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Gaussian Mixture Model

= A Gaussian mixture model (GMM) is a weighted sum of K component
Gaussian densities

- p(z)a
p(x) = meN (x|, Si)

k=1
Component

Mixing coefficient

Vk:7m 20 Z Ty =
P K=3

H"

o Tk . mixture weights
o (ur,Xg) :the mean and covariance

= [rrelevant components can be mistakenly included in the training model
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Sparse Mixture of Sparse Gaussian Graphical Model

= A Gaussian mixture model (GMM) is a weighted sum of K component
Gaussian densities

K P(m)n
p(x) = 3 meN (x| bty Z)

k=1
Component

Mixing coefficient

%
Vk:m, >0 Zm.zl
k=1

H"

K=3

o Tk . sparse mixture weights
o g};l . sparse inverse covariance

= [rrelevant components can be removed by a sparse model
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Expectation-Maximization (EM) Algorithm

= \We suggest a penalized log-likelihood as

N K K
log ’C’P(ﬁ) - Z log (Z ﬁkN(anhik- Zk)) — A Z (;5(ﬁk. Ek)
n=1

= EM Algorithm

o E-step: Evaluate the responsibilities (posterior probability of data point i belonging to
mixture component k)

o M-step: Use the updated responsibilities to re-estimate the parameters 6 = (m, g, k)

» Updating mixture weights is as follows if ¢ =0
K K

maXZ e Inm.  subject to Zm =1
k=1 k=1
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Mixed-integer Programming for Mixture Weights

= A possible sparse mixture weight updating equation is

K
max E ar In(7g)
T
k=1

S.L Zszlﬁk =1, >0

= A convex mixed-integer programming (MIP) reformulation is

min — Zszl ap In(mg) + 7 Zle Yk
Y

s.t. Zszl T, = 1,7, >0,

yk > mkoyr € {0, 1L A=1,.. . K
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Mixed-integer Programming for Mixture Weights

= A possible sparse mixture weight updating equation is

K
max Z ar In(7g) — 7||7||o
iy
k=1

S.L Zszlﬁk =1, >0

= A convex mixed-integer programming (MIP) reformulation is

min — Zszl ag In(mr) + 7 Zle Yk
Y
.. Zszl T = 1,m >0, x

yk > mkoyr € {0, 1L A=1,.. . K
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Mixed-integer Programming for Mixture Weights

Definition 1. For a given small € > 0, a vector x is called an e-sparse solution
if many elements satisfy |x;| < e.

= A convex mixed-integer programming (MIP) reformulation is

. K K
min flmy)=—=>_jarIn(m) + 7> 0_ Uk

S.1. ZhK:]_ M — 1«_ Tk 2 Da
Y = T — €

€ {0, 1M k=1,... K.
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Mixed-integer Programming for Mixture Weights
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Algorithm for the &-sparse Problem

= \We assume that

O<ar <as < ... <ag,
and if a; = a; fori < j then m; < 7;

= Denote ||y||x by the number of zero elements of y

= \\Ve have

D If|lyllg =mthenyy = ... =ym =0and ymy1 = ... = yg = L.

(i1) It holds that m, < m for every 1 < k <[ < K.

15



IBM Research

Algorithm for the &-sparse Problem

» One of hidden parameters for the optimal solution of MIP is the number of
zero elements m = ||y|| 4 We parameterize it using the parameter m.

= When m is given, the MIP is reduced to

min - — Zle ay In(my)

L

K .
S.L Zk:l m = 1,

= \We can use exhaustive searchform=0, ..K-1
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Algorithm for the &-sparse Problem

= \WWe propose an alternative, which can be analytically solved for a fixed
value m

min  — fo:l aj In(my)

T B
S.T. i}zl m = 1.
e <e k=1, ..., m
= Let us define R
g(m) =— Zak_ In(mg) + 7{i : m; > €}
k=1

= We need to search for m giving the smallest value for g(«)
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Algorithm for the &-sparse Problem

» The Karush-Kuhn-Tucker (KKT) conditions read

aj A, itk >m
T N { + e, itk <m
pp(me—e) =0, k<m
ur >0, kE<m.
= Lemma 1. The following holds
(i) If a. = € and k < m then we have T = €.
(1) Ifa,, <eorm =0 then ™ = a.

(i) 0 <m < my < ... < 7g
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Algorithm for the &-sparse Problem

= For a given m, we need to identify a break-point » where
mn < e itk <k
Tl = €, if b < k <m (1)

» Forany £k < J or k > m, one has

ap(l — (m — )e)
2. i

-igi: or 1>m

Tk

(2)
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Algorithm for the &-sparse Problem
Algorithm 1 Sparse Weight Selection Algorithm - SWSA(a, 7, €)

Set frin ¢ — Z{;l ap In(a) + nt
form=20,1,....,n—1do
if m =0ora,, <ecthen

T a
else
Find ¢ < m such that a; < € < a4y
if £ = () then
€. ifk<m
Tk &l=md)  Giherwise
i=m4+1 "t
else
fork=1¢,t—1,....1do
m, < Egs. (1) and (2)
if (m, <eanda; (1 - (m—ke) >e ~ > ai) then
i<k ori>m
break
end if
end for

end if )
Compute g(7) < —Zi;l ar In(mg) +7|{i : m; > €}

if g(7) < fmin then
fmin < g(m) and 7% 7
end if
end if
end for
return w*

Theorem. Algorithm 1 can find a global
optimal solution of the MIP in quadratic time
in terms of the maximum number of mixture

components K.
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Experiment (1): Learning variable-variable dependency from data
(synthetic data)

n1=0.4046 T2 =0.3003 T3 =0.2951
() (1)
/ Ground truth \ \
) 1: 0.4 K T[};:\OB @ 2) @\ \2/ G 2)
4 2 @ (2) (4 2 @ \E’/
© \) ¥ Proposed method: able to recover the ground truth

m=0.4211 T, =0.0453 13=0.2546 4 =0.0003 15=0.2786
@ 7 ! @ 1

Our method successfully

reproduced the ground truth 0 & G ~ D @ @ @ )
® L\ X © ©

Conventional method: inaccurate
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Experiment (2): Performance comparison for held-out log probability

| log-like. | BlICscore | Component
Breast Cancer
SWSA 276.75 1153.72 5.3
CARD 230.94 907.45 14.2
CSBDP 203.51 - 12.6
VDP 224.86 - 7.5
Cloud
SWSA 262.88 2410.21 7.4
CARD 228.11 1905.44 10.1
CSBDP 249.51 - 7.8
VDP 231.02 - 6.6
Parkinsons
SWSA -89.02 -3615.72 2.6
CARD -107.53 -5135.02 5.8
CSBDP -98.61 - 6.5
VDP -86.09 - 2.4
Anuran Calls SWSA : Proposed method
SWSA 2592.58 42528.4 3.2 CARD : Conventional method
CARD 2357.89 37413.6 11.6 VDP : Variational Dirichlet process [Blei and Jordan, 2006]
CSBDP 2426.55 - 13.7 CSBDP : Collapsed variational stick-breaking
VDP 2386.32 - 3.8 Dirichlet process [Kurihara et al. 2007]
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Experiment (3): Anomaly Detection

Multi-variate data

Sparse graphical model

Common palette

sparse weights
of sparse graphs

Anomaly score

MM prob. |
MWW-’*- E >< %éﬁm — Mixtl;J(rzDN;odel CL(.’,E) = —_ 11]p(33 | D)
O L :
\ ) ] \ ]
I .
training data testing data
SWSA | CARD T2 PCA
Wafer 0.96 | 0.88 | 0.86 | 0.81
Letter | 0.97 | 0.91 | 0.85 | 0.84

IBM Confidential

Comparison of AUC performance
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Experiment (4): Scalability Comparison

running time (s)

3

10° ¢

proposed

2
number of mixing weights Km

3

10
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Conclusions

» Introduced a new formulation for updating sparse mixture weights
» Developed a quadratic time algorithm

» Demonstrated the good performance for both synthetic and real
datasets
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THANK YOU!
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