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Anomaly Attribution with
Likelihood Compensation

Technical task: anomaly attribution for black-box regression
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Use-case example: Building energy management

— actual
— prediction

* v: building energy consumption

 X: Temperature, humidity, day of
week, month, room occupancy, etc.

* Why black-box?

* Multiple players (Al vendor / Sier /
HVAC constructor)

* Proprietary technologies

Local surrogate is to explain f(x)

‘ local linear model

Anomaly attribution is for f(x) - y

Local surrogate model for f(x) alone cannot explain deviations.
Defining responsibility score as “horizontal deviation”

“likelihood
5 compensation’
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LC as optimal perturbation to x!

* Likelihood compensation 6: A perturbation to x* such that
x' + 6 achieves the best possible fit to the model
* LC seeks a best possible fit by correcting xt under a
certain regularization

d = arg Hax [ln {P(yt | f(z" + 0)) p(é)}] )
Gaussian elastic net

* The main optimization problem
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(A and v are constant)

® Estimate local variance.o (.’L‘t)
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@ Estimate gradient at ! 4 § <
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@ Update § via prox gradient
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0. Local variance estimation

* No extra test sample available = use constant variance

ply |z) =N(y| f(z),0%)

* Some amount of test samples available = locally N .
weighted maximum likelihood

1. Local gradient estimation of f

* f(x) is black-box but we need the gradient:
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2. Proximal gradient update for 6

* With the numerically estimated gradient, the problem now
looks like L,-regularized convex-ish optimization

Updating rule from 6°9 using prox gradient-like algorithm
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Has an analytic solution!

= Prox,.paq, (87 - s(vI(8°))) i3 enen

Condition of convergence — where the intuition
of “horizontal deviation” comes from

* The prox gradient-like update converges when
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Cond. 2: |gradient| =0

Cond. 1: |deviation| =0
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Existing methods for anomaly attribution

* Few applicable approaches

* Existing methods are mostly for explaining f(x) in
classification, often in white-box setting

e Possible baselines:

1: Z-score

a,@ (a: ) stddev;

3: Shapley value [Strumbelj+ 14],

extended to exlain f(xt) — yt

Comparison in the building energy use-case

anomaly score

* yv: energy consumption

* One month-worth building energy data wwuw

* x: time of day, temperature,
humidity, sunrad, day of week (one-
hot encoded)

* Top: Overall anomaly score

2. LIME [Ribeiro 18], extended to * = energy deviation

r! — mean; explain f(xt) — yt rather than f(x?)

* Bottom 3: Responsibility score of each
input variable

* Only LC captures meaningful
patterns
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