
• Few applicable approaches

• Existing methods are mostly for explaining f(x) in 
classification, often in white-box setting 

• Possible baselines:

• The prox gradient-like update converges when

• With the numerically estimated gradient, the problem now 
looks like L1-regularized convex-ish optimization  

• Updating rule from δold using prox gradient-like algorithm

• f(x) is black-box but we need the gradient: 

• Gradient 

→ Local sampling 
& linear fit

• No extra test sample available → use constant variance
(no choice!)

• Some amount of test samples available → locally 
weighted maximum likelihood

• Likelihood compensation δ:  A perturbation to xt such that 
xt + δ achieves the best possible fit to the model
• LC seeks a best possible fit by correcting xt under a 

certain regularization

• The main optimization problem
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Technical task: anomaly attribution for black-box regression
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Use-case example: Building energy management
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Local surrogate model for f(x) alone cannot explain deviations. 
Defining responsibility score as “horizontal deviation”
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Existing methods for anomaly attribution

* Local Interpretable Model-agnostic Explanations

Comparison in the building energy use-case
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• Task: Attribute deviation from black-box 
prediction f(x) to each input variable

• Background: Most of XAI methods are 
designed to explain f(x), not deviations

• Solution: New notion of “likelihood 
compensation”

Slides available: https://ide-research.net

• y: building energy consumption 

• x: Temperature, humidity, day of 
week, month, room occupancy, etc.

• Why black-box? 

• Multiple players (AI vendor / Sier / 
HVAC constructor)

• Proprietary technologies

0. Local variance estimation

Gaussian kernel defined for the specific test sample xt

1. Local gradient estimation of f

estimated 
gradient

random  samples

2. Proximal gradient update for δ

Has an analytic solution! 
(→ paper)

Condition of convergence – where the intuition 
of “horizontal deviation” comes from

Cond. 1: |deviation| = 0 Cond. 2:  |gradient| = 0

1: Z-score 2. LIME [Ribeiro 18], extended to 
explain f(xt) – yt rather than f(xt)

3: Shapley value [Strumbelj+ 14], 
extended to exlain f(xt) – yt

• One month-worth building energy data

• y: energy consumption

• x: time of day, temperature, 
humidity, sunrad, day of week (one-
hot encoded)

• Top: Overall anomaly score 

• ≒ energy deviation

• Bottom 3: Responsibility score of each 
input variable

• Only LC captures meaningful 
patterns
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