. Nair, and S. Panikkar, “Device democracy – saving
the future of the internet of things,” Retrieved from https://www-935.
ibm.com/services/us/gbs/thoughtleadership/internetofthings/, Sep 2014.

[12] A. Bahga and V. K. Madisetti, “Blockchain platform for industrial
internet of things,” Journal of Software Engineering and Applications,
vol. 9, no. 10, p. 533, 2016.

[13] S. Huh, S. Cho, and S. Kim, “Managing iot devices using blockchain
platform,” in Proceedings of the 19th International Conference on
Advanced Communication Technology (ICACT). IEEE, 2017, pp. 464–
467.

[14] Y. Yuan and F.-Y. Wang, “Towards blockchain-based intelligent trans-
portation systems,” in Proceedings of the 2016 IEEE 19th International
Conference on Intelligent Transportation Systems (ITSC). IEEE, 2016,
pp. 2663–2668.

[15] B. Nasrulin, M. Muzammal, and Q. Qu, “Chainmob: Mobility analytics
on blockchain,” in 2018 19th IEEE International Conference on Mobile
Data Management (MDM). IEEE, 2018, pp. 292–293.

[16] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, “Blockchain for
iot security and privacy: The case study of a smart home,” in Proceedings
of the 2017 IEEE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops). IEEE, 2017, pp.
618–623.

[17] Y. Zhang and Q. Yang, “A survey on multi-task learning,” arXiv preprint
arXiv:1707.08114, 2017.

[18] Y. Xiao, B. Liu, S. Y. Philip, and Z. Hao, “A robust one-class transfer
learning method with uncertain data,” Knowledge and Information
Systems, vol. 44, no. 2, pp. 407–438, 2015.

[19] X. He, G. Mourot, D. Maquin, J. Ragot, P. Beauseroy, A. Smolarz, and
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