Slides available! https://ide-research.net/papers/2021_AAA_Ide_presentation.pdf

IBM Research

Anomaly Attribution with Likelihood Compensation

<u>Tsuyoshi ("Ide-san") Idé</u>, Amit Dhurandhar, Jiří Navrátil, Moninder Singh, Naoki Abe {tide, adhuran, jiri, moninder, nabe}@us.ibm.com IBM T. J. Watson Research Center

• To be presented at the Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21, Feb 2-9, 2021)

Contents

- Problem setting
- Introducing Likelihood Compensation
- Experimental results
- Summary

Technical task: anomaly attribution for black-box regression

- Task: Attribute deviation from black-box prediction f(x) to each input variable
- Background: Most of XAI methods are designed to explain *f*(*x*), not deviations
- Solution: New notion of "likelihood compensation"
 - Define the responsibility through perturbation to achieve the highest possible likelihood

Technical task: anomaly attribution for black-box regression Input and output

Use-case example: Building energy management

- Use case example: building management
 - y: building energy consumption
 - x: Temperature, humidity, day of week, month, room occupancy, etc.
- Building admin (primary end-user) does not have full visibility of the model *f*, training data, and sensing system
 - Al vendor/Sler/HVAC constructor often use proprietary technologies
 - $\circ~$ Only some amount of test data is accessible

Local surrogate model for *f*(*x*) alone cannot explain deviations. We need a new idea.

Anomaly attribution needs to explain f(x) - y

Contents

Problem setting

Introducing Likelihood Compensation

- Experimental results
- Summary

High-level idea: Defining responsibility score through local perturbation as "horizontal deviation"

Defining Likelihood Compensation (LC) as optimal perturbation

- Likelihood compensation δ : A perturbation to x^t such that $x^t + \delta$ achieves the best possible fit to the model
 - The log likelihood $\ln p(y^t \mid f(x^t))$ is a measure of goodness-of-fit of a test sample (**x**^t, y^t)
 - LC seeks a best possible fit by correcting *x^t* under a certain regularization

$$\checkmark \boldsymbol{\delta} = \arg \max_{\boldsymbol{\delta}} \left[\ln \left\{ p(y^t \mid f(\boldsymbol{x}^t + \boldsymbol{\delta})) \ p(\boldsymbol{\delta}) \right\} \right],$$

Gaussian elastic net

The main optimization problem

$$\min_{\boldsymbol{\delta}} \left\{ \frac{1}{N_{\text{test}}} \sum_{t=1}^{N_{\text{test}}} \frac{\left[y^t - f(\boldsymbol{x}^t + \boldsymbol{\delta})\right]^2}{2\sigma_t^2} + \frac{1}{2}\lambda \|\boldsymbol{\delta}\|_2^2 + \nu \|\boldsymbol{\delta}\|_1 \right\}, \text{ (λ and v are constrained on the set of the set$$

LC can be thought of as the 'deviation measured horizontally'

Iterating local smooth approximation and proximal gradient

- f(x) is black-box. It may not be even smooth or continuous
- O. Local variance estimation (only once)
 C. Leverage available test data or prior knowledge

- 1. Local gradient estimation of f
 o Amounts to smooth approximation of f
- 2. Proximal gradient update for $\boldsymbol{\delta}$

0. Local variance estimation

 If available test samples are too few, use a constant variance to define a Gaussian observation model

 $\circ \ p(y \mid \boldsymbol{x}) = \mathcal{N}(y \mid f(\boldsymbol{x}), \sigma^2)$

If some amount of test samples are available, use locally weighted maximum likelihood to estimate an input-dependent variance

$$\sigma^{2}(\boldsymbol{x}^{t}) = \max_{\sigma^{2}} \sum_{n=1}^{N_{\text{heldout}}} w_{n}(\boldsymbol{x}^{t}) \left\{ \ln \frac{1}{\sqrt{2\pi\sigma^{2}}} - \frac{(y^{(n)} - f(\boldsymbol{x}^{(n)}))^{2}}{2\sigma^{2}} \right\},$$

$$\textbf{Gaussian kernel} \\ \text{defined for the} \\ \text{specific test sample } \boldsymbol{x}^{t} \\ \textbf{(unavailable)} \quad \textbf{(unavailable)} \quad \textbf{(available)}$$

1. Local gradient estimation of *f*

2. Proximal gradient update for $\boldsymbol{\delta}$

The objective now looks like L₁-regularized convex-ish optimization

$$\stackrel{\circ}{\underset{\delta}{\min}} \left\{ \frac{1}{N_{\text{test}}} \sum_{t=1}^{N_{\text{test}}} \frac{\left[y^t - f(x^t + \delta)\right]^2}{2\sigma_t^2} + \frac{1}{2}\lambda \|\delta\|_2^2 + \nu \|\delta\|_1 \right\},$$

$$\begin{array}{c} \text{convex-ish function with} \\ \text{the smoothed gradient} \end{array} J(\delta) \triangleq \frac{1}{N_{\text{test}}} \sum_{t=1}^{N_{\text{test}}} \frac{\left[y^t - f(x^t + \delta)\right]^2}{2\sigma_t^2} + \frac{1}{2}\lambda \|\delta\|_2^2$$

Building an updating rule from δ^{old} using prox gradient-like algorithm

$$\circ \boldsymbol{\delta} = \arg\min_{\boldsymbol{\delta}} \left\{ J(\boldsymbol{\delta}^{\text{old}}) + (\boldsymbol{\delta} - \boldsymbol{\delta}^{\text{old}}) \langle \langle \nabla J(\boldsymbol{\delta}^{\text{old}}) \rangle \rangle + \frac{1}{2\kappa} \|\boldsymbol{\delta} - \boldsymbol{\delta}^{\text{old}}\|_{2}^{2} + \nu \|\boldsymbol{\delta}\|_{1} \right\}$$

smooth quadratic approximation of J

 $= \operatorname{prox}_{\kappa\nu\|\boldsymbol{\delta}\|_{1}} \left(\boldsymbol{\delta}^{\operatorname{old}} - \kappa \langle\!\langle \nabla J(\boldsymbol{\delta}^{\operatorname{old}}) \rangle\!\rangle \right) \text{ The } \mathsf{L}_{1} \operatorname{prox} \operatorname{operator} \operatorname{has} \operatorname{an} \operatorname{analytic} \operatorname{solution!} (\rightarrow \operatorname{paper})$

Condition of convergence – where the intuition of "horizontal deviation" comes from

 The prox gradient-like update converges when

$$\circ \frac{1}{N_{\text{test}}} \sum_{t=1}^{N_{\text{test}}} \frac{y^t - f(\boldsymbol{x}^t + \boldsymbol{\delta})}{\sigma_t^2} \left\| \frac{\partial f(\boldsymbol{x}^t + \boldsymbol{\delta})}{\partial \boldsymbol{\delta}} \right\| \approx$$

- Condition (a): |deviation|= 0
 - Met when $y^t = f(\mathbf{x}^t + \boldsymbol{\delta})$
 - "Keep the height, move horizontally until you hit f"
- Condition (b): |gradient|= 0
 - In case there is no horizontal intersection, this warrants convergence

Contents

- Problem setting
- Introducing Likelihood Compensation
- Experimental results
- Summary

Existing methods for anomaly attribution

- Few applicable approaches in the regression setting
 - Most methods are for classification (especially for images)
 - Very limited choice for explaining deviations/anomalies in the blackbox regression setting
- Possible baselines
 - \circ Z-score
 - $\checkmark a_i(\boldsymbol{x}^t) = (x_i^t \texttt{mean}_i)/\texttt{stddev}_i$
 - ✓ Does not depend on y^t

- LIME^{*} [Ribeiro 18], extended
 - ✓ Sampling-based local lasso fitting for of $f(\mathbf{x}^t) y^t$ rather than $f(\mathbf{x}^t)$
 - To be able to explain deviations
 - ✓ Regression coefficient (≒ gradient) is the score
- Shapley value [Strumbelj+ 14], extended
 - ✓ SV computed for $f(\mathbf{x}^t) y^t$
 - Requires the true distribution for x or the training data set to evaluate conditional local means

Comparison with LIME+ and Z-score in building energy use-case

- One month-worth building energy data
 - *y*: energy consumption
 - *x*: time of day, temperature, humidity, sunrad, day of week (onehot encoded)
- The score is computed based on hourly 24 test points for each day
 - The mean of the absolute values are visualized
 - SV+ was not computable due to lack of training data
- LIME+ is insensitive to outliers
 - LIME score remain the same for any outliers, making it less useful in anomaly attribution
- Z-score does not depend on y (by definition)
 - The artifact for the day-of-week variables is due to one-hot encoding

Contents

- Problem setting
- Introducing Likelihood Compensation
- Experimental results
- Summary

Summary

LC is a principled framework designed to explain deviations from black-box regression function

- We empirically showed that LIME and Shapley values are insensitive to deviations
 - $\,\circ\,\,$ Is there any theoretical justification on this ? --- Yes.

Backup

Anomaly attribution as inverse problem of anomaly detection

This is a statistical inverse problem

- Forward problem: Given (\mathbf{x}^t , \mathbf{y}^t), tell whether it is anomalous
 - ✓ Simple: Just check the amount of deviation $|f(\mathbf{x}) y|$ to see if it is too big
- Inverse is challenging: Quantify how each of **x** contributes to a large $|f(\mathbf{x}) y|$
- Existing black-box explainability methods are not directly applicable
 - $\circ~$ They are either:
 - $\circ~$ (1) designed specifically for (image) classification, or
 - (2) focused only on characterizing $f(\mathbf{x})$, not the deviation between y and f,
 - ✓ We are interested in anomaly diagnosis
 - ✓ Anomalies are defined by large $|f(\mathbf{x}) y|$ values, not $f(\mathbf{x})$ alone

Summarizing practical features of LC

LC is directly interpretable (c.f. LIME)

- \circ It is defined as the amount of correction required to fit the observed y^t
- $\circ~$ LC represents "what you could have done for the best fit" for each input
- Naturally provides counterfactual explanations
 - ✓ LC > 0 for a temperature variable, for example, reads "To be consistent to the observed y^t, the temperature could have been higher."
 - ✓ Or simply, "Your temperature was too low for y^{t} "
- LC is model-agnostic
 - o c.f. most of existing anomaly diagnosis methods, which assume full access to the model
- LC can characterize f(x^t) y^t, thus can produce outlier-specific explanations

(For ref.) Algorithm for LIME+ and SV+

LIME+ (extended LIME)

- For a given test sample $(\mathbf{x}^{t}, \mathbf{y}^{t})$, populate N_{s} samples around \mathbf{x}^{t} as $\{\mathbf{x}^{t[1]}, ..., \mathbf{x}^{t[Ns]}\}$
- Create a data set $D^t = \{ (z^{t[1]}, \mathbf{x}^{t[1]}), ..., (z^{t[Ns]}, \mathbf{x}^{t[Ns]}) \}$, where $z^{t[n]} = f(\mathbf{x}^{t[n]}) y^t$
- $\circ~$ Fit lasso regression to the data
- Your explainability score is the regression coefficients
- SV+ (extended Shapley value)
 - For a given test sample $(\mathbf{x}^t, \mathbf{y}^t)$, the SV+ score for the *j*-th variable is

$$\mathsf{SV}_{j}(\boldsymbol{x}^{t}) \triangleq \sum_{|\mathcal{S}_{j}|=0}^{M-1} \frac{(M-|\mathcal{S}_{j}|-1)! |\mathcal{S}_{j}|!}{M!} \left[\langle f - y^{t} \mid x_{j} = x_{j}^{t}, \boldsymbol{x}_{\mathcal{S}_{j}} = \boldsymbol{x}_{\mathcal{S}_{j}}^{t} \rangle - \langle f - y^{t} \mid \boldsymbol{x}_{\mathcal{S}_{j}} = \boldsymbol{x}_{\mathcal{S}_{j}}^{t} \rangle \right]$$

 \checkmark where S_j is the set of all the variable indices excluding j, and

 $\checkmark \text{ for an } M\text{-variate function } \boldsymbol{g}, \ \langle g \mid x_j = x_j^t, \boldsymbol{x}_{\mathcal{S}_j} = \boldsymbol{x}_{\mathcal{S}_j}^t \rangle \triangleq \int d\boldsymbol{x} \ P(\boldsymbol{x}) g(x_j = x_j^t, \boldsymbol{x}_{\mathcal{S}_j} = \boldsymbol{x}_{\mathcal{S}_j}^t, \boldsymbol{x}_{\bar{\mathcal{S}}_j})$

$$\langle g \mid \boldsymbol{x}_{\mathcal{S}_{j}} = \boldsymbol{x}_{\mathcal{S}_{j}}^{t} \rangle \triangleq \int d\boldsymbol{x} P(\boldsymbol{x}) g(x_{j}, \boldsymbol{x}_{\mathcal{S}_{j}} = \boldsymbol{x}_{\mathcal{S}_{j}}^{t}, \boldsymbol{x}_{\bar{\mathcal{S}}_{j}})$$

true (or empirical) distribution (problematic)