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Technical task: anomaly attribution for black-box regression

= Task: Attribute deviation from black-box Black-box regression
. . : : function
prediction f(x) to each input variable real-valued e
= Background: Most of XAl methods are y - f (g)
designed to explain f(x), not deviations Multivariate vector in R
Pt

= Solution: New notion of “likelihood

compensation” training data

|
o Define the responsibility through perturbation to : (unavailable)
achieve the highest possible likelihood = == === e aaaw=

test data
(available)
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Technical task: anomaly attribution for black-box regression
Input and output

Input
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showing
anomaly/deviation
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-

Black-box regression function

y = f(x)

~
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computed locally at (Xt, yY):
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Use-case example: Building energy management

— actual
— prediction

= Use case example: building management
o y: building energy consumption
o X: Temperature, humidity, day of week, month, room
occupancy, etc.

" Building admin (primary end-user) does not
have full visibility of the model f, training data,

and sensing system
o Al vendor/Sler/HVAC constructor often use
proprietary technologies
o Only some amount of test data is accessible
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IBM Research
Local surrogate model for f(x) alone cannot explain deviations.

We need a new idea.

Local surrogate model to explain f(x) Anomaly attribution needs to explain f(x) - y

{

y = f(z) Aoz local linear model
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IBM Research
High-level idea: Defining responsibility score through local

perturbation as “horizontal deviation”
O : responsibility score
Local surrogate model to explain f(x) (“likelihood compensation”)
y T
Az +d,y")
y = f(x) .

{

e (mtv yt)

deviation

Yy = f(w) local linear model
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Defining Likelihood Compensation (LC) as optimal perturbation

" Likelihood compensation 6: A perturbation to x! LC can be thought of as the
such that xt + 8 achieves the best possible fit to deviation measured horizontally
the model test |

o The log likelihood Inp(y* | f(z")) is a measure of Yy e

goodness-of-fit of a test sample (xt,y?) o _\"
o LC seeks a best possible fit by correcting x* under a Y

certain regularization

v 6 = argmax [In {p(y" | f(z" +8)) p(8)}], 0] N—
‘ i
1
Gaussian elastic net
" The main optimization problem

N. 2

) L N SfE 4O 1 e

mdln {Ntest 20't2 + 5)\“6“2 * I/||5H1 ” (Nand v are constant)
t=1
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Iterating local smooth approximation and proximal gradient

= f(x) is black-box. It may not be even smooth or @  Estimate local variance o~ (")

continuous |
Initialize 0 = 0

" 0. Local variance estimation (only once) |

. . . . t
o Leverage available test data or prior knowledge @| [stimate gradientat ° + 0
by local linear fitting

v

— @) Update § via proximal gradient

" 1. Local gradient estimation of f
o Amounts to smooth approximation of f

= |terate
converge?

= 2. Proximal gradient update for§  _ "



| B M ReS earc h Slides available! https://ide-research.net/papers/2021_AAA_Ide_presentation.pdf

0. Local variance estimation

" |f available test samples are too few, use a constant variance to define a
Gaussian observation model

o plylz)=N(y| flz),07)

" |[f some amount of test samples are available, use locally weighted maximum
likelihood to estimate an input-dependent variance

Nheldout (n) (?’L) 2
O 2/ ¢ t 1 (y'" = (&™)
— n I o ’
o“(x") = max E_ Wy (") { n — 52

Gaussian kernel training data

|
. I .
defln.e-d for the I (unavallable)
specific test sample xt NS e

test data (available)
11
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1. Local gradient estimation of f

= We solve the problem with gradient ascent
Niest 1 ¢ t 2
° min{NjestZ[y fe +§/\6%+u||5|1},
| J

et en (o),

“eradient” 1
of this part: N,.ox = o 00

= We use a simple sampling-based algorithm
o At a given test location x!, we random-sample N, samples .
in the vicinity of xt, and fit a linear regression model
v’ N, ~ 1000.

v' Assumption: evaluation of f(x) can be done cheaply
o The gradient is obtained as the regression coefficient.

Smooth surrogate
of gradient at x'+6

estimated
gradient

randomlsamples

I 7

xt+ 6

12
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2. Proximal gradient update for 6

" The objective now looks like L;-regularized convex-ish optimization
o { L=y~ @+ )

1
+5A5%+wwh},

o Ntest —1 2Ut2
\ Y ]
Ntest 2
convex-ish function with J(8) 2 1 y' — f(=' +6)] 1 1A||6||%
the smoothed gradient Niest 7= 207 2

» Building an updating rule from 6°¢ using prox gradient-like algorithm
© 6 = argmin { 1(3°) + (6 - 87 (VI (3°)) + -6 - 6713 + v |
I{

i
smooth quadratic approximation of J

1d 1d
= pI'OX,W”@;”1 (60 - "3«VJ(5O )») The L, prox operator has an analytic solution! (= paper)

13
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Condition of convergence — where the intuition of “horizontal

deviation” comes from

" The prox gradient-like update
converges when

O 1 DNyt — f(zt+6) [[O0f(xt +5) 5
TR e R

» Condition (a): |deviation|=0 )
o Met when yt = f(xt + 8)
o “Keep the height, move horizontally
until you hit f” fx")

» Condition (b): |gradient|=0
o In case there is no horizontal
intersection, this warrants convergence

lllustration for N, =1

observed
observed

(a) |[deviation| =0 (b) |gradient] =0

14



| B M ReS earc h Slides available! https://ide-research.net/papers/2021_AAA_Ide_presentation.pdf

Contents

" Problem setting

" Introducing Likelihood Compensation

" Experimental results

= Summary

15



IBM Research

Existing methods for anomaly attribution

" Few applicable approaches in the o LIME™ [Ribeiro 18], extended
regression setting v Sampling-based local lasso fitting
o Most methods are for classification for of f(x) — y rather than f{x’)
(especially for images) * To be able to explain deviations
o Very limited choice for explaining v" Regression coefficient (= gradient)

deviations/anomalies in the black- is the score

box regression setting .
o Shapley value [Strumbelj+ 14],

: : extended
" Possible baselines P N
5 7-score SV co-mputed forf()-( ) — y |
v a,(mt) _ (a:’? — mean;)/stddev; v' Requires the true distribution for x
¢ g ‘ ‘ or the training data set to evaluate
v' Does not depend on yt conditional local means

* Local Interpretable Model-agnostic Explanations

16
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Comparison with LIME+ and Z-score in building energy use-case

One month-worth building energy data
O y:energy consumption

o x:time of day, temperature, humidity, sunrad, day of week (one-
hot encoded)

" The score is computed based on hourly 24 test points
for each day

o The mean of the absolute values are visualized
o SV+ was not computable due to lack of training data

= LIME+ is insensitive to outliers

o LIME score remain the same for any outliers, making it less useful
in anomaly attribution

= 7Z-score does not depend on y (by definition)

o The artifact for the day-of-week variables is due to one-hot
encoding

anomaly score

timeofday
temperature
dewpoint
humidity
sunrad
daytype_Fr
daytype Mo
daytype_Sa
daytype_Su
daytype_Th
daytype_Tu
daytype_We

timeofday
temperature
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daytype_Th
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timeofday
temperature
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daytype_Sa
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Summary

" LCis a principled framework designed to explain deviations from black-box
regression function

=" We empirically showed that LIME and Shapley values are insensitive to

deviations
o Is there any theoretical justification on this ? --- Yes.

19
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Backup

20
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Anomaly attribution as inverse problem of anomaly detection

" This is a statistical inverse problem
o Forward problem: Given (xt, y?), tell whether it is anomalous

v’ Simple: Just check the amount of deviation |f(x) — y| to see if it is too big
o Inverse is challenging: Quantify how each of x contributes to a large |f(x) — y|

= Existing black-box explainability methods are not directly applicable
o They are either:
o (1) designed specifically for (image) classification, or
o (2) focused only on characterizing f(x), not the deviation between y and f,
v' We are interested in anomaly diagnosis
v' Anomalies are defined by large |f(x) — y| values, not f(x) alone

21
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Summarizing practical features of LC

» [Cisdirectly interpretable (c.f. LIME)

o Itis defined as the amount of correction required to fit the observed y!
o LCrepresents “what you could have done for the best fit” for each input
o Naturally provides counterfactual explanations

v' LC > 0 for a temperature variable, for example, reads “To be consistent to the observed yi, the
temperature could have been higher.”

t”

v Or simply, “Your temperature was too low for y

" LC is model-agnostic
o c.f. most of existing anomaly diagnosis methods, which assume full access to the model

» LC can characterize f(xt) - yt, thus can produce outlier-specific explanations

22



| B M ReS earc h Slides available! https://ide-research.net/papers/2021_AAA_Ide_presentation.pdf

(For ref.) Algorithm for LIME+ and SV+

" LIME+ (extended LIME)
o For a given test sample (x%,y?), populate N, samples around x*as { xlZ], ..., xtNs1}
o Create a data set Dt = { (zi11], xt1]), ..., (ZtIVs], xtINs]) ) where Zin] = f(xtln]) — yt
o Fit lasso regression to the data
o Your explainability score is the regression coefficients

» SV+ (extended Shapley value)

o For a given test sample (xt,y?), the SV+ score for the j-th variable is
M—1

M —|S;] —1)S; ]!
sv (@) 2 3 WISy — ot s =) — (F s, = )
|S;[=0 '

v" where S, is the set of all the variable indices excluding j, and

v’ for an M-variate function g, (g |2; = a2}, 25, = x5 )= ]da: P(x)g(zj =z}, xs; = x5, x3,)

(9|25, =) 2 [de Pl@)g(a;.os, = ok, )

= true (or empirica‘l) distribution (problematic) -



