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About Ide-san 

▪Machine learning researcher at IBM Thomas J. Watson 
Research Center, New York, USA
o  IBM Research – Tokyo
o  University of Tokyo, Japan (Ph.D. in physics, 2000)

✓ Condensed matter physics (not computer science/statistics!)

▪ Research interests
o Passionate about modeling real-world problems in general
o Anomaly and change detection 

✓ Two textbooks (in Japanese →) 
o Multi-task learning
o Decentralized learning
o Causal learning
o etc.

"Anomaly detection and 
change detection”

“Introduction to 
anomaly detection using 

machine learning: A 
practical guide with R”
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Agenda

▪ Basics
o Machine learning 101

o Anomaly detection: Three major steps

o Outlier detection with multivariate Gaussian

▪ Advanced topics
o Change detection under heavy multiplicative noise

o Collaborative anomaly detection

o Anomaly attribution problem

▪ Summary
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Problem statement of machine learning: (Statistical) generalization

▪ Given a data set, create a summary of it in the form of a probability distribution, 
thereby earning the ability for prediction for the future

▪ “What will the (N+1)-th vector look like?”
o Obtain N samples through repeated observations

o Assume the system has an internal stricture that can be represented as a parametric function

▪ The problem setting does not differ very much from physics
o The goal is to predict the future (e.g., the position of a star)

system (engine, 
social net, etc.)

experimental 
condition etc.

𝒙(𝑛): the n-th sample (vector)
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Major problems of machine learning (ML):
Regression, classification and density estimation

▪ Supervised learning “learns” a 
conditional probability of y given x
o Data: collection of (input x, and output y)
o Regression: y is a real number 
o Classification: y is a class label

▪ Unsupervised learning (aka density 
estimation) learns p(x)
o Data: collection of only x

▪ Sequential prediction (aka system 
identification)
o Data: non-i.i.d. temporal data
o “Learns” the distribution of future observation

system

system

• Includes “reinforcement learning”

• Much harder than i.i.d. problems

Assume i.i.d. samples
(i.i.d.=identically and independently distributed)

“Yesterday’s score has no influence on today’s”

No i.i.d. assumption
“A bad score yesterday motivated me to prep hard 

last night. And,...”
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Major problems of machine learning (ML): 
Regression, classification and density estimation

▪ Supervised learning “learns” a 
conditional probability of y given x
o Data: collection of (input x, and output y)
o Regression: y is a real number 
o Classification: y is a class label

▪ Unsupervised learning (aka density 
estimation) learns p(x)
o Data: collection of only x

▪ Sequential prediction (aka forecasting or 
system identification)
o Data: non-i.i.d. temporal data
o “Learns” the distribution of future observation

system

system

• Includes “reinforcement learning”

• Much harder than i.i.d. problems
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Linear regression with Gaussian

• Observation model: a, b, σ2 are unknown

• log likelihood: Naturally introduces the squared loss

Most ML problems can be reduced to parameter estimation of a 
distribution: Linear regression example

▪ Step 1: Decide on what 
distribution to use
o This is typically a manual process; 

human intervention is 
unavoidable

▪ Step 2: Write down likelihood 
function with model 
parameters

▪ Step 3: Find a parameter value 
that maximizes the likelihood
o And find a predictive distribution

Parameters to be determined from 
data (𝑎, 𝑏, 𝜎2 in this example)
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Density estimation with Gaussian

• Observation model: 𝑚, 𝜎2 are unknowns

• Maximize log likelihood

• Determine the maximizer

Most ML problems can be reduced to parameter estimation of a 
distribution: Density estimation example

▪ Step 1: Decide on what distribution to 
use
o Symmetric (spherical)? →Maybe Gaussian
o Takes only positive real value? → Gamma?
o Distributes over [0,1]? → Beta?
o etc.

▪ Step 2: Write down likelihood function 
with model parameters

▪ Step 3: Find a parameter value that 
maximizes the likelihood
o And find a predictive distribution

Parameters to be determined 
from data (m, 𝜎2 in this example)
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Bayes theorem in ML is like Newton’s equation of motion in physics

▪ Bayes’ approach generalizes the maximum likelihood estimation (MLE) 
framework
o Goal: find a predictive distribution

o Approach: find a posterior distribution of model parameters (not only the peak position)

▪ Different levels of approximation lead to a variety of MLE-type problems
o Vanilla MLE: Use a constant prior. Ignore posterior variance

o Ridge estimation: Use a Gaussian prior. Ignore posterior variance (→ next page)

o Lasso regression: Use a Laplace prior. Ignore posterior variance

o Variational Bayes estimation: Assume a factorized form for posterior
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Finding the most probable 𝒂 by locating the 
maximum of 𝑃 𝒟 𝒂 𝑝(𝒂)

• Remember 

• Consider the logarithm of 𝑃 𝒟 𝒂 𝑝(𝒂)
to find the maximum

Bayesian linear regression (with Gaussian) is a generalization of the 
ridge regression

▪ Data: 𝒟 = { 𝒙 1 , 𝑦 1 , … , 𝒙 𝑁 , 𝑦 𝑁 }
▪ Model:

o Observation model:
o Prior distribution: 

▪ Goal: 
o Find the posterior distribution of the regression 

coefficient 𝑝(𝒂 ∣ 𝒟)
o Find the predictive distribution of the observed 

variables 𝑝(𝑦 ∣ 𝒙, 𝒟)

▪ Approach: Bayes’ theorem

o The expected value agrees with ridge regression (→) same as the loss function of the ridge regression
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For further reading 
(and Bayes vs. frequentist disputes in statistics …)

▪ General ML methods: Bishop, Murphy, etc.

▪ Bayesian learning framework gives an integrated 
picture on the entire field of ML

▪ It is also consistent to what we learn from 
everyday experience

▪ ML should probably stay away from statistician’s 
internal turf war
o Statistician’s critical view to ML: Efron & Hastie

✓ “In place of parametric optimality criteria, the machine learning 
community has focused on a set of specific prediction data sets 
… as benchmarks for measuring performance.” (Sec. 18.6)
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Agenda

▪ Basics
o Machine learning 101

o Anomaly detection: Three major steps

o Outlier detection with multivariate Gaussian

▪ Advanced topics
o Change detection under heavy multiplicative noise

o Collaborative anomaly detection

o Anomaly attribution problem

▪ Summary
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Anomaly is a relative concept. There is no such a thing as “one-size-
fits-all” anomaly detection method

▪ Example in anomaly detection
o “Happy families are all alike; every unhappy family is unhappy in its own way.” - Anna 

Karenina, Leo Tolstoy

outliers (from i.i.d. 
samples)

change points

outliers (from auto-
correlated samples)

discords

Examples of anomalies

T. Ide & M. Sugiyama, “Anomaly detection and change detection”, Kodansha, 2015.
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To define “anomalousness” we need a distribution of data

▪ Example: “A sample is outlier (because it is too far from the mean of the data)”
o Often the (because…) clause comes from human’s implicit knowledge

o But we need to be logical: Here we are assuming that

✓ There is a true model hidden behind the data

✓ The distribution has the mean as a model parameter 

✓ The deviation is larger than an acceptable threshold

o Example of the “true distribution”

▪ Observed value is noisy. We must check whether the deviation is significantly 
larger than an expected variability

Multivariate Gaussian
• μ: mean vector
• ∑: covariance matrix



15

IBM Research

The three subtasks in anomaly detection

Distribution 
estimation 
problem

Anomaly score 
design problem

Threshold 
determination 

problem

Standard way 
exists. Manual 
work is minimal.

Problem-specific. 
Very manual. 

▪ What parametric model to use

▪ How to estimate model parameters estimated

▪ How to quantify the degree of anomalousness

▪ How to obtain actionable information

▪ How to make binary (anomaly or normal) 
decision from real-valued anomaly score

▪ How to evaluate the goodness of anomaly 
detector
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Distribution estimation problem: The goal is to find predictive 
distribution of observed variable

▪ Decide on observation model and prior distributions
▪ Write down Bayes’ theorem to find the posterior distribution of model parameters
▪ Find a predictive distribution for the observed variable

Should fall around here 
under normal condition

x

p
ro

b
. d

en
si

ty

x’s distribution 
under normal
condition

Model parameter to 
be learned from data

x

y
Model parameter to 
be learned from data

Observe only x (density estimation) Observe x and y (regression)

Distribution 
estimation

Distribution gives 
a “normal range”
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“Sparse” models are favored in distribution estimation

▪What are “sparse” models? -- Examples
o Multivariate regression: Coefficient vector has many zero 

elements
o Support vector machine: Many sample weights are zero
o Sparse graphical model: Many graph edges has a zero weight

▪Why sparsity is appreciated
o Can simplify potentially complex model to make it easily 

interpretable 
✓ Example: document classification dominated by a few words

o Simple model is expected to be more robust to noise

▪ There is a mathematical technique called 
“regularization” that is designed to drive the solution 
to have many zeros

0
0

0
0
0
0

0

Distribution 
estimation
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Default choice of anomaly score is −ln 𝑝, where p is the predictive 
distribution of observed variables

▪ Only x is observed (density 
estimation)
o

✓ 𝒟 denotes the (training) data set
✓ 𝑝(𝒙 ∣ 𝒟) is called the predictive 

distribution
✓ For Gaussian, this is equivalent to 

Hotelling’s T2 statistic

▪ x-y pairs are observed (regression)
o

✓ Equivalent to squared loss for 
Gaussian linear regression

▪ When wishing to do change detection

o

✓ Called the log likelihood ratio
✓ Has a guarantee to be the optimal 

choice from Neyman-Pearson’s 
lemma

training 

window 

test 

window

t (time)

Anomaly score 
design
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Two main approaches in threshold determination

▪ Empirical (generally recommended whenever 
anomalous samples are available)
o Compute anomaly score on test data
o Draw the contrastive accuracy plot (→ later slides)
o Take the threshold at the break-even accuracy

▪ Theoretical (when no or few anomalous samples 
are available)
o Compute anomaly score on test data

✓ If anomaly score has been defined reasonably, the distribution is 
skewed towards zero. 

o Fit Gamma (or chi-squared) distribution for the score
o Use, e.g., p=0.02 boundary as the threshold

o Most asymptotic distributions in statistics do not agree 
with modern real-world data. Re-fitting of the anomaly 
score is always recommended

1

0

threshold

TN
 a
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u
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cy

TP
 a
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u

ra
cy

break-even 
accuracy

break-even 
threshold

anomaly score

p
ro

b
ab

ili
ty

 d
en

si
ty

p=0.02 
boundary

Threshold 
determination

contrastive accuracy plot
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Performance metric of anomaly detection (1/4): 
What is the ROC curve and its issues in anomaly detection

▪ ROC curve: Trajectory of (1-precision, recall) for many 
different threshold values
o Receiver Operating Characteristic → concept came from radar 

technology
o “Area Under the Curve” (AUC) is an overall performance 

metric
o Precision: how many declared negatives are actually nevative? 
o Recall: how many truly positive samples are detected?

▪ There is nothing wrong with ROC in binary 
classification, but it is not useful in anomaly detection
o In anomaly detection context,

✓ 1-precision: false alarm rate
✓ recall: hit ratio = true positive rate

o ROC curve does not provide a clue on how to choose the 
threshold value

20
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ROC curve example (→ later slide): 
In anomaly detection, due to massive class 
imbalance, ROC curve often becomes non-
smooth 

Threshold 
determination
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Performance metric of anomaly detection (2/4): True positive (TP) 
and true negative (TN) accuracies are simple consumable metrics

▪ True positive accuracy (anomalous 
sample accuracy, hit ratio)

o The same as recall in binary 
classification

o But different from precision
✓ Precision can be defined as the ratio 

of truly anomalous samples to the 
detected samples 

✓ Not reliable metric when anomalous 
samples are small

▪ True negative accuracy (normal 
sample accuracy)

o Corresponds to recall, not precision

▪ We use a metric that is symmetric 
between positive (anomalous) and 
negative (normal) 
o This is reasonable when there is a 

significant imbalance between the 
numbers of positives and negatives

o Recall-precision paradigm implicitly 
assumes balanced samples

# of successfully detected anomalous samples

# of truly anomalous samples

# of successfully predicted normal samples

# of truly normal samples

Threshold 
determination
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Performance metric of anomaly detection (3/4): How TP and TN 
accuracies are changed by the threshold

▪ Threshold vs. anomalous sample accuracy
o Infinitely small threshold → All the samples 

are declared as anomalous, yielding a 100 % 
anomalous sample accuracy

o Infinitely large threshold → The detector is 
extremely strict. No sample will be declared 
as anomalous, yielding a 0 anomalous 
sample accuracy

▪ Threshold vs. normal sample accuracy
o Infinitely small threshold → All the samples 

are declared as anomalous. All the normal 
samples are incorrectly classified, yielding a 0 
normal sample accuracy

o Infinitely large threshold → The detector is 
too strict to declare any samples to be 
anomalous. All the normal samples will be 
perfectly classified as normal, yielding a 
100% normal sample accuracy

1
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Performance metric of anomaly detection (4/4): Contrastive accuracy 
plot as practical performance evaluation tool

▪ Contrastive accuracy plot

▪ Break-even point
o The intersection between the normal 

sample and anomalous sample accuracies

▪ Break-even accuracy
o The accuracy where (normal sample 

accuracy) = (anomalous sample accuracy)

o A reasonable overall performance metric

▪ Break-even threshold 
o The threshold of the break-even point

Threshold 
determination
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break-even 
accuracy

break-even 
threshold

contrastive accuracy plot

The term “contrastive accuracy plot” was first introduced in T. Idé, G. Kollias, D. T. Phan, N. Abe, “Cardinality-Regularized Hawkes-Granger Model,” 
Advances in Neural Information Processing Systems 34 (NeurIPS 2021), to appear, 2021.
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Example: 
N = 10 samples, # of true anomaly is 3 (sample indices 2,6,8）

▪ 1. Compute anomaly score for each sample
▪ 2. Sort the score in decreasing order
▪ 3. Take out the first n sample(s) and check how many anomalous samples are 

included
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With this threshold, 
normal sample 
accuracy is 1/7 and 
anomalous sample 
accuracy is 2/3

break-even accuracy ≈ 0.86

break-even threshold ≈ 0.5

sort plot
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(Native English speakers getting confused with “negative = good”)

“The Office”, Season 2, Episode 19

Threshold 
determination
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Common myths of anomaly detection

▪ “Anomaly detection is unsupervised. You don’t need any anomalous samples”
o Density estimation can be done only with normal samples. BUT we cannot do performance 

evaluation or threshold determination

▪ “Anomaly detection is a binary classification task. Let’s grab a random classifier 
and we are done!”
o Naïve binary classification approach is doomed to fail due to significant class imbalance (# normal 

sample >>> # anomalous samples)

▪ “Anomaly detection is the same as computing the predicted value.”
o Predicted value is useful but we need to evaluate whether a discrepancy is statistically significant 

or not. We need information on the distribution

▪ “Deep learning dominates classical approaches also in anomaly detection.” 
o Unlike image/text/speech analysis, there still is much room for research on the applicability of 

deep learning methods. For noisy data, blindly using, e.g., LSTM typically leads to suboptimal 
results. Careful feature engineering is needed at least in real industrial applications
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Agenda

▪ Basics
o Machine learning 101

o Anomaly detection: Three major steps

o Outlier detection with multivariate Gaussian

▪ Advanced topics
o Change detection under heavy multiplicative noise

o Collaborative anomaly detection

o Anomaly attribution problem

▪ Summary
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Performing the 3 subtasks for multivariate Gaussian distribution

▪We are going to address each of the 3 tasks of anomaly detection when the 
model is multivariate Gaussian

▪ The resulting approach is called Hotelling’s T2 theory, which is almost 
everything of classical outlier detection theory in statistics

Distribution 
estimation 
problem

Anomaly score 
design problem

Threshold 
determination 

problem
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Distribution estimation (1/2):
Model assumptions

▪ Example of data 
o Multivariate time-series but time-correlation is not that strong

✓ Think of the values at each time point as an M-dimensional vector

o The M-dimensional vectors are assumed to be i.i.d. 

▪ Distribution: multivariate Gaussian
o Observation model

o Prior: none

…

M-dim.

M measurement values at time n
→ M-dimensional vector

Distribution 
estimation
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Distribution estimation (2/2):
Fitting multivariate Gaussian

▪Write down log likelihood L in terms of the model parameters 𝝁, Σ

o where

▪ Differentiate L with respect to 𝝁 and Σ and equate to 0 (zero vector/matrix)
o Needs matrix derivative → Bishops’ textbook

Distribution 
estimation
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Anomaly score design (1/2): 
Associating predictive distribution with anomaly score

▪ Build the predictive distribution for x from the estimated parameters
o Predictive distribution gives probability density at any x, even if the x is not included in the 

training data set
o In this case, we simply plug-in MLE values of μ and ∑ 

▪ Given predictive distribution 𝑝(𝒙 ∣ 𝒟),  we can define anomaly scores as
o

o Why log? → Can be interpreted as information (in information theory)
o For 𝑝 𝒙 𝒟 = 𝑝(𝑥 ∣ ෝ𝝁, Σ), the classical Hotelling’s 𝑇2 statistic is obtained

✓

Anomaly score 
design
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Anomaly score design (2/2): 
Understanding the anomaly score as the Mahalanobis distance

▪ The anomaly score defines an ellipsoidal contour 
in the x space
o

▪ This quantity nicely encodes both deviation 𝑥 − 𝜇
and (co)variance
o Why inverse? → Basically, it is intuitively to divide by the 

standard deviation

▪ In statistics, they typically used this expression
o Called the Hotelling’s 𝑇2 statistic

Anomaly score 
design

Under normal condition, the variability 
along this direction is small.
→ Just a little deviation may be a big deal

Large variability in this direction 
→ Small deviations should be ignored
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Threshold determination:
Hotelling’s 𝑻𝟐 statistics has a theoretical distribution (but …)

▪ If the true distribution is Gaussian, one can mathematically show that 
Hotelling’s 𝑇2 obeys the F-distribution with degrees of freedom (M, N-M)
o N: # of samples, M: dimensionality

▪ However, this distribution is almost always inconsistent with computed 
scores in modern anomaly detection tasks
o In the big data era, N can be huge, which classical asymptotic theories did not actually 

assume

o → Re-fit Chi-squared distribution

Threshold 
determination
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Limitations of Hotelling’s theory

▪ Suffers numerical instability due to 
matrix inversion

▪ Lacks the capability of computing 
the responsibility of each variable

▪ How do we evaluate the 
responsibility score? 
o One approach is to use a conditional 

distribution 
This naïve univariate version typically 
gives too loose threshold

All the variables but xi

Should be declared as anomaly 
but will be overlooked
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Agenda

▪ Basics
o Machine learning 101

o Anomaly detection: Three major steps

o Outlier detection with multivariate Gaussian

▪ Advanced topics
o Change detection under heavy multiplicative noise

o Collaborative anomaly detection

o Anomaly attribution problem

▪ Summary

Detail→ Tsuyoshi Idé, Dzung T. Phan, Jayant Kalagnanam, “Change Detection using Directional Statistics,” In Proceedings of the 
Twenty-Fifrth International Joint Conference on Artificial Intelligence (IJCAI 16, July 9-15, 2016, New York, USA), pp.1613-1619.
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Change detection is to quantify the difference between two 
distributions

▪ Change = difference between

and 
o x: M-dimensional i.i.d. observation

o p(x): p.d.f. estimated from reference window

o pt(x): p.d.f. estimated from the test window at time t

▪ Assume a sequence of i.i.d. vectors
o Training data in the reference window

reference window 

(fixed or sliding)

test 

window

D

t (time)

N

time index (or sample index)
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Motivating application was ore conveyor system. Reduction of 
multiplicative noise was our primary requirement

▪ Real mechanical systems often incur 
multiplicative noise
o Example: two belt conveyors operated by 

the same motor

▪ Normalization of vector is simple but 
powerful method for noise reduction

time

Farzad Ebrahimi, ed., Finite Element 

Analysis - Applications in Mechanical 

Engineering, under CC BY 3.0 

license

(Image: 

Wikimedia 

commons)

http://creativecommons.org/licenses/by/3.0/
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We used von Mises-Fisher distribution to model         and 

▪ vMF distribution: “Gaussian for unit vectors”

o z: random unit vector of ||z|| =1

o u: mean direction

o : “concentration” (~ precision in Gaussian)

o M: dimensionality

▪We are concerned only with the direction of 
observation x:
o

same 

direction = 

same input• Normalization is always made

• Do not care about the norm
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Change score was parameterized Kullback-Leibler divergence

▪With extracted directions, define the 
change score at time t as

▪ Concisely represented by the top singular 
value of

training window 

(fixed or sliding)

test 

window
vMF distribution 

vMF distribution 

vMF dist. 
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Agenda

▪ Basics
o Machine learning 101

o Anomaly detection: Three major steps

o Outlier detection with multivariate Gaussian

▪ Advanced topics
o Change detection under heavy multiplicative noise

o Collaborative anomaly detection

o Anomaly attribution problem

▪ Summary

Details → Tsuyoshi Idé, Dzung T. Phan, Jayant Kalagnanam, “Multi-task Multi-modal Models for Collective Anomaly Detection,” Proceedings 
of the 2017 IEEE International Conference on Data Mining (ICDM 17, November 18-21, 2017, New Orleans, USA), pp.177-186 
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Wish to build a collective monitoring solution 

▪ You have many similar but not identical industrial 
assets

▪ You want to build an anomaly detection model for 
each of the assets

▪ Straightforward solutions have serious limitations
o 1. Treat the systems separately. Create each model 

individually

✓ Fault examples may be too few

o 2. Build one universal model by disregarding individuality

✓ Individuality will be ignored

…
System 1

(in New 

Orleans)

System s

System S

(in New York)

…
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Formalizing the problem as multi-task density estimation for anomaly 
detection

Data Prob. density Anomaly score

all data

• overall

• variable-wise

m
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…
System 1

(in New 

Orleans)

System s

System S

(in New York)

…
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Basic modeling strategy: Combine common pattern dictionary with 
individual weights

Monitoring model 

for System 1

Monitoring model 

for System 2

Monitoring model 

for System S

……

sparse 

GGM 1

sparse 

GGM 2

sparse 

GGM K

Common dictionary

of sparse graphs

GGM=Gaussian Graphical Model

prob.

prob.

prob.

Individual sparse weights

…
System 1

(in New 

Orleans)

System s

System S

(in New York)

…
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Basic modeling strategy: Resulting model will be a sparse mixture of 
sparse GGM

Monitoring model for System s

…

sparse 

GGM 1

sparse 

GGM 2

sparse 

GGM K

GGM=Gaussian Graphical Model

prob.

System s

Gaussian mixture

Sparse mixture weights

(= automatic 
determination of the 
number of patterns)

Sparse 
Gaussian 
graphical 
model
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Agenda

▪ Basics
o Machine learning 101

o Anomaly detection: Three major steps

o Outlier detection with multivariate Gaussian

▪ Advanced topics
o Change detection under heavy multiplicative noise

o Collaborative anomaly detection

o Anomaly attribution problem

▪ Summary

Details → Tsuyoshi Idé, Amit Dhurandhar, Jiri Navratil, Moninder Singh, Naoki Abe, “Anomaly Attribution with Likelihood Compensation,” 
In Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI 21, February 2-9, 2021, virtual), pp.4131-4138 
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Technical task: anomaly attribution for black-box regression

▪ Task: Attribute deviation from black-box 
prediction f(x) to each input variable

▪ Background: Most of XAI methods are 
designed to explain f(x), not deviations

▪ Solution: New notion of “likelihood 
compensation” 
o Define the responsibility through perturbation to 

achieve the highest possible likelihood

training data 
(unavailable)

test data 
(available)

Multivariate vector in 

real-valued

Black-box regression 
function
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Technical task: anomaly attribution for black-box regression
Input and output

Black-box regression function

Likelihood 
compensation 

algorithm

(xt, yt) 

Test sample(s) 
showing 
anomaly/deviation

Input Output
responsibility score 
computed locally at (xt, yt):

δ1, …, δM

(from Boston 
Housing example)



48

IBM Research

Use-case example: Building energy management

▪ Use case example: building management
o y: building energy consumption 

o x: Temperature, humidity, day of week, month, room 
occupancy, etc.

▪ Building admin (primary end-user) does not 
have full visibility of the model f, training data, 
and sensing system
o AI vendor/SIer/HVAC constructor often use 

proprietary technologies

o Only some amount of test data is accessible 

── actual
── prediction



49

IBM Research

High-level idea: Defining responsibility score through local 
perturbation as “horizontal deviation”

deviation

local linear model

Given y, this point gives the 
highest possible likelihood

: responsibility score 
(“likelihood compensation”)Local surrogate model to explain f(x) 



50

IBM Research

Comparison with LIME+ and Z-score in building energy use-case

▪ One month-worth building energy data
o y: energy consumption
o x: time of day, temperature, humidity, sunrad, day of week (one-

hot encoded)

▪ The score is computed based on hourly 24 test points 
for each day
o The mean of the absolute values are visualized
o SV+ was not computable due to lack of training data

▪ LIME+ is insensitive to outliers
o LIME score remain the same for any outliers, making it less useful 

in anomaly attribution

▪ Z-score does not depend on y (by definition)
o The artifact for the day-of-week variables is due to one-hot 

encoding

anomaly score

LC

LIME+

Z-score
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Agenda

▪ Basics
o Machine learning 101

o Anomaly detection: Three major steps

o Outlier detection with multivariate Gaussian

▪ Advanced topics
o Change detection under heavy multiplicative noise

o Collaborative anomaly detection

o Anomaly attribution problem

▪ Summary
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Summary

▪ In Basics, I explained
o The problem setting of machine learning in comparison to physics

o What the three main tasks of anomaly detection look like

o Where Hotelling’s T2 theory comes from 

▪ In Advanced Topics, I covered
o A change detection approach based on non-Gaussian distribution

o A collaborative anomaly detection framework

o A new approach to black-box anomaly attribution

▪ I did not cover topics related to deep learning (maybe next time)


