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Agenda

▪General challenges in Cognitive Manufacturing

▪ Change detection using directional statistics
o T. Ide et al., IJCAI 16

▪Multi-task multi-modal models for collective anomaly detection
o T. Ide et al., ICDM 17

▪ Summary and future work
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Cognitive Manufacturing is IBM’s research initiative to 

address Industry 4.0

First mechanical loom,1784

First

Industrial 
machines driven 
by steam power

1800 1900 2000

First conveyor belt, Cincinnati 
slaughterhouse, 1870

First programmable logic 
controller (PLC) Modicon 
084,1969

TODAY

Third 

Automation with 
electronic 
devices

Second

Introduction of 
mass production 
systems

Fourth

AI revolution: 
incorporation of 
learning system

Degree of 

complexity

First

Second

Third

Fourth
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Key technical areas of Cognitive Manufacturing: 

Sensor data analytics plays a key role

Anomaly / 

change 

detection

Operational 

condition 

optimization

Failure risk 

analysis

Maintenance 

scheduling / 

planning

Detect indications of 

failures before happening

Compute the risk of 

failure based on 

past failure records

Optimize maintenance actions while 

satisfying business constraints

Adjust suboptimal 

operational conditions
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General challenges: No “one-size-fits-all” algorithm

▪ Example in anomaly detection
o “Happy families are all alike; every unhappy family is unhappy in its own way.” -

Anna Karenina, Leo Tolstoy

outliers (from i.i.d. 

samples)

change points

outliers (from auto-

correlated samples)

discords

Examples of anomalies

Tsuyoshi Ide and Masashi Sugiyama, Anomaly Detection and Change Detection, Kodansha, 2015 (in Japanese).
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General challenges: Business requirements often drive 

extension of existing approaches

▪ Example: corporate-level asset 

management with anomaly detection

o Typically assets are managed as a cohort

✓ 10s of off-shore oil production systems

✓ 100s of industrial robots

✓ 1000s of electric vehicles in a certain area

o How can we leverage the commonality between 

assets to build an anomaly detection solution for 

individual assets? 

...

...

...
T. Ide, et al., “Multi-task Multi-modal Models for Collective Anomaly Detection,“ Proc. 2017 IEEE Intl. 

Conf. Data Mining (ICDM 17), pp.177-186
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General challenges: Complex internal structure may exist in 

one measurement

Optical Emission Spectra

time-series of independent 

(non-controlled) variables
time-series of 

controlled variables

Tracking plasma etch process variations using 

Principal Component Analysis of OES data. Ma, B.; 

McLoone, Seán; Ringwood, J. 2007. International 

Conference on Informatics in Control, Automation 

and Robotics (ICINCO 2007), Angers, France.

Example from semiconductor manufacturing (etching)

wafer passes

Optical spectra

Each wafer pass is a higher-order 

tensor, rather than a vector

Controlled variables

Non-controlled
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General challenges: Ready-to-use solution to your problem 

might not even exist

▪ Example: Charge retention (~ battery life) 

prediction of electric vehicle batteries
o Depends on the entire history of battery usage

o Battery usage is represented as a complex 

trajectory of a multi-dimensional space 

▪ Charge retention prediction task should be 

formulated as “trajectory regression”

Temperature
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Toshiro Takahashi, Tsuyoshi Ide, “Predicting Battery Life from Usage Trajectory Patterns,” Proc. 

Intl. Conf. Pattern Recognition (ICPR 2012), pp.2946-2949.

“trajectory”

charge 

retention



9

IBM Research

General challenges: Ground truth may not be available. 

Some degrees of freedom are usually latent

▪ Example: sensor data of a 

compressor of oil production 

system
o Data taken under a normal 

operational condition

o Noisy, nonstationary, 

heterogeneous, high-

dimensional …

▪ Hard to pinpoint what is 

indicative of malfunction

(simulation data)

Axial compressor
(Source: Wikipedia)

(Image: Wikimedia commons)
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Continuous operation of conveyor systems is critical in the 

mining industry

▪ Business goal: Ensure continuous 
operation of conveyor system (“apron 
feeder”) by detecting early indications of 
failures 

▪ Data: Physical sensor data from 
conveyors and motors 
o Every several seconds over ~ 1 year
o Sensors include: Gearbox temperatures, motor 

power consumptions, apron speed, etc.

▪ Challenge: Conveyor system is subject to 
significant fluctuation in load. Hard to 
characterize the normal operation
o Mined crude ore never come in a uniform size A

p
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a
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(simulation data)

(Image: Wikimedia commons)

(Image: Wikimedia commons)
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Problem setting: change detection from multivariate noisy 

time-series data

▪ Change = difference between

and 
o x: M-dimensional i.i.d. observation

o p(x): p.d.f. estimated from training window

o pt(x): p.d.f. estimated from the test window at 

time t

▪ Assume a sequence of i.i.d. vectors
o Training data in the training window

training window 

(fixed or sliding)

test 

window

D

t (time)

N

time index (or sample index)
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Problem setting: change detection from multi-variate noisy 

time-series data

▪Question 1: What kind of model should 

we use for the probability density?

▪Question 2: How can we quantify the 

difference between the densities? 

training window 

(fixed or sliding)

test 

window

D

t (time)

N
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We use von Mises-Fisher distribution to model         and 

▪ vMF distribution: “Gaussian for unit vectors”

o z: random unit vector of ||z|| =1

o u: mean direction

o : “concentration” (~ precision in Gaussian)

o M: dimensionality

▪We are concerned only with the direction of 

observation x:
o

same 

direction = 

same input• Normalization is always made

• Do not care about the norm
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Normalization is useful to suppress multiplicative noise

▪ Real mechanical systems often 

incur multiplicative noise
o Example: two belt conveyors operated 

by the same motor

▪ Normalization of vector is simple 

but powerful method for noise 

reduction

time

Farzad Ebrahimi, ed., Finite 

Element Analysis - Applications in 

Mechanical Engineering, under CC 

BY 3.0 license

(Image: 

Wikimedia 

commons)

http://creativecommons.org/licenses/by/3.0/
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Mean direction u is learned via maximum likelihood. 

Introduce sample weight to down-weight contaminated ones

▪Weighted likelihood function

▪ Regularization over sample weights

▪ Parameters are learned by solving

sample weight

(normalization factor)

The term related to     is less 

important.       is treated as a given 

constant. encourage 

sparsity
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Multiple patterns (directions) can be obtained by coupling 

maximum likelihood equations

▪ Find orthogonal sequence of the mean direction u1, u2, …, um by 

coupling the weighted regularized maximum likelihood

…

Orthogonality 

condition

Kronecker 

delta
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Iterative sequential algorithm for the coupled maximum 

likelihood

▪ For each i, wi and ui are 

solved iteratively until 

convergence

▪ Analytic solution exists 

in each step

▪ Results in very simple 

fixed point equations

…
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Derived fixed-point iteration algorithm

▪ Example: i =1

This Lasso problem is solved analytically
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Theoretical property: The algorithm is reduced to the “trust-

region subproblem” in              

Useful to initialize 

the iterative 

algorithm
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▪With extracted directions, define the 

change score at time t as

▪ Concisely represented by the top 

singular value of

Change score as parameterized Kullback-Leibler divergence

training window 

(fixed or sliding)

test 

windowvMF dist. 

vMF dist. 

vMF dist. 
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Experiment: Failure detection of ore belt conveyors

▪ vMF formulation successfully 

suppressed very noisy non-Gaussian 

noise of multiplicative nature

▪ ~40% of samples were automatically 

excluded from the model

Learned 

sample 

weights

Training 

data

~ 40% samples have zero weight:  

automated sample size reduction

(simulation data)

▪ Better than alternatives
o PCA, Hoteling T2

o Stationary subspace analysis 

[Blythe et al., 2012]
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Wish to build a collective monitoring solution 

▪ You have many similar but not identical industrial 

assets

▪ You want to build an anomaly detection model for 

each of the assets

▪ Straightforward solutions have serious limitations
o 1. Treat the systems separately. Create each model 

individually

✓ Suffers from lack of fault examples

o 2. Build one universal model by disregarding individuality

✓ Model fit is not good

…
System 1

(in New 

Orleans)

System s

System S

(in New York)

…
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Practical requirements: Need to capture both commonality 

and individuality

▪ Capture both individuality and commonality

▪ Automatically capture multiple operational 

states 
o Real-world is not single-peaked / single-modal

▪ Be robust to noise 

▪ Be highly interpretable for diagnosis purposes

…
System 1

(in New 

Orleans)

System s

System S

(in New York)

…
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Formalizing the problem as multi-task density estimation for 

anomaly detection

Data Prob. density Anomaly score

all data

• overall

• variable-wise

m
u
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i-
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g

 (
M

T
L

)

…
System 1

(in New 

Orleans)

System s

System S

(in New York)

…
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Use Gaussian graphical model (GGM)-based anomaly 

detection approach as the basic building block

Sparse graphical model

training data

Multi-variate data Anomaly score

Overall score

Variable-wise score

[Ide+ SDM09] [Ide+ ICDM16]

sample covariance
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Basic modeling strategy: Combine common pattern 

dictionary with individual weights

Monitoring model 

for System 1

Monitoring model 

for System 2

Monitoring model 

for System S

……

sparse 

GGM 1

sparse 

GGM 2

sparse 

GGM K

Common dictionary

of sparse graphs

GGM=Gaussian Graphical Model

prob.

prob.

prob.

Individual sparse weights

…
System 1

(in New 

Orleans)

System s

System S

(in New York)

…
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Basic modeling strategy: Resulting model will be a sparse 

mixture of sparse GGM

Monitoring model for System s

…

sparse 

GGM 1

sparse 

GGM 2

sparse 

GGM K

GGM=Gaussian Graphical Model

prob.

System s

Gaussian mixture

Sparse mixture 

weights

(= automatic 

determination of the 

number of patterns)

Sparse 

Gaussian 

graphical 

model
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Propose a Bayesian multi-task model with two sparsity-

enforcing priors

▪Observation model (for the s-th task)
o Gaussian mixture with task-dependent weight

▪ Sparsity enforcing priors (non-conjugate)
o Laplace prior for the precision matrix

o Bernoulli prior for the mixture weights

▪ Conjugate prior on          and
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Maximizing log likelihood using variational Bayes combined 

with point-estimation

▪ Complete log likelihood

▪ Use VB for 

▪ Use point-estimate for 
o Results in two convex optimization problems

Likelihood by the obs. model Prior distributions
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Maximizing log likelihood using variational Bayes combined 

with point-estimation

▪ Update sample weights

▪ Update cluster weights

▪ Update precision matrices

▪ Update other parameters
Solved by graphical lasso [Friedman 08]

Use new semi-closed form solution

total # of samples assigned to the k-th cluster 

The ratio of samples 

assigned to the k-th cluster 
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Solving the L0-regularized optimization problem for mixture 

weights

▪ Conventional VB approach without L0

regularization on        is problematic
o Claimed to get a sparse solution [Corduneanu+ 01]

o But mathematically        cannot be zero due to logarithm

▪We re-formalized the problem as a convex mixed-

integer programming
o A semi-closed form solution can be derived ( see paper)
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Comparison with possible alternatives

Interpretability Noise reduction Fleet-readiness Multi-modality

Our work [Ide et al. ICDM 17] Yes Yes Yes Yes

(single) sparse GGM [Ide et al. SDM 2009, Ide et al. 

ICDM 2016] Yes Yes No No

Gaussian mixtures [Yamanishi

et al., 2000; Zhang and Fung, 

2013; Gao et al., 2016]

Limited Limited No Yes

Multi-task sparse 

GGM

[Varoquaux et al., 2010; 

Honorio and Samaras, 2010; 

Chiquet et al., 2011; Danaher 

et al., 2014; Gao et al., 2016; 

Peterson et al., 2015].

Yes Yes Yes No

Multi-task learning 

anomaly detection

[Bahadori et al., 2011; He et 

al., 2014; Xiao et al., 2015] No (depends) Yes No
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Experiment (1): Learning sparse mixture weights

▪ Conventional ARD approach 

sometimes gets stuck with local 

minima
o ARD = automatic relevance 

determination

o Often less sparse than the proposed 

convex L0 approach

▪ Typical result of log likelihood vs 

VB iteration count 

Conventional ARD 

approach gets stuck 

with a local minimum

Proposed convex L0 approach 

gives better likelihood 
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Experiment (2): Learning GGMs and detecting 

anomalies

▪ “Anuran Calls” (frog voice) data in 
UCI Archive
o Multi-modal (multi-peaked)
o Voice signal + attributes (species, etc.)

▪ Created 10-variate, 3-task dataset
o Use the species of “Rhinellagranulosa” 

as the anomaly

▪ Results
o Two non-empty GGMs are automatically 

detected starting from K=9
o Clearly outperformed single-modal MTL 

alternative  in anomaly detection

✓ Group graphical lasso, fused graphical 
lasso

Automatically learned GGMs

Example of variable-wise distribution
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Summary and ongoing work

▪ Industrial sensor data have 
many interesting features that 
call for new machine learning 
formulation

▪ Introduced two recent works on 
anomaly detection
o Feature extraction method 

based on von Mises-Fisher 
distribution 

o Bayesian multi-task density 
estimation with double sparsity

▪Ongoing/future work



39

IBM Research

Discussion: What is the potential of deep learning in 

cognitive manufacturing? 
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Thank you!
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(For ref.) Algorithm for sparse structure learning

▪ Assume graphical Gaussian model

▪ Put a Laplace prior on Lambda

▪MAP (Maximum a posteriori) estimation for Lambda

For the detail, see, T. Ide et al., "Proximity-

Based Anomaly Detection using Sparse 

Structure Learning," Proc. SIAM Intl Conf. 

on Data Mining 2009 (SDM 09).

S: sample covariance matrix

rho: constant controlling the 

strength of prior
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(For ref.) Anomaly scoring algorithm (for outlier analysis)

▪ Define the outlier score for the i-th variable as

o Lambda represents a sparse structure

o p is p.d.f. defined by the graphical Gaussian model

▪ Final result: Anomaly score of the i-th variable
o Only variables connected to the i-th variable play a role
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Title: Recent advances in sensor data analytics

▪ Abstract:
▪ Sensor data analytics is one of the major application fields of data 

mining and machine learning. Typically taking real-valued time-series 
data from physical sensors as the input, its problem setting includes a 
variety of tasks depending on the application domain,  not limited to 
the traditional regression and classification. 
▪ This talk will first introduce technical challenges in industrial sensor 

data analytics. Then it will cover recent developments in machine 
learning algorithms in sensor data analytics. Major topics include 
change detection using directional statistics and multi-task extension 
of graph-based anomaly detection. 


