IBM Research

L0-regularized Sparsity for Mixture Models

Dzung Phan and Tsuyoshi Ide IBM Research

SIAM International Conference on Data Mining

(SDM19)

Outline

- Problem setting
- Mixture weight update formulation
- Quadratic time algorithm
- Experimental results

Outline

- Problem setting
- Mixture weight update formulation
- Quadratic time algorithm
- Experimental results

Gaussian Mixture Model

 A Gaussian mixture model (GMM) is a weighted sum of K component Gaussian densities

- π_k : mixture weights • (μ_k, Σ_k) : the mean and covariance
- Irrelevant components can be mistakenly included in the training model

Sparse Mixture of Sparse Gaussian Graphical Model

 A Gaussian mixture model (GMM) is a weighted sum of K component Gaussian densities

- π_k : sparse mixture weights • Σ_k^{-1} : sparse inverse covariance
- Irrelevant components can be removed by a sparse model

Expectation-Maximization (EM) Algorithm

We suggest a penalized log-likelihood as

$$\log \mathcal{L}_P(\theta) = \sum_{n=1}^N \log \left(\sum_{k=1}^K \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k) \right) - \lambda \sum_{k=1}^K \phi(\pi_k, \Sigma_k)$$

- EM Algorithm
 - *E-step:* Evaluate the responsibilities (posterior probability of data point *i* belonging to mixture component *k*)
 - *M-step:* Use the updated responsibilities to re-estimate the parameters $\theta = (\pi_k, \mu_k, \Sigma_k)$
- Updating mixture weights is as follows if $\phi \equiv 0$

$$\max_{\boldsymbol{\pi}} \sum_{k=1}^{K} r_k \ln \pi_k \quad \text{subject to} \quad \sum_{k=1}^{K} \pi_k = 1$$

Expectation-Maximization (EM) Algorithm

We suggest a penalized log-likelihood as

$$\log \mathcal{L}_P(\theta) = \sum_{n=1}^N \log \left(\sum_{k=1}^K \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k) \right) - \lambda \sum_{k=1}^K \phi(\pi_k, \Sigma_k)$$

- EM Algorithm
 - *E-step:* Evaluate the responsibilities (posterior probability of data point *i* belonging to mixture component *k*)
 - *M-step:* Use the updated responsibilities to re-estimate the parameters $\theta = (\pi_k, \mu_k, \Sigma_k)$
- Updating mixture weights is as follows if $\phi \equiv 0$

$$\max_{\boldsymbol{\pi}} \sum_{k=1}^{K} r_k \ln \pi_k \quad \text{subject to} \quad \sum_{k=1}^{K} \pi_k = 1 \quad \quad \textbf{(No sparsity is imposed)}$$

Outline

- Problem setting
- Mixture weight update formulation
- Quadratic time algorithm
- Experimental results

A possible sparse mixture weight updating equation is

$$\max_{\boldsymbol{\pi}} \sum_{k=1}^{K} a_k \ln(\pi_k)$$

s.t.
$$\sum_{k=1}^{K} \pi_k = 1, \ \pi_k \ge 0$$

$$\min_{\boldsymbol{\pi}, \boldsymbol{y}} -\sum_{k=1}^{K} a_k \ln(\pi_k) + \tau \sum_{k=1}^{K} y_k$$
s.t.
$$\sum_{k=1}^{K} \pi_k = 1, \pi_k \ge 0,$$

$$y_k \ge \pi_k, y_k \in \{0, 1\}, k = 1, \dots, K$$

A possible sparse mixture weight updating equation is

$$\max_{\boldsymbol{\pi}} \sum_{k=1}^{K} a_k \ln(\pi_k) - \tau \|\boldsymbol{\pi}\|_0$$

s.t. $\sum_{k=1}^{K} \pi_k = 1, \ \pi_k \ge 0$

$$\min_{\boldsymbol{\pi}, \boldsymbol{y}} \quad -\sum_{k=1}^{K} a_k \ln(\pi_k) + \tau \sum_{k=1}^{K} y_k$$
s.t.
$$\sum_{k=1}^{K} \pi_k = 1, \pi_k \ge 0,$$

$$y_k \ge \pi_k, y_k \in \{0, 1\}, k = 1, \dots, K$$

A possible sparse mixture weight updating equation is

$$\max_{\boldsymbol{\pi}} \sum_{k=1}^{K} a_k \ln(\pi_k) - \tau \|\boldsymbol{\pi}\|_0$$

s.t. $\sum_{k=1}^{K} \pi_k = 1, \ \pi_k \ge 0$

$$\min_{\boldsymbol{\pi}, \boldsymbol{y}} -\sum_{k=1}^{K} a_k \ln(\pi_k) + \tau \sum_{k=1}^{K} y_k$$

s.t.
$$\sum_{k=1}^{K} \pi_k = 1, \pi_k \ge 0,$$
$$y_k \ge \pi_k, y_k \in \{0, 1\}, k = 1, \dots, K$$

Definition 1. For a given small $\epsilon > 0$, a vector x is called an ϵ -sparse solution if many elements satisfy $|x_i| \leq \epsilon$.

$$\min_{\boldsymbol{\pi}, \boldsymbol{y}} \quad f(\boldsymbol{\pi}, \boldsymbol{y}) \equiv -\sum_{k=1}^{K} a_k \ln(\pi_k) + \tau \sum_{k=1}^{K} y_k$$

s.t.
$$\sum_{k=1}^{K} \pi_k = 1, \pi_k \ge 0,$$
$$y_k \ge \pi_k - \epsilon$$
$$y_k \in \{0, 1\}, k = 1, \dots, K.$$

Definition 1. For a given small $\epsilon > 0$, a vector x is called an ϵ -sparse solution if many elements satisfy $|x_i| \leq \epsilon$.

$$\min_{\boldsymbol{\pi}, \boldsymbol{y}} \quad f(\boldsymbol{\pi}, \boldsymbol{y}) \equiv -\sum_{k=1}^{K} a_k \ln(\pi_k) + \tau \sum_{k=1}^{K} y_k$$

s.t.
$$\sum_{k=1}^{K} \pi_k = 1, \pi_k \ge 0,$$
$$y_k \ge \pi_k - \epsilon$$
$$y_k \in \{0, 1\}, k = 1, \dots, K.$$

Outline

- Problem setting
- Mixture weight update formulation
- Quadratic time algorithm
- Experimental results

We assume that

 $0 < a_1 \leq a_2 \leq \ldots \leq a_K,$

and if $a_i = a_j$ for i < j then $\pi_i \le \pi_j$

- Denote $\|y\|_{\#}$ by the number of zero elements of y
- We have

(i) If ||y||_# = m then y₁ = ... = y_m = 0 and y_{m+1} = ... = y_K = 1.
(ii) It holds that π_k ≤ π_l for every 1 ≤ k < l ≤ K.

- One of hidden parameters for the optimal solution of MIP is the number of zero elements $m = ||y||_{\#}$. We parameterize it using the parameter m.
- When m is given, the MIP is reduced to

$$\min_{\boldsymbol{\pi}} -\sum_{k=1}^{K} a_k \ln(\pi_k)$$

s.t.
$$\sum_{k=1}^{K} \pi_k = 1,$$
$$\pi_k \le \epsilon, k = 1, \dots, m,$$
$$\pi_k > \epsilon, k = m + 1, \dots, K$$

• We can use exhaustive search for m = 0, ... K - 1

• We propose an alternative, which can be analytically solved for a fixed value m

$$\min_{\boldsymbol{\pi}} \quad -\sum_{k=1}^{K} a_k \ln(\pi_k)$$

s.t.
$$\sum_{k=1}^{K} \pi_k = 1,$$
$$\pi_k \le \epsilon, k = 1, \dots, m$$

Let us define

$$g(\boldsymbol{\pi}) = -\sum_{k=1}^{K} a_k \ln(\pi_k) + \tau |\{i : \pi_i > \epsilon\}|$$

• We need to search for *m* giving the smallest value for $g(\pi)$

The Karush-Kuhn-Tucker (KKT) conditions read

$$\frac{a_k}{\pi_k} = \begin{cases} \lambda, & \text{if } k > m \\ \lambda + \mu_k, & \text{if } k \le m \end{cases}$$
$$\mu_k(\pi_k - \epsilon) = 0, \quad k \le m$$
$$\mu_k \ge 0, \quad k \le m.$$

• Lemma 1. The following holds

(i) If $a_k \ge \epsilon$ and $k \le m$ then we have $\pi_k = \epsilon$.

(ii) If $a_m \leq \epsilon$ or m = 0 then $\pi = a$.

(iii)
$$0 < \pi_1 \le \pi_2 \le \ldots \le \pi_K$$

• For a given m, we need to identify a break-point \hat{k} where

$$\pi_k < \epsilon, \text{ if } k \le \hat{k}$$

$$\pi_k = \epsilon, \text{ if } \hat{k} < k \le m \tag{1}$$

• For any $k \leq \hat{k}$ or k > m, one has

$$\pi_k = \frac{a_k (1 - (m - \hat{k})\epsilon)}{\sum\limits_{i \le \hat{k} \text{ or } i > m} a_i}$$
(2)

IBM Research

Algorithm for the *E*-sparse Problem

Algorithm 1 Sparse Weight Selection Algorithm - SWSA (a, τ, ϵ) Set $f_{min} \leftarrow -\sum_{k=1}^{K} a_k \ln(a_k) + n\tau$ for $m = 0, 1, \dots, n-1$ do if m = 0 or $a_m < \epsilon$ then $\pi \leftarrow a$ else Find t < m such that $a_t < \epsilon < a_{t+1}$ if $t = \emptyset$ then $\pi_k \leftarrow \begin{cases} \epsilon, & \text{if } k \le m \\ \frac{a_k(1-m\epsilon)}{\sum_{i=m\perp 1}^n a_i}, & \text{otherwise} \end{cases}$ else for $\hat{k} = t, t - 1, \dots, 1$ do $\pi_k \leftarrow \text{Eqs.}$ (1) and (2) $\pi_k \leftarrow \text{Eqs. (1) and (-)}$ if $\left(\pi_{\hat{k}} < \epsilon \text{ and } a_{\hat{k}+1}(1-(m-\hat{k})\epsilon) \ge \epsilon \sum_{i \le \hat{k} \text{ or } i > m} a_i\right)$ then break end if end for end if Compute $g(\pi) \leftarrow -\sum_{k=1}^{K} a_k \ln(\pi_k) + \tau |\{i : \pi_i > \epsilon\}|$ if $q(\pi) < f_{min}$ then $f_{min} \leftarrow g(\pi)$ and $\pi^* \leftarrow \pi$ end if end if end for return π^*

Theorem. Algorithm 1 can find a global optimal solution of the MIP in quadratic time in terms of the maximum number of mixture components K.

Outline

- Problem setting
- Mixture weight update formulation
- Quadratic time algorithm
- Experimental results

IBM Research

IBM

Experiment (1): Learning variable-variable dependency from data (synthetic data)

Proposed method: able to recover the ground truth

Conventional method: inaccurate

IBM Research

IBM

Experiment (1): Learning variable-variable dependency from data (synthetic data)

Our method successfully reproduced the ground truth

Proposed method: able to recover the ground truth

Conventional method: inaccurate

Experiment (2): Performance comparison for held-out log probability

	log-like.	BICscore	Component
Breast Cancer			
SWSA	276.75	1153.72	5.3
CARD	230.94	907.45	14.2
CSBDP	203.51	-	12.6
VDP	224.86	-	7.5
Cloud			
SWSA	262.88	2410.21	7.4
CARD	228.11	1905.44	10.1
CSBDP	249.51	-	7.8
VDP	231.02	-	6.6
Parkinsons			
SWSA	-89.02	-3615.72	2.6
CARD	-107.53	-5135.02	5.8
CSBDP	-98.61	-	6.5
VDP	-86.09	-	2.4
Anuran Calls			
SWSA	2592.58	42528.4	3.2
CARD	2357.89	37413.6	11.6
CSBDP	2426.55	-	13.7
VDP	2386.32	-	3.8

- SWSA : Proposed method
- **CARD** : Conventional method
- **VDP** : Variational Dirichlet process [Blei and Jordan, 2006]
- **CSBDP**: Collapsed variational stick-breaking Dirichlet process [Kurihara et al. 2007]

Experiment (3): Anomaly Detection

Comparison of AUC performance

IBM Research

Experiment (4): Scalability Comparison

Conclusions

- Introduced a new formulation for updating sparse mixture weights
- Developed a quadratic time algorithm
- Demonstrated the good performance for both synthetic and real datasets

THANK YOU!